DiProNN Programming Model

Tomaés Rebok

Faculty of Informatics
Masaryk University
Botanicka 68a, 602 00 Brno
xrebok@fi.muni.cz

Abstract. The programmable network approach allows processing of
passing user data in a network, which is highly suitable especially for
video streams processing. However, the programming of complex stream
processing applications for programmable nodes is not effortless since
they usually do not provide sufficient flexibility (both programming flex-
ibility and execution environment flexibility). In this paper we propose
a programming model for our DiProNN node—the programmable net-
work node that is able to accept and run user-supplied programs and/or
virtual machines and process them over passing user data. The proposed
modular programming model is based on the workflow principles and
takes advantages of DiProNN virtualization, thanks to which the pro-
gramming of complex streaming applications is much easier since they
might be separated into several single-purpose simple programs. As an
example application we show an implementation of simple MCU (Mul-
tipoint Control Unit) that profits from DiProNN properties.

1 Introduction

The principle called “Active Networks” or “Programmable Networks” is an at-
tempt how to build an intelligent and flexible network using current networks
serving as a communication underlay. Such a network allows user-defined pro-
cessing of passing user data on inner network (programmable) nodes. Multimedia
application processing (e.g., video delivery and/or transcoding) or security ser-
vices (data encryption over untrusted links, secure and reliable multicast, etc.)
are a few of possible services which could be provided.

However, programming of complex stream processing applications for pro-
grammable nodes is not effortless since they usually do not provide sufficient
flexibility (both programming flexibility and execution environment flexibility).
Usually, when a program doing requested processing exists, there might not exist
a programmable node capable of running it, and thus the original active program
has to be revised.

The usage of virtual machines principles [1] can increase a lot the flexibil-
ity of programmable nodes’ execution environment since they are able to run
completely different execution environments simultaneously. Moreover, they can
also bring other benefits (strong isolation, resource management, programming
flexibility, etc.), and thus make the usage of programmable routers easier.

The main goal of our work is to propose the programmable network node ar-
chitecture named DiProNN (Distributed Programmable Network Node) that is
able to accept and run user-supplied programs and/or virtual machines and pro-
cess them over passing data. All the DiProNN programs are described using novel
modular programming model described in this paper. The model is based on the
workflow principles and takes advantages of DiProNN virtualization, thanks to
which the programming of complex streaming applications in DiProNN is highly
comfortable. As an example application we show an implementation of simple
MCU (Multipoint Control Unit) used for large videoconferences that profits from
DiProNN properties.

2 DiProNN: Distributed
Programmable Network Node

DiProNN architecture we propose assumes the infrastructure as shown in Fig-
ure 1. The computing nodes form a computer cluster interconnected with each
node having two connections—one low-latency control connection used for inter-
nal communication and synchronization inside the DiProNN, and at least one'
data connection used for receiving and sending data.

Further details about the whole DiProNN architecture as well as the archi-
tecture of all the DiProNN components can be found in [2], [3] or [4].

processing units
e

***** > T

——]
_< Tccc<<<
distribution < <<
unit

aggregation
unit

e ——)
Tc<cccc<<
e

=, low latency
interconnect switch

control unit

data link

low latency interconnect

Fig. 1. Proposed DiProNN architecture.

3 DiProNN Programming Model

In this section we depict a programming model we propose for DiProNN pro-
gramming. The model is based on the workflow principles [5] and is similar to the
idea of the Streamlt [6], which is a language and compiler specifically designed
for modern stream programming.

! The ingress data connection could be the same as the egress one.

For the DiProNN programming model we adopted the idea of independent
simple processing blocks (Filters in Streamlt), that composed into a process-
ing graph constitute required complex processing. In our case, the processing
block is an active program and the communication among such active programs
is thanks to the virtualization mechanisms provided by machine hypervisor us-
ing common network services (details about DiProNN internal communication
are provided in Section 3.2). The interconnected active programs then compose
the “DiProNN session” described by its “DiProNN session graph”, which is a
graphical representation of an “DiProNN program” (an example is given in the
Figure 3). To achieve desired level of abstraction all the active programs as well
as the input/output data/communication interfaces are reffered by their hierar-
chical names as shown in the MCU example in Section 4.

