
DiProNN Resource Management System

Tomáš Rebok

Faculty of Informatics
Masaryk University

Botanická 68a, 602 00 Brno
xrebok@fi.muni.cz

Abstract. The Distributed Programmable Network Node (DiProNN)
we proposed earlier allows user-controlled processing of passing user
data in a network. The node takes advantages of virtualization prin-
ciples, which make DiProNN being able to accept not only standalone
active programs (the programs performing the stream processing), but
the whole virtual machines with their own operating systems, and their
own set of active programs running inside them. Furthermore, thanks to
the virtualization principles we proposed innovative programming model
which makes the programming of complex stream processing applications
for DiProNN much easier.

However, when the node is being used in multiuser environment, the
users must share its limited resources, namely its CPU time, network
I/O, disk I/O, and memory subsystem. In this paper, we present the
resource management (RM) system of the DiProNN node including re-
source discovery process performed during node startup. Furthermore,
we present the specification of DiProNN users’ resource requests and
DiProNN resources reservation process itself. In the end of the paper,
we briefly describe the DiProNN prototype implementation enhanced by
the resource management system described.

1 Introduction

In [1] and [2] we proposed the architecture of the Distributed Programmable
Network Node (DiProNN), that uses the principle called “Active/Programmable
Networks”—an attempt how to build an intelligent and flexible network using
current networks serving as a communication underlay. The proposed node em-
ploys the virtualization principles [3], that enable DiProNN users to upload not
only standalone active programs (the programs performing the stream processing
on the node), but the whole virtual machines with their own operating systems
and their own set of active programs (APs) running inside them. Moreover, the
usage of virtual machines (VM) principles enabled us to propose an innovative
programming model proposed in [4].

However, the application of such a programmable node in a shared network
environment pose new challenges in the design of its resource management (RM)
system. Thus, more resources are shared among the users of the node—the CPU

cycles, state storage capacity, and data storage together with traditional net-
working components like packet queues on network interfaces. To enable sharing
of all these resources within the DiProNN by its users we employ the RM system
as described in this paper. The system is based on a simple per-VM resource
reservation mechanism, that enable DiProNN users to precisely reserve the re-
sources they need for their proper DiProNN session processing.

The main goal of this paper is to illustrate the RM system employed in
DiProNN, and to show how DiProNN users can request reservations of DiProNN
resources to ensure proper processing of their data stream(s). The paper is or-
ganized as follows: for the purposes of this paper, the Section 2 briefly describes
the DiProNN architecture, while the following Section 3 describes the DiProNN
resources discovery process in detail. The Section 4 then briefly presents the
RM-enabled prototype implementation we created, while in the next section we
present works related to the ours one. Finally, in Section 6 we conclude and
present our future work.

2 DiProNN: Distributed Programmable Network Node

DiProNN architecture we propose assumes the infrastructure as shown in Fig-
ure 1. The computing nodes form a computer cluster interconnected with each
node having two connections—one low-latency control connection used for inter-
nal communication and synchronization inside the DiProNN, and at least one1

data connection used for receiving and sending data.

low latency
interconnect switch

processing units

distribution
unit

aggregation
unit

data link low latency interconnect

network
(Internet) data flow data flow

control unit

network
(Internet)

data switch

Fig. 1. Proposed DiProNN architecture.

1 The ingress data connection could be the same as the egress one.

For the purposes of this paper, the most important DiProNN units depicted
in the Figure 1 are the Control Unit and the Processing Unit(s)2.

The Control Unit serves as the main control point of the whole DiProNN
node. It communicates with all the other DiProNN units, collects all the nec-
essary information and decides about various events in DiProNN (e.g., VM mi-
gration, accepting/refusing new DiProNN sessions, collecting all the accounting
information, etc.). From the DiProNN RM system point of view, the Control
Unit maintains information about the actual state of all the DiProNN resources.
It communicates with the Resource Management module of all the units (see
later) and collects all the information about the actual state and usage of their
resources monitored. For example, the information about available resources is
then used for decisions about accepting or refusing new DiProNN sessions and
for decisions about necessary virtual machine(s) migration in order to use the
DiProNN resources in an efficient way.

