
DiProNN: Distributed Programmable Network Node
Architecture

Tomáš Rebok
Faculty of Informatics

Masaryk University
Brno, Czech Republic

Email: xrebok@fi.muni.cz

Abstract—The programmable network approach allows pro-
cessing of passing user data in a network, which is highly
suitable especially for multimedia streams processing. However,
programming of complex stream processing applications for
programmable nodes is not effortless since they usually do not
provide sufficient flexibility (both programming flexibility and
execution environment flexibility). In this paper we present the
programmable network node architecture named DiProNN that
is able to accept and run user-supplied programs and/or virtual
machines and process them over passing data. All the DiProNN
programs are described using our modular programming model
based on the workflow principles that takes advantages of
DiProNN virtualization and makes programming of complex
streaming applications easier. As a possible application we show
a sketch implementation of simple MCU (Multipoint Control
Unit) used for large videoconferences that profits from DiProNN
properties.

I. INTRODUCTION

The principle called “Active Networks” or “Programmable
Networks” is an attempt how to build an intelligent and flexible
network using current networks serving as a communication
underlay. Such a network allows user-defined processing of
passing user data on inner network (programmable) nodes.
Multimedia application processing (e.g., video delivery and/or
transcoding) or security services (data encryption over un-
trusted links, secure and reliable multicast, etc.) are a few of
possible services which could be provided.

The programmable networks principles became very popu-
lar and have been researched by lots of research teams. Various
architectures of programmable nodes have been proposed,
from integrated ones based on (active) packets containing
program code (capsules) to discrete ones (program injection
is separated from processing of data packets) based on e.g.
software-only or software-hardware architectures. However,
programming of complex stream processing applications for
programmable nodes is not effortless since they usually do not
provide sufficient flexibility (both programming flexibility and
execution environment flexibility). Usually, when a program
doing requested processing exists, there might not exist a
programmable node with an execution environment capable
of running it (and vice versa), and thus the original program
has to be revised or new one has to be created.

By employing virtual machines (VMs) principles [1] the
flexibility of programmable nodes’ execution environment can
be increased a lot since they are able to run completely

different execution environments simultaneously—the com-
mon ones based on common operating systems (e.g. Linux
or FreeBSD) as well as the special ones uploaded by users.
Moreover, VMs can also bring other benefits—strong isola-
tion, resource management, programming flexibility, etc.—and
thus make the usage of programmable nodes easier.

The main goal of our work is to propose the programmable
network node architecture named DiProNN (Distributed Pro-
grammable Network Node) that is able to accept and run user-
supplied programs and/or virtual machines and process them
over passing user data. All the DiProNN programs are de-
scribed using novel modular programming model described in
Section III. The model is based on the workflow principles and
takes advantages of DiProNN virtualization, thanks to which
the programming of complex stream processing applications
in DiProNN is more comfortable. As an example application
we show an implementation of simple MCU (Multipoint
Control Unit) used for large videoconferences that profits from
DiProNN properties.

II. DIPRONN: DISTRIBUTED
PROGRAMMABLE NETWORK NODE

A. Architecture
DiProNN architecture we propose assumes the infrastruc-

ture as shown in Figure 1. The DiProNN units form a computer
cluster interconnected with each unit having two connections:

• one low-latency control connection used for internal
communication inside the DiProNN, and

• one data connection used for receiving and sending data.
The low latency interconnection is desirable since current

common network interfaces like Gigabit Ethernet or 10 Gigabit
Ethernet provide large bandwidth, but the latency of the
transmission is still in order of hundreds of µs, which is
not suitable for fast synchronization of DiProNN units. Thus,
the use of specialized low-latency interconnects like Myrinet
network providing as low latency as 10 µs (and even less, if
you consider e.g., InfiniBand with 4 µs), which is close to
message passing between threads on a single computer, is
very suitable (however, the usage of single interconnection
serving as data and control interconnection simultaneously is
also possible).

From the high-level perspective of operation, the incoming
data are first received by the DiProNN’s Distribution unit,

low latency
interconnect switch

processing units

distribution
unit

aggregation
unit

data link low latency interconnect

network
(Internet) data flow data flow

control unit

network
(Internet)

data switch

Fig. 1. Proposed DiProNN architecture.

where they are forwarded to appropriate Processing unit(s) for
processing. After the whole processing, they are finally aggre-
gated using the Aggregation unit and sent over the network to
the next DiProNN node (or to the receiver). As obvious from
the Figure 1, the DiProNN architecture comprises four major
parts:

• Distribution unit—the Distribution unit takes care of
ingress data flow distribution to appropriate DiProNN
Processing unit(s), which are determined by the Control
unit described later.