3.1 DiProNN Program

The DiProNN program defines active programs optionally with virtual machines
they run in?, which are neccessary for DiProNN session processing, and defines
both data and control communication among them. Besides that, the DiProNN
program may also define other parameters of active programs or whole DiProNN
session and/or resource requirements they have for proper functionality.

Data Interconnection Constructs As mentioned before, the DiProNN pro-
gram defines active programs required for DiProNN session processing, and data
and control communication among them. Besides that, the DiProNN program
consists of following constructs describing communication channels and active
programs’ processing:

— Serialize — as its name indicates, this construct is used to serialize processing
of two independent active programs. It means, that the output(s) of one
active program is/are connected to the input of another one(s). An example
is given in the Figure 2(a).

— Split — the Split construct is used to specify independent parallel streams,
which are further processed separately, and specifies how items from the
input are distributed over the parallel components. There can be both built-
in general splitters (e.g., duplication or RoundRobin function) and user-
defined (and thus uploaded) splitters. An example is given in the Figure 2(b).

— Parallelize - if the special attribute of an active program (parallelizable) is
set, the DiProNN performs its processing in parallel (see Figure 2(c)). The
number of parallel instances running can be either fixed (set in DiProNN
program and negotiated during DiProNN session establishment) or variable
(controlled by the Control unit depending on actual active program usage
and resources available).

2 In DiProNN, each active program may run in completely distinct execution environ-
ment (e.g., different OS) from the others. But similarly, it is also possible that single
VM may contain several active programs running inside.

When processing an active program in parallel, the DiProNN session has to
specify how to distribute incoming data over such parallel instances. Thus,
before every active program having parallelizable attribute set there must
be an Split construct (built-in or user-loaded) defined.

input_AP1 \L @
lit)
@ outputs_APl (spi)

output_AP1 l/
input_AP2 input_AP2 @
(a) Serialize (b) Split (c) Parallelize

Fig. 2. DiProNN program constructs.

Internal Control Communication Sometimes two or more active programs
processing given data stream have to communicate with each other (to indicate
some new event occured in e.g. a stream processed in parallel, to share informa-
tion about their state or just to ask them for some information). In such cases,
the DiProNN users may define control links among active programs similarly as
they do it for data communication.

Nevertheless, the real control messages are not sent via data links as the
data are, but via internal low-latency interconnection described in Section 2
since the latency of control messages transmitted should be as low as possible.
Thus, when a port of an active program is registered as a control port, all
the messages coming from it to another active program are transmitted using
internal low-latency interconnection.

3.2 DiProNN Session Establishement and Data Flow

When a new DiProNN session request arrives to the node, the Distribution unit
immediatelly forwards it to the Control unit. If the receiver(s) of given DiProNN
session is/are known, the Control unit contacts all the DiProNN nodes operating
on the path from it to the receiver(s)?, and asks them for their actual usage.
Using the information about their usage the Control unit decides, whether the
new DiProNN session request could be satisfied by the first node alone or whether
a part of requested DiProNN session has to be (or should be because of resource
optimalization) performed on another DiProNN node being on the path from
the first DiProNN node to the receiver(s).

3 Different parts of a whole processing might be performed on different DiProNN nodes
for resource or network optimization.

If the request could be satisfied, the session establishment takes place. It
means, that each DiProNN node receives its relevant part of the whole DiProNN
session and the Control unit of each DiProNN node decide, which Processing
units each active program/virtual machine will run on. After that, both the
control modules (a part of each Processing unit) and the Distribution units of
all the DiProNN nodes used are set appropriatery. Moreover, all the requested
resources are reserved, if any.

Once the session is established, the data flow through each DiProNN node
could be briefly described in the following way: when a packet arrives to the
Distribution unit, it is forwarded to the first active program processing given
DiProNN session (to an interface of appropriate virtual machine and port the
active program listens on), where in case of ARTP protocol? it is reassembled
into original ARTP datagram and processed (when using UDP protocol it is
processed directly). After the processing, the ARTP datagram is fragmented
again into ARTP packets, which are forwarded to next active program(s) for
further processing (in case of UDP protocol packets are forwarded directly).
Finally, all the packets are forwarded to the Aggregation unit, where they are
sent away to their receiver or to next processing node.

