
DiProNN: VM-based Distributed Programmable
Network Node Architecture

TOMÁŠ REBOK

Faculty of Informatics
Masaryk University

Botanická 68a, 602 00 Brno
xrebok@fi.muni.cz

Abstract. The programmable network approach allows processing of
passing user data in a network, which is highly suitable especially for
video streams processing. However, the programming of complex stream
processing applications for programmable nodes is not effortless since
they usually do not provide sufficient flexibility (both programming flex-
ibility and execution environment flexibility). In this paper we present
the architecture of our DiProNN node—the VM-based Distributed Pro-
grammable Network Node, that is able to accept and run user-supplied
programs and/or virtual machines and process them (in parallel if re-
quested) over passing user data. The node is primarily meant to perform
stream processing—to enhance DiProNN flexibility and make program-
ming of streaming applications for DiProNN node easier, we also pro-
pose suitable modular programming model which takes advantages of
DiProNN virtualization and makes its programming more comfortable.

1 Introduction

Contemporary computer networks behave as a passive transport medium which
delivers (or in case of the best-effort service tries to deliver) data from the sender
to the receiver. The whole transmission is done without any modification of
the passing user data by the internal network elements1. However, especially
for small and middle specialized groups (e.g., up to hundreds of people) using
computer networks for specific purposes, the ability to perform a processing
inside a network is sometimes highly desired.

The principle called “Active Networks” or “Programmable Networks” is an
attempt how to build such intelligent and flexible network using current “dumb
and fast” networks serving as a communication underlay. In such a network,
users and applications have the possibility of running their own programs inside
the network using inner nodes (called active nodes/routers, or programmable
nodes/routers—all with rather identical meaning) as processing elements.

However, the programming of complex (active) programs used for data pro-
cessing, that are afterwards uploaded on programmable nodes, may be fairly
1 Excluding firewalls, proxies, and similar elements, where an intervention is usually

limited (they do not process packets’ data).

2 TOMÁŠ REBOK

difficult. And usually, if such programs exist, they are designed for different op-
erating systems and/or use specialized libraries than the programmable node
provides as an execution environment. Furthermore, since the speeds of network
links still increase and, subsequently, applications’ demands for higher network
bandwidths increase as well, a single programmable node is infeasible to process
passing user data in real-time, since such processing may be fairly complex.

The main goal of our work is to propose a distributed programmable net-
work node architecture with loadable functionality that uses commodity PC clus-
ters interconnected via the low-latency interconnection (so called tightly coupled
clusters), which is also able to perform distributed processing. Since the node
is primarily meant to perform stream processing, and to make programming
of stream-processing applications for our node easier, we also propose suitable
modular programming model which takes advantages of node virtualization and
makes its programming more comfortable.

2 DiProNN: Distributed Programmable Network Node

DiProNN architecture we propose assumes the infrastructure as shown in Fig-
ure 1. The computing nodes form a computer cluster interconnected with each
node having two connections—one low-latency control connection used for inter-
nal communication and synchronization inside the DiProNN, and at least one2

data connection used for receiving and sending data.

low latency
interconnect switch

processing units

distribution
unit

aggregation
unit

data link low latency interconnect

network
(Internet) data flow data flow

control unit

network
(Internet)

data switch

Fig. 1. Proposed DiProNN architecture.

The low latency interconnection is necessary since current common network
interfaces like Gigabit Ethernet or 10 Gigabit Ethernet provide large bandwidth,
2 The ingress data connection could be the same as the egress one.

DiProNN: VM-based Distributed Programmable Network Node Architecture 3

but the latency of the transmission is still in order of hundreds of µs, which is not
suitable for fast synchronization of DiProNN units. Thus, the use of specialized
low-latency interconnects like Myrinet network providing as low latency as 10µs
(and even less, if you consider e.g., InfiniBand with 4 µs), which is close to
message passing between threads on a single computer, is very desirable.