• Processing units—the Processing unit (described in de-
tail in Section II-B receives packets and forwards them
to proper active programs for processing. The processed
data are then forwarded to next active programs for
further processing or to the Aggregation unit to be sent
away.
Each Processing unit is also able to communicate with the
other ones using the low-latency interconnection. Besides
the load balancing and fail over purposes this intercon-
nection is mainly used for sending control information
of DiProNN sessions (e.g., state sharing, synchronization,
processing control).

• Control unit—the Control unit is responsible for the
whole DiProNN management and communication with its
neighborhood including communication with DiProNN
users to negotiate new DiProNN sessions (details about
DiProNN sessions establishment are given in Section III)
and, if requested, providing feedback about their behav-
ior.

• Aggregation unit—the Aggregation unit aggregates the
resulting traffic to the output network line(s).

B. DiProNN Processing Units

1) DiProNN and Virtual Machines: The usage of virtual
machines enhance the execution environment flexibility of
the DiProNN node—they enable DiProNN users not only
to upload active programs, which run inside some virtual

machine, but they are also allowed to upload a whole virtual
machine with its operating system and let their passing data
being processed by their own set of active programs running
inside uploaded VM(s). Similarly, the DiProNN administrator
is able to run his own set of fixed virtual machines, each one
with different operating system, and generally with completely
different functionality. Furthermore, the VM approach also
allows strong isolation among virtual machines, and thus
allows strict scheduling of resources to individual VMs, e.g.,
CPU, memory, and storage subsystem access.

Nevertheless, the VMs also bring some performance over-
head necessary for their management [2]. This overhead is
especially visible for I/O virtualization, where the Virtual Ma-
chine Monitor (VMM) or a privileged host OS has to intervene
every I/O operation. We are aware of this performance issues,
but we decided to propose a VM-based programmable network
node architecture not being limited by current performance
restrictions.

2) Processing Unit Architecture: The architecture of the
DiProNN Processing unit is shown in Figure 2. The privileged
service domain (dom0 in the picture) has to manage the whole
Processing unit functionality including uploading, starting and
destroying of the virtual machines, communication with the
Control unit, and a session accounting and management.

The virtual machines managed by the session management
module could be either fixed, providing functionality given by
a system administrator, or user-loadable. The example of the
fixed virtual machine could be a virtual machine providing
classical routing as shown in Figure 2. Besides that, the set of
another fixed virtual machines could be started as an active
program execution environment where the active programs
uploaded by users are executed (those not having their own
virtual machine defined). This approach does not force users
to upload the whole virtual machine in the case where active
program uploading is sufficient.

Fig. 2. DiProNN Processing Unit Architecture

C. Communication Protocol

For data transmission, the DiProNN users may use both the
User Datagram Protocol (UDP) and the transmission protocol
called Active Router Transmission Protocol (ARTP, [3]) we
originally designed and implemented for the generic active
router architecture described in [4]. Depending on an appli-
cations’ demands the users choose the transmission protocol
they want to use—whether they want or have to use ARTP’s
extended functionality (the ARTP is in fact an extension of the
UDP protocol like e.g. Real-time Transport Protocol (RTP)
is) or not. Since the UDP is well-known and widely-used
transmission protocol, in the rest of this section we briefly
depict the main properties of our ARTP protocol.

1) Active Router Transmission Protocol (ARTP): The
ARTP is a connection oriented transport protocol providing
reliable duplex communication channel without ensuring that
the data will be received in the same order as they were sent.
There are two types of data that can be sent by the ARTP
protocol:

• control data dedicated to both end-point application man-
agement and cannot be fragmented,

• main data used for the communication itself.
In ARTP, data is transferred using data blocks called ARTP

datagrams. The datagrams may have arbitrary size so they may
not pass through the network at once. The ARTP protocol
fragments them into smaller parts called ARTP packets and
sends them over the network to the receiver. When the receiver
receives all fragments of a datagram it reassembles them into
original datagram and passes the datagram to the receiver
application. The order of passing assembled datagrams is not
given—the ARTP guarantees the correct datagrams assembling
only.