Since the DiProNN programming model uses symbolic names for communi-
cation channels (both data and control channels) instead of port numbers, the
names must be associated with appropriate port numbers during a DiProNN
session startup. This association is done using the control module where the
couple (symbolic name, real port) is using simple text protocol registered. The
control module using the information about registered couples together with the
DiProNN program a packet is coming from properly sets the IP receiver of pass-
ing packets, which are then automatically forwarded to proper active programs
for processing.

However, this approach does not enable active programs to know the real
data receiver (each packet is by VMM destined to given VM address and given
active program’s port). Nevertheless, the DiProNN users may use the ARTP’s
extended functionality to make their active programs being aware of real data
receiver (e.g., using proper option inside each ARTP datagram). In this case, the
Aggregation unit forwards these packets to the destination given inside ARTP
datagram instead of the one(s) given in DiProNN program.

The main benefit of the DiProNN programming model is, that the com-
plex functionality required to be done on the programmable node can be sep-
arated into several single-purpose active programs with the data flow among
them defined. Furthermore, the usage of symbolic names doesn’t force active
programs to be aware of their neighbourhood—the active programs processing
given DiProNN session before and after them—they are completely independent
on each other so that they just have to know the symbolic names of ports they
want to communicate with and register them (using simple text protocol) at the
control module of the Processing unit they run in.

* The Active Router Transmission Protocol (see [7]).

4 Example: Simple MCU Unit in DiProNN

In this section we briefly describe a possible implementation of simple MCU
unit (Multipoint Control Unit, [8]) used for videoconferencing. The MCU unit
we want to sketch should be able to accept up to twelve input ARTP streams
of audio and video data (6 audio streams + 6 video streams) of videoconference
participants (in this simple case we do not deal with permissions of participants
to attend the conference). All the input video streams should be merged into one
outgoing video stream and the current speaker should be somehow highlighted
(greater picture and/or lighter-colored). The outgoing audio and merged video
streams should be synchronized with defined precision.

The possible DiProNN session graph together with a fragment of the DiProNN
program is depicted in the Figure 3. First, from incoming audio stream there is a
current speaker determined® using the determine_speaker active program. The
identification of current speaker is then using low-latency control interconnec-
tion sent to the video_distr AP (the user-defined Split construct as described
in Section 3.1), where relevant ARTP option indicating current speaker is added
to the speaker stream. This option is read by the transcode AP® where the
current speaker is highlighted before/after transcoding. All the video streams
are then merged into one video stream (one big picture is created) and thus
must be synchronized. Finally, the outgoing audio and video streams are also
fully synchronized.

5 Related Work

Thanks to lots of possible applications, the programmable networks principles
are very popular and thus researched by lots of research teams. Thus, various ar-
chitectures of programmable routers/nodes have been proposed—in this section
we briefly remind only those ones mostly related to our work.

C&C Research Laboratories propose the CLARA (CLuster-based Active
Router Architecture, [10]) providing customizing of media streams to the needs
of their clients. The architecture of another programmable network node, LARA
(Lancaster Active Router Architecture, [11]) in comparison with CLARA encom-
passes both hardware and software active router design. The LARA++ (Lan-
caster’s 2"d-generation Active Router Architecture, [12]), as the name indicates,
evolved from the LARA. Against the LARA, which provided innovative hard-
ware architecture, the LARA++ lays the main focus on the software design of
its architecture.

However, in comparison with the DiProNN, none of these distributed pro-
grammable architectures addresses promising virtualization technology and its
benefits, and tries to provide enhanced flexibility (both programming flexibility
and execution environment flexibility).

5 The real method of determining current speaker is not important for this example.
The possible methods of speaker recognition could be found in [9].