From the high-level perspective of operation, the incoming data are first
received by the Distribution unit, where they are forwarded to appropriate Pro-
cessing unit(s) for processing. After the whole processing, they are finally aggre-
gated using the Aggregation unit and sent over the network to the next node
(or to the receiver). As obvious from the Figure 1, the DiProNN architecture
comprises four major parts:

– Distribution unit takes care of ingress data flow forwarding to appropriate
DiProNN Processing unit(s), which are determined by the Control unit de-
scribed later.

– Processing units receive packets and forward them to proper active pro-
grams for processing. The processed data are then forwarded to next active
programs for further processing or to the Aggregation unit to be sent away.
Each Processing unit is also able to communicate with the other ones using
the low-latency interconnection. Besides the load balancing and fail over pur-
poses this interconnection is mainly used for sending control information of
DiProNN sessions (e.g., state sharing, synchronization, processing control).

– Control unit is responsible for the whole DiProNN management and com-
munication with its neighborhood including communication with DiProNN
users to negotiate new DiProNN sessions (details about DiProNN sessions
are provided in Section 3) establishment and, if requested, providing feed-
back about their behavior.

– Aggregation unit aggregates the resulting traffic to the output network line(s).

2.1 DiProNN and Virtual Machines

Virtual machines (VMs) enhance the execution environment flexibility of the
DiProNN node—they enable DiProNN users not only to upload the active pro-
grams, which run inside some virtual machine, but they are also allowed to
upload the whole virtual machine with its operating system and let their pass-
ing data being processed by their own set of active programs running inside
uploaded VM(s). Similarly, the DiProNN administrator is able to run his own
set of fixed virtual machines, each one with different operating system and gen-
erally with completely different functionality. Furthermore, the VM approach
allows strong isolation between virtual machines, and thus strict scheduling of
resources to individual VMs, e.g., CPU, memory, and storage subsystem access.

Nevertheless, the VMs also bring some performance overhead necessary for
their management. This overhead is especially visible for I/O virtualization,
where the Virtual Machine Monitor (VMM) or a privileged host OS has to
intervene every I/O operation. However, for our purposes this overhead is cur-
rently acceptable—at this stage we primarily focus on DiProNN programming
flexibility.

4 TOMÁŠ REBOK

Fig. 2. DiPRoNN Processing Unit Architecture

2.2 DiProNN Processing Unit Architecture

The architecture of the DiProNN Processing unit is shown in Figure 2. The VM-
host management system has to manage the whole Processing unit functionality
including uploading, starting and destroying of the virtual machines, communi-
cation with the Control unit, and a session accounting and management. The
virtual machines managed by the session management module could be either
fixed, providing functionality given by a system administrator, or user-loadable.
The example of the fixed virtual machine could be a virtual machine providing
classical routing as shown in Figure 2. Besides that, the set of other fixed virtual
machines could be started as an active program execution environment where
the active programs uploaded by users are executed (those not having their own
virtual machine defined). This approach does not force users to upload the whole
virtual machine in the case where active program uploading is sufficient.

2.3 DiProNN Communication Protocol

For data transmission, the DiProNN users may use both the User Datagram
Protocol (UDP) and the transmission protocol called Active Router Transmission
Protocol3 (ARTP, [1]) we designed. Depending on an application the user chooses
the transmission protocol he wants to use—whether he wants or needs to use
ARTP’s extended functionality or not.

3 DiProNN Programming Model

In this section we depict a programming model we use for DiProNN program-
ming. The model is based on the workflow principles [2] and is similar to the idea

3 The ARTP is a connection oriented transport protocol providing reliable duplex
communication channel without ensuring that the data will be received in the same
order as they were sent.

DiProNN: VM-based Distributed Programmable Network Node Architecture 5

of the StreamIt [3], a language and a compiler specifically designed for modern
stream programming.