As obvious, the ARTP protocol combines desirable proper-
ties of both widely used transport protocols UDP and TCP1.
On the one hand it provides reliable congestion controlled
transport of ARTP datagrams, which are fragmented and
thus may have arbitrary size. And on the other, the original

1The ARTP protocol could be used similarly to the UDP transport protocol
when having ARTP datagram = ARTP packet (not fragmenting at all) and
could be also used “almost” similarly to the TCP transport protocol when
having ARTP datagram of an “infinite” size.

sequence of ARTP datagrams is not guaranteed because for the
programmable nodes’ purposes, the data might be required to
be processed in disordered bulks independent on each other.

III. DIPRONN PROGRAMMING MODEL

In this section we depict a programming model we pro-
pose for DiProNN programming. The model is based on the
workflow principles [5] and was inspired by the idea of the
StreamIt [6], which is a language and compiler specifically
designed for modern stream applications programming.

For the DiProNN programming model we adopted the idea
of independent simple processing blocks (so called Filters in
StreamIt), that composed into a processing graph constitute re-
quired complex processing. In our case, the processing block is
an active program and the communication among such active
programs is thanks to the virtualization mechanisms provided
by machine hypervisor using common network services (de-
tails about DiProNN internal communication are provided in
Section IV). The interconnected active programs then compose
the “DiProNN session” described by its “DiProNN session
graph”, which is a graphical representation of an “DiProNN
program” (an example is given in the Figure 3). Furthermore,
to make DiProNN programming easier all the active programs
as well as the input/output data/communication interfaces are
referred by their hierarchical names as shown in the MCU
example in Section V.

The DiProNN program defines active programs optionally
with virtual machines they run in2, which are necessary for
DiProNN session processing, and defines both data and con-
trol communication among them. Besides that, the DiProNN
program may also define other parameters (e.g., resources
required) of active programs as well as the parameters for
the whole DiProNN session.

The main benefit of the DiProNN programming model being
described is, that the complex functionality required to be
done on the programmable node can be separated into several
single-purpose active programs with the data flow among them
defined. Furthermore, the usage of symbolic names doesn’t
force active programs to be aware of their neighbourhood—the
active programs processing given DiProNN session before and
after them—they are completely independent on each other so
that they just have to know the symbolic names of ports they
want to communicate with and register them (as sketched in
the next section) at the control module of the Processing unit
they run in.

A. Data Channels Description

As mentioned in previous section, the DiProNN program
defines active programs required for DiProNN session pro-
cessing, and data and control communication among them. All
the input/output data/control interfaces are referred by their
hierarchical names and thus each active program has to have
these interfaces defined using following structure:

2In DiProNN, each active program may run in completely distinct execution
environment (e.g., different OS) from the others. However, it is also possible
that single VM may contain several active programs running inside.

1) Inputs: For active program inputs definition there must
be one parameter named inputs in active program parame-
ters section having following structure:

inputs =
in1_name[(DIPRONN_INPUT[(port1)])],
in2_name[(DIPRONN_INPUT[(port2)])],
...

where
• the inX_name specifies the name of the input port, and
• the portX is optional parameter specifying the port

number of the DiProNN node input requested.
If the input described is of the form

DIPRONN_INPUT(port), it means that the input named
in_name is the DiProNN node input and the user requests
DiProNN to listen on the port specified. If the port number
is missing, the user indicates that he or she has no preferences
on the port they want to make DiProNN listening on (in this
situation the real port number where the user should send data
to will be negotiated during DiProNN session establishment).
The examples of input specifications are given in Figure 3.

2) Outputs: For active program outputs definition and
data/control interconnection there must be one parameter
named outputs in active program parameters section having
following structure:

outputs =
out1_name(in1 |

DIPRONN_OUTPUT(receiver1 | SEE_ARTP)),
out2_name(in2 |

DIPRONN_OUTPUT(receiver2 | SEE_ARTP)),
...

where
• the outX_name specifies the name of the output port,

and
• the inX specifies the input port of the next active

program where the active program from the port named
outX_name has to send data to.

If the output described is of the form
DIPRONN_OUTPUT(receiver | SEE_ARTP), it
means that the output named out_name is the DiProNN
node output. The DiProNN data receiver is either specified
using IP address or domain name, or is defined as an ARTP
protocol option of each ARTP packet. The example of an
output specification is also given in Figure 3.