5 Note, that the transcode AP might be processed in parallel as indicated in the
DiProNN program.

O user AP

QO built-in AP
determine_speaker sort_ARTP1 9 parallelizable AP
audio_input output n out . sync_all
ctrl_out . !
1
ctri_in \ transcode sort_ARTP2 sync_video

video_input output out

n in _/ o m_/ o
video_distr

Project My_simple_MCU.first_attempt;
project parameters (owner, notifications,
overall resource requirements, ...)
{AP name="determine_speaker" ref=recognize_speakeri;
AP parameters
inputs = DIPRONN_INPUT(10002) ;
requested DiProNN input port is 10002
output = sort_ARTP1.in;
ctrl_out = my_VMl.video_distr.ctrl_in;
}
{WM name="my_VM1" ref=my_VM1_image;
VM parameters
{AP name="transcode" ref=transcode_video;
inputs = in;
output = sort_ARTP2.in;
parallelizable; # parallelizable AP
} # ... other APs
X
{vM name="my_VM2" ref=my_VM2_image;
{AP name="sync_all" ref=syncer;
inputs = audio_in, video_in;
precision = 0.001; # 1ims
output = SEE_ARTP;
the real receiver inside ARTP packets
} # ... other APs
} # ... other APs/VMs

Fig. 3. DiProNN session graph for simple MCU unit together with a fragment of rele-
vant DiProNN program.

6 Conclusions and Future Work

In this paper, we have shown the programming model we use for our Distributed
Programmable Network Node (DiProNN). Thanks to the main features of the
DiProNN—the VM-based design and possibilities of uploading both the virtual
machines and active programs itself—the modular programming model we pro-
pose makes DiProNN programming more comfortable since the complex func-

tionality required to be done on the node can be separated into several single-
purpose active programs with the data and control flow among them defined.

Concerning the future challenges, the proposed DiProNN architecture is be-

ing implemented based on the Xen virtual machine monitor [13]. Further we
want to explore the mechanisms of QoS requirements assurance and scheduling
mechanisms to be able to utilize DiProNN resources effectively.

Acknowledgement: This project has been supported by research intent “In-
tegrated Approach to Education of PhD Students in the Area of Parallel and
Distributed Systems” (No. 102/05/H050).

References

10.

11.

12.

13.

. Smith, J.E., Nair, R.: Virtual Machines: Versatile Platforms for Systems and

Processes. Elsevier Inc. (2005)

Rebok, T.: Vm-based distributed active router design. In: MEMICS’06 Conference
Proceedings. (2006) 190-197

Rebok, T.: DiProNN: VM-based Distributed Programmable Network Node Archi-
tecture (2007) TERENA’07 Networking Conference poster.

Rebok, T.: Vm-based distributed active router design. In: European Computing
Conference (ECC’07) Conference Proceedings. (2007) Accepted paper (not pub-
lished yet).

Cichocki, A., Rusinkiewicz, M., Woelk, D.: Workflow and Process Automation:
Concepts and Technology. Kluwer Academic Publishers, Norwell, MA, USA (1998)
Thies, W., Karczmarek, M., Amarasinghe, S.: Streamit: A language for streaming
applications. In: International Conference on Compiler Construction, Grenoble,
France (2002)

Rebok, T.: Active Router Communication Layer. Technical Report 11/2004, CES-
NET (2004)

Willebeek-LeMair, M., Kandlur, D.D., Shae, Z.Y.: On multipoint control units for
viodeoconferencing. In: LCN. (1994) 356-364

Reynolds, D.A.: An overview of automatic speaker recognition technology. In:
Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP ’02). IEEE
International Conference on. Volume 4. (2002) IV-4072-IV-4075 vol.4

Welling, G., Ott, M., Mathur, S.: A cluster-based active router architecture. IEEE
Micro 21(1) (2001) 16-25

Cardoe, R., Finney, J., Scott, A.C., Shepherd, D.: Lara: A prototype system for
supporting high performance active networking. In: IWAN 1999. (1999) 117-131
Schmid, S.: LARA++ Design Specification (2000) Lancaster University DMRG
Internal Report, MPG-00-03, January 2000.

Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., m,
P.B., Neugebauer, R.: Xen and the Art of Virtualization. In: Proceedings of the
ACM Symposium on Operating Systems Principles, Bolton Landing, NY, USA
(2003)