The Processing Units having their architecture depicted in the Figure 2 are
the only DiProNN units necessarily hosting the virtualization mechanism and
virtual machines (usually called domains), where user uploaded APs and VMs
performing passing stream processing run. The Processing Units’ Service domain
depicted in the Figure 2 has to manage the whole unit functionality including
uploading, starting and destroying of the virtual machines, communication with
the Control Unit, and a session accounting and management. To provide all of
these the Service domains run set of modules depicted in the figure—for the
purposes of this paper, the most important ones are the Control module control-
ling the Processing Units’ behavior and functionality, the VM/AP Management
module managing all the virtual machines and active programs running on the
unit, and the Resource Management (RM) module providing monitoring and
controlling of units’ resources.

Fig. 2. DiPRoNN Processing Unit Architecture.

2 Further details about the whole DiProNN architecture as well as the architecture of
all the DiProNN units can be found in [1] and in [2].

3 DiProNN Resources Discovery Process

The resource discovery process takes place during DiProNN initialization, which
is the process starting with all the DiProNN units startup to the moment, when
the node is ready for new sessions establishment. During the process, not only
the hardware, but also the software DiProNN resources have to be discovered.

By the software DiProNN resources we mean all the active programs pro-
viding the built-in DiProNN functionality, and all the (fixed) virtual machines
serving as an execution environment for standalone APs3. The hardware re-
sources are the ones we have already mentioned—CPU time, network, memory,
and storage subsystem access.

During the initialization, all the DiProNN units have to start their necessary
service utilities, and all the Processing Units have to register their fixed virtual
machines and active programs running inside them at first. The APs registration
is performed using the Active Program Manager (APM) service running inside
each VM (see Figure 2), which sends the information about all the built-in APs
running inside each VM to the VM/AP Management module of the relevant
Processing Unit.

When the APs registration process finishes, the units registration process
takes place. During the registration, all the DiProNN units (their Control mod-
ule) send the registration request to the DiProNN Control Unit. When the unit
registration process finishes, the available DiProNN HW & SW resources collec-
tion process takes place.

3.1 DiProNN HW & SW Resources Collection

After the successful registration of the units, all the RM modules running on the
units are contacted by the DiProNN Resource Management module running on
the Control Unit to receive information about their both HW and SW resources
available. This information is periodically obtained by the module and, as men-
tioned in the Section 2, serves mainly for the built-in APs discovery and the
decisions about new standalone APs and VMs placement, and VMs migrations.

For resources discovery and information exchange among the units, the use
of a standardized monitoring software tool is highly desirable. The examples
of such a tool are the Ganglia [5]—a scalable distributed monitoring system
for high-performance computing systems such as clusters and Grids—and the
GLUE schema [6], which is an information model for Grid entities described
using natural language and enriched with a graphical representation using UML
Class Diagrams.

The resources discovery and monitoring software tool has to collect, and
to the DiProNN Resource Management module has to provide following set of
information about:
3 As mentioned in Section 1, DiProNN users are enabled to upload both the virtual

machines running set of APs performing requested stream processing, or the stan-
dalone APs if no VMs are necessary. But such standalone APs have to run in any
VM, and thus, some fixed VM(s) serve as an execution environment for them.

– virtual machines running on all the DiProNN Processing Units. The infor-
mation consists of a type of the VM (whether it can serve as an execution
environment for standalone APs), VM reference name (the name used when
referencing APs running inside them, see [4]), VM operating system infor-
mation (used for standalone APs requiring specific OS type for their run)
and simple description provided to DiProNN users.

– built-in APs running in the fixed VMs. The information provided contains
the AP reference name, the VM reference name the AP is running in, and
simple description of the AP functionality (provided to DiProNN users when
requesting the overview of built-in APs running in the node).

– HW resources available on the DiProNN units. The resources monitored
cover information (status and utilization) about all the CPUs, network I/O,
disk I/O, and memory subsystem.