B. Internal Control Communication

Sometimes two or more active programs processing given
data stream have to communicate with each other (to indi-
cate some new event occurred in e.g. a stream processed
in parallel, to share information about their state, or just to
ask them for some information). In such cases, the DiProNN
users may define control links among active programs sim-
ilarly as they do it for data communication using keywords
control_inputs and control_outputs. However, in

this case the special forms DIPRONN_INPUT(...) and
DIPRONN_OUTPUT(...) have no meaning.

In comparison with data messages, the control messages are
not sent via data links, but via an internal low-latency inter-
connection described in Section II3 since the latency of control
messages transmitted should be as low as possible. Thus, when
a port of an active program is registered as a control port, all
the messages coming from it to another active program are
transmitted using internal low-latency interconnection.

C. Parallel Processing

If the special attribute of an active program

parallelizable[(instances_count)]

is set, the DiProNN performs its processing in parallel. The
number of parallel instances running can be either fixed (the
requested instances_count is present and correctly spec-
ified), or variable (controlled by the Control unit depending on
actual active program usage and resources available).

Nevertheless, when processing an active program in parallel,
the DiProNN session has to specify how to distribute incoming
data over such parallel instances. Thus, before every active
program having parallelizable attribute set there must be
an active program (built-in for e.g. round-robin function, or
user-loaded) specifying data distribution over all the parallel
instances.

Regarding the control communication, where at least one
communication partner is a parallelizable AP, there are three
possible scenarios:

1) parallelizable AP is a sender of control messages: when
sending control messages from parallelizable AP, the
communication channel between both APs is defined in
the same way as the one that define control communi-
cation between non-parallelizable APs.

2) parallelizable AP is a receiver of control messages:
if an active program wants to send control message
to a parallelizable AP, the communication channel is
defined in the same way as the one that define control
communication between non-parallelizable APs, and the
control messages are broadcasted to all the parallel
instances of destined AP.

3) control communication among parallel instances: in the
case when parallel instances want to communicate with
each other, the combination of previous two points take
place: in given parallelizable AP there must be an output
defined, that is connected to an input of the same
parallelizable AP (see an example in Figure 3). In this
case, all the control messages coming from specified
output are broadcasted to given input of all the parallel
instances of given parallelizable AP.

IV. SESSION ESTABLISHMENT AND DATA FLOW

When a new DiProNN session request arrives to the
node, the Distribution unit immediately forwards it to the

3If there is any. When there is just one interconnection for data and control
communication, the control messages are sent in the same way as data are.

Control unit. In the situation when the receiver(s) of given
DiProNN session is/are known, the Control unit contacts all
the DiProNN nodes operating on the path from it to the
receiver(s), and asks them for their actual usage. Using the
information about their usage the Control unit decides, whether
the new DiProNN session request could be satisfied by the first
node alone or whether a part of requested DiProNN session
has to be (or should be because of resource optimalization)
performed on another DiProNN node being on the path from
the first DiProNN node to the receiver(s).

If the request could be satisfied, the session establishment
takes place. It means, that each DiProNN node receives its
relevant part of the whole DiProNN session (including all the
active programs and virtual machines images) and the Control
unit of each DiProNN node decides, which Processing units
each active program/virtual machine will run on. After that,
both the control modules (a part of each Processing unit)
and the Distribution units of all the DiProNN nodes used
are set appropriately. Then all the active programs and virtual
machines are started, and moreover, all the requested resources
are reserved, if any.

Since the DiProNN programming model uses symbolic
names for communication channels (both data and control
channels) instead of port numbers, the names must be associ-
ated with appropriate port numbers during a DiProNN session
startup. This association is done using the control module
where each active program using simple text protocol registers
the couple (symbolic name, real port). The control module
using the information about registered couples together with
the virtual machine and port number a packet is coming from
properly sets the receiver of passing packets, which are then
automatically forwarded to proper active programs.

However, this approach does not enable active programs
to know the real data receiver (each packet is by VMM
destined to given VM address and given active program’s
port). Nevertheless, the DiProNN users may use the ARTP’s
extended functionality to make their active programs being
aware of real data receiver as mentioned in Section III-A2. In
this case, the Aggregation unit forwards these packets to the
destination given inside ARTP datagram instead of the one
given in DiProNN program.

V. EXAMPLE: SIMPLE MCU UNIT IN DIPRONN

In this section we sketch a possible implementation of
simple MCU unit (Multipoint Control Unit, [7]) used for
videoconferencing. The MCU unit we want to implement
should have following functionality: the unit should be able
to accept up to twelve input ARTP streams of audio and
video data (e.g., 6 audio streams + 6 video streams) of
videoconference participants (in this simple case we do not
deal with permissions of participants to attend the confer-
ence). All the input video streams should be merged into
one outgoing video stream and the current speaker should be
somehow highlighted (greater picture and/or lighter-colored).
The outgoing audio and merged video streams should be
synchronized with defined precision.

The possible DiProNN session graph together with a
fragment of the DiProNN program is depicted in the Fig-
ure 3. First, from incoming audio stream there is a current
speaker determined4 using the determine_speaker ac-
tive program (AP). The identification of current speaker is
then using low-latency control interconnection sent to the
video_distr AP, where relevant ARTP option indicating
current speaker is added to the speaker stream. This option is
read by the transcode AP5 where the current speaker is
highlighted before/after transcoding. All the video streams are
then merged into one video stream (one big picture is created)
and thus have to be synchronized. Finally, the outgoing audio
and video streams are also fully synchronized.

video_distr

video_input

transcode merge_video

sync_all

user AP

output

in

out

in

out

out

sync_video

out
in

built-in AP

parallelizable AP
determine_speaker

audio_input
audio_in

video_in

outoutput in

sort_ARTP1

ctrl_in

ctrl_out

out
in

sort_ARTP2

Project My_simple_MCU.first_attempt;
project parameters (owner, notifications,
overall resource requirements, ...)
{AP name="determine_speaker" ref=recognize_speaker1;

AP parameters
inputs = audio_input(DIPRONN_INPUT(10002));

requested DiProNN input port is 10002
outputs = output(sort_ARTP1.in);
control_outputs =

ctrl_out(my_VM1.video_distr.ctrl_in);
}
{VM name="my_VM1" ref=my_VM1_image;

VM parameters
{AP name="transcode" ref=transcode_video;

inputs = in, stateshare_in;
stateshare_in is the input for

communication among parallel instances
outputs = out(sort_ARTP2.in),

stateshare_out(my_VM1.transcode.state_in);
parallelizable; # parallelizable AP

} # ... other APs
}
{VM name="my_VM2" ref=my_VM2_image;

{AP name="sync_all" ref=syncer;
inputs = audio_in, video_in;
precision = 0.001; # 1ms
outputs = out(DIPRONN_OUTPUT(SEE_ARTP));
the real receiver inside ARTP packets

} # ... other APs
} # ... other APs/VMs

Fig. 3. DiProNN session graph for simple MCU unit together with a fragment
of relevant DiProNN program.

4The real method of determining current speaker is not important for this
example. The possible methods of speaker recognition could be found in [8].

5Note, that the transcode AP might be processed in parallel and each
parallel instance may communicate with the others, as indicated in the
DiProNN program.

VI. RELATED WORK

Thanks to lots of possible applications, the programmable
networks principles became very popular and thus researched
by lots of research teams. Thus, various architectures of active
routers/nodes have been proposed—in this section we briefly
describe only those ones mostly related to our work.

C&C Research Laboratories propose the CLARA—the pro-
totype of a routing node in their JOURNEY network. The
CLuster-based Active Router Architecture (CLARA, [9])
consists of a cluster of generic PCs connected by a fast System
Area Network (the prototype implementation uses Myrinet
network) providing customizing of media streams to the needs
of their clients. The CLARA provides fixed functionality
only and does not guarantee the processing of all packets
sent—additional guarantees must be implemented end-to-end,
according to the requirements of individual streams.

The LARA (Lancaster Active Router Architecture) [10]
architecture encompasses both hardware and software active
router design. The LARA++ (Lancaster’s 2nd-generation Ac-
tive Router Architecture) [11], as the name indicates, evolved
from the LARA. Against the LARA, which provided innova-
tive hardware architecture, the LARA++ lays the main focus
on the software design of the active router—its software archi-
tecture is designed to be largely independent of the underlying
hardware and thus, it could run on a single-processor node as
well as use a distributed architecture. However, both router
architectures do not provide user-controlled arbitrary active
programs uploading.

A Cluster-Based Active Router Architecture Supporting
Audio and Video Stream Transcoding Service [12] is a project
which presents a cluster-based active router implementation
that provides audio and video transcoding service only. Simi-
larly to the CLARA architecture, it is assumed that the media
stream data can be divided into a sequence of media units that
are ready for independent transcoding. The routing PC receives
these media units from the sending user PC, and forwards
them to the computing PCs for transcoding. Each computing
PC independently processes the media units using the local
computing resources and does not require any global stream
state. Because of the limited resources available in the active
router cluster, some packets in the media stream are sent out
without being processed.