3.2 Resource requests specification

As described in [4], the DiProNN users specify their HW resource requests
in so called DiProNN programs. The specification of requested resources may
be specified in both VM parameters section(s) and standalone AP parame-
ters section(s) (see [4]). The resources are specified using the CPU REQUEST,
MEM REQUEST, NET REQUEST and DISK REQUEST keywords as depicted in following
example:

{ AP name="first_AP" ref="first_AP_reference";

AP parameters

CPU_REQUEST = 60 # percent

MEM_REQUEST = 128 # MB

DISK_REQUEST = 100 # MB

NET_REQUEST = 1000 # Mbps

inputs = ...;

outputs = ...; }

Fig. 3. Example part of a DiProNN program specifying resource requests.

The DiProNN programs requesting new DiProNN session establishment are
through the Distribution Unit delivered to the Control Unit, which depending
on the actual usage of DiProNN resources obtained from the DiProNN Resource
Management module (running on the Control Unit) decides about the accept-
ing/rejecting of the DiProNN session request. If the request could be satisfied,
the HW resource allocation process take place.

3.3 Resource allocation process

Since DiProNN does not rely on specific virtualization system, the real resource
allocation process as well as the precise specification of the amount of requested
resources (as depicted in the Figure 3 depend on the features of the virtualization
system used.

4 Prototype implementation

To test the RM system described we enhanced our previously created basic proto-
type implementation based on the Xen Virtual Machine Monitor (VMM) [7]. The
new DiProNN implementation we created covers all the three basic aspects of
the RM system described—the resource state and utilization information gather-
ing, users’ resource requests specification, and the requested resource allocations
themselves.

Since the resource requests specifications we use are exactly the same as de-
picted in the Figure 3, they are not described in this section again. Furthermore,
because of limited number of pages, for the comprehensive performance tests of
the DiProNN prototype being described let us refer the reader to [8].

4.1 Resource state and utilization information gathering

To gather all the resource information we decided to use the Ganglia monitoring
tool mentioned in previous section (mainly because of its simple and powerful
design and simple extensibility).

The Ganglia comprises of two daemons—the Ganglia Monitoring Daemon
(gmond) and the Ganglia Meta Daemon (gmetad). For our RM-enabled DiProNN
implementation, the gmond served as a gathering agent running on particular
DiProNN units, while the gmetad served as an aggregation agent running on the
DiProNN Control Unit only.

Since the original gmond is able to monitor the CPU units, network I/O, disk
I/O, and memory subsystem only, to enable monitoring of SW resources (built-
in APs and VMs) we created a dynamically loadable module (so called agent
in Ganglia terminology) extending the available metrics. The created agent,
called VMAPmon module, directly communicates with the VM/AP Management
module of the relevant Processing Unit and collects all the information about
built-in APs and fixed VMs running on the unit. The gmond then provides this
information together with the information about the CPU, network, disk and
memory to the gmetad daemon.

The gmetad collects all the SW and HW information provided by the gmonds
of all the DiProNN units and provides it to the DiProNN Resource Management
module running on the Control Unit. The information is then used for accept-
ing/rejecting of new DiProNN sessions (depending on the resources required
vs. resources available) and decisions about suitable VMs for standalone APs
uploading.

4.2 HW resource allocations

In our RM-enabled prototype, the resource allocations are realized using common
resource-controlling tools provided with the Xen VMM system. If a Processing
Unit hosts a VM (or a standalone AP) belonging to an accepted DiProNN ses-
sion, the Control Unit sends to its VM/AP Management module relevant part
of the DiProNN program including the resource requests specified. The VM/AP

Management module then in cooperation with the Resource Management mod-
ule running on the same Processing Unit proceeds the resource allocation itself.

As mentioned previously, the RM-enabled DiProNN prototype implementa-
tion being described is able to reserve following set of resources:

– CPU time – based on available DiProNN schedulers evaluation we did (see [8]),
for our DiProNN prototype we decided to use the credit scheduler in so called
work consuming (wc) mode. The scheduler accepts two attributes for each
VM—so called weight representing the domain’s CPU priority, and so called
cap optionally fixing the maximum amount of CPU a domain will be able
to consume.
In our case, based on the CPU request the VM/AP Management module
tries to find a CPU having enough free computing time, which the relevant
VM will be dedicated to (if there is any, otherwise the session request is
rejected). If two or more VMs do have to share one physical CPU unit, their
weight attribute of the credit scheduler is set appropriately so that all the
VMs do receive proper portion of the CPU time.