In comparison with the DiProNN, none of these architec-
tures addresses promising virtualization technology with its
benefits (but also with its problems), and tries to provide
enhanced execution environment flexibility and stream appli-
cations programming comfortability.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a virtual machine oriented
distributed programmable network node architecture named
DiProNN. The main features of the DiProNN are that its
users are able to upload their DiProNN session consisting
of a set of their own active programs independent on each
other and possibly running in their own virtual machines,
and let their passing data being processed by the DiProNN.

The communication among such active programs is provided
using standard network services by machine hypervisor so
that active programs are not forced to be aware of their
neighbourhood. DiProNN cluster-based design also enables
simultaneous parallel processing of active programs that are
intended to run in parallel.

Concerning the current and future challenges, the proposed
DiProNN architecture is being implemented based on the XEN
virtual machine monitor. Further we also want to explore
the mechanisms of QoS requirements assurance and schedul-
ing mechanisms to be able to utilize DiProNN resources
effectively. We want to explore all the three perspectives of
DiProNN scheduling—scheduling active programs to virtual
machines (when they do not have their own virtual machine
specified), scheduling virtual machines to appropriate Process-
ing units and scheduling active programs/virtual machines to
suitable DiProNN nodes (when there are more DiProNN nodes
on the path from a sender to a receiver, which are able to
process given DiProNN session).

ACKNOWLEDGEMENT

This project has been supported by research intent “Inte-
grated Approach to Education of PhD Students in the Area of
Parallel and Distributed Systems” (No. 102/05/H050).

REFERENCES

[1] Jim E. Smith and Ravi Nair, Virtual Machines: Versatile Platforms for
Systems and Processes, Elsevier Inc., 2005.

[2] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janaki-
raman, and Willy Zwaenepoel, “Diagnosing performance overheads
in the XEN virtual machine environment,” in VEE ’05: Proceedings
of the 1st ACM/USENIX international conference on Virtual execution
environments, New York, NY, USA, 2005, pp. 13–23, ACM Press.

[3] Tomáš Rebok, “Active Router Communication Layer,” Tech. Rep.
11/2004, CESNET, 2004.

[4] Eva Hladká and Zdeněk Salvet, “An Active Network Architecture:
Distributed Computer or Transport Medium,” in Networking – ICN
2001: First International Conference Colmar, France, July 9-13, 2001,
Proceedings, Part II, P. Lorenz, Ed., Heidelberg, Jan. 2001, vol. 2094
of Lecture Notes in Computer Science, pp. 612–619, Springer-Verlag.

[5] Andrzej Cichocki, Marek Rusinkiewicz, and Darrell Woelk, Workflow
and Process Automation: Concepts and Technology, Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[6] William Thies, Michal Karczmarek, and Saman Amarasinghe, “Streamit:
A language for streaming applications,” in International Conference on
Compiler Construction, Grenoble, France, Apr. 2002.

[7] Marc Willebeek-LeMair, Dilip D. Kandlur, and Zon-Yin Shae, “On
multipoint control units for viodeoconferencing,” in LCN, 1994, pp.
356–364.

[8] D. A. Reynolds, “An overview of automatic speaker recognition technol-
ogy,” in Acoustics, Speech, and Signal Processing, 2002. Proceedings.
(ICASSP ’02). IEEE International Conference on, 2002, vol. 4, pp. IV–
4072–IV–4075 vol.4.

[9] Girish Welling, Maximilian Ott, and Saurabh Mathur, “A cluster-based
active router architecture,” IEEE Micro, vol. 21, no. 1, pp. 16–25, 2001.

[10] R. Cardoe, Joe Finney, Andrew C. Scott, and Doug Shepherd, “Lara: A
prototype system for supporting high performance active networking,”
in IWAN 1999, 1999, pp. 117–131.

[11] S. Schmid, “LARA++ Design Specification,” 2000, Lancaster University
DMRG Internal Report, MPG-00-03, January 2000.

[12] Jiani Guo, Fang Chen, Laxmi Bhuyan, and Raj Kumar, “A cluster-based
active router architecture supporting video/audio stream transcoding ser-
vice,” in IPDPS ’03: Proceedings of the 17th International Symposium
on Parallel and Distributed Processing, Washington, DC, USA, 2003,
p. 44.2, IEEE Computer Society.