– Memory – for the maximum memory information we use the memory param-
eter of the VM configuration file. The memory is allocated and dedicated to
the VM during its startup.

– Network bandwidth – for the network bandwidth reservations, we use the
Traffic Control (tc) tool available under Linux, namely its shaping func-
tionality. All the domains are reserved (and restricted to) their requested
network bandwidth specified.

– Disk capacity – if a domain requests an additional disk space than the one
available in the VM image, using the disk parameter of the VM configuration
file we assign it a partition (previously created) of the size requested.

5 Related Work

Thanks to amazing flexibility, the programmable networks principles became
very popular and thus various architectures of programmable routers have been
proposed. This section briefly depicts only those ones mostly related to our work.

C&C Research Laboratories propose the CLARA (CLuster-based Active
Router Architecture, [9]) providing customizing of media streams to the needs
of their clients. Computational resources available in CLARA could be also
reserved—the hierarchies of schedulers are created, making it possible to divide
the computational resources available on a computing router.

The [10] presents an architecture of the QuaSAR router, trying to improve
the Quality of Service guarantees provided to applications transporting time-
sensitive data across the best-effort Internet. The architecture uses the virtual
machine techniques to assign an individual virtual routelet to each network flow
requiring QoS guarantees—the appropriate amount of resources is then assigned
to each (virtual) routelet.

The PlanetLab project [11] also introduces their approach to isolate shared
network resources in their Xen VMM-based XenoServers.

6 Conclusions and Future Work

In this paper, we have presented the resource management system of the Dis-
tributed Programmable Network Node (DiProNN) we proposed. The RM system
we described deals with all the three basic aspects we mentioned—the resource
state and utilization information gathering, users’ resource requests specification,
and the requested resource allocations themselves. The RM-enabled DiProNN
prototype implementation was also depicted.

Concerning the future challenges, we would like to explore the DiProNN
sessions scheduling from global point of view—the scheduling of APs/VMs to
suitable DiProNN nodes when there are more DiProNN nodes able to participate
on the processing of given DiProNN session.

Acknowledgement: This project has been supported by research intent “In-
tegrated Approach to Education of PhD Students in the Area of Parallel and
Distributed Systems” (No. 102/05/H050) and “Optical Network of National Re-
search and Its New Applications” (MŠM 6383917201).

References

1. Rebok, T.: DiProNN: Distributed Programmable Network Node Architecture. In:
ICNS’08 Conference Proceedings. Fourth International Conference on Networking
and Services. (2008) 67–72

2. Rebok, T.: DiProNN: Distributed Programmable Network Node Architecture. In:
CGW’07 Conference Proceedings. (2008) 283–290

3. Smith, J.E., Nair, R.: Virtual Machines: Versatile Platforms for Systems and
Processes. Elsevier Inc. (2005)

4. Rebok, T.: DiProNN Programming Model. In: MEMICS’07 Conference Proceed-
ings, MEMICS 2007 (2007) 978–80

5. Massie, M., Chun, B., Culler, D.: The Ganglia Distributed Monitoring System:
design, implementation, and experience. Parallel Computing 30(7) (2004) 817–
840

6. Andreozzi, S., et al.: GLUE Schema Specification–version 1.3. OGF:
https://forge.gridforum.org/sf/go/doc14185 (2005)

7. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., m,
P.B., Neugebauer, R.: Xen and the Art of Virtualization. In: Proceedings of the
ACM Symposium on Operating Systems Principles, Bolton Landing, NY, USA
(2003)

8. Rebok, T.: Měřeńı plánovaćıch algoritmǔ prototypu aktivńıho směrovače s pod-
porou QoS. http://www.fi.muni.cz/~xrebok/DiProNN_QoS/DiProNN_QoS.pdf

(2008)
9. Welling, G., Ott, M., Mathur, S.: A cluster-based active router architecture. IEEE

Micro 21(1) (2001) 16–25
10. Sventek, J.;McIlroy, R.: Resource virtualisation of network routers. In: Inter-

national Workshop on High Performance Switching and Routing (HPSR), IEEE
(2006)

11. Warfield, A., Hand, S., Harris, T., Pratt, I.: Isolation of Shared Network Resources
in Xenoservers. Technical Report PDN–02–006, PlanetLab Consortium (2002)