For the DiProNN programming model we adopted the idea of independent
simple processing blocks (Filters in StreamIt), that composed into a processing
graph constitute required complex processing. In our case, the processing block
is an active program and the communication among such active programs is
thanks to the virtualization mechanisms provided by machine hypervisor using
common network services. The interconnected active programs then compose
the “DiProNN session” described by its “DiProNN session graph”, which is
a graphical representation of an “DiProNN program” (an example is given in
the Figure 3). To achieve desired level of abstraction all the active programs as
well as the input/output interfaces are reffered by their hierarchical names as
shown in the example in Section 3.1.

The DiProNN program defines active programs optionally with virtual ma-
chines they run in, which are neccessary for DiProNN session processing, and
defines both data communication and control communication among them. Be-
sides that, DiProNN program may define other parameters of active programs
or whole DiProNN session and/or resource requirements they have for proper
functionality.

There is one special attribute that can be set for active programs— paralleliz-
able. If this attribute is set, the DiProNN performs the active program’s process-
ing in parallel4. The number of parallel instances running can be either fixed (set
in DiProNN program and negotiated during DiProNN session establishment) or
variable (controlled by the Control unit depending on actual DiProNN usage).

3.1 DiProNN Program Example

Let’s have the following situation: there is one incoming high-bandwidth video
stream (e.g., an HD stream having 1.5 Gbps) and one high-quality audio stream,
both transferred using ARTP protocol described before. In the DiProNN, both
streams must be transcoded into low quality streams for specified set of clients
behind low-bandwidth lines, and for some clients the streams must remain in
the original quality. At the output, there must be both audio and video streams
of given quality mixed into just one output stream (thus having two output
streams—one in high quality and one in lower quality) and the precise time
synchronization between audio and video in both output streams is also required.

The possible DiProNN session graph together with the fragment of relevant
DiProNN program is depicted in the Figure 3.

3.2 DiProNN Data Flow

When a new DiProNN session request arrives to the node, the Control unit
decides, based on the actual DiProNN usage, whether it could be satisfied or not.
4 Note, that the DiProNN session must define on its own, how to distribute data

over such parallel instances, or choose such distribution from built-in functions, e.g.,
round-robin or simple duplication principle.

6 TOMÁŠ REBOK

sort_ARTP1

sort_ARTP2
duplicate

out

out

input1

input2

trans_V

trans_A

mix_sync_low

mix_sync_high

user AP

output1

output2

output3

output4 in

in

video_in

audio_in

out

out

video_in

audio_in

out

out

in

in

sort_ARTP3

out
in

sort_ARTP4

out
in

built-in AP

parallelizable AP

Project first_project.HD_transcode;

project parameters (owner, notifications,

overall resource requirements, ...)

{AP name="sort_ARTP1" ref=localService.SortARTP;

AP parameters

inputs = in;

out = my_VM.mix_sync_high.video_in;

}

{VM name="my_VM" ref=my_VM_image;

VM parameters

{AP name="mix_sync_high" ref=mixer_syncer;

inputs = video_in, audio_in;

precision = 0.001; # 1ms

output = SEE_ARTP;

the real receiver inside ARTP packets

}

other APs ...

}

other VMs/APs ...

Fig. 3. Example of DiProNN session graph together with a fragment of relevant
DiProNN program.

If the request could be satisfied, the session establishment takes place. It means,
that the Control unit decides, which Processing units each active program will
run on and appropriately sets both their control modules and the Distribution
unit. Moreover, all the requested resources are reserved, if any.

Since the DiProNN programming model uses symbolic names for commu-
nication channels instead of port numbers, the names must be associated with
appropriate port numbers during a DiProNN session startup. This association
is done using the control module (a part of each Processing unit) where the
couple (symbolic name, real port) is using simple text protocol registered. The
control module using this information together with the DiProNN program and,

DiProNN: VM-based Distributed Programmable Network Node Architecture 7

if neccessary, the information set as an option in ARTP packet coming from an
active program, properly sets the IP receiver of passing packets, which are then
forwarded to proper active programs for processing.

However, this approach does not enable active programs to know the real data
receiver (each packet is by VMM destined to given VM address and given active
program’s port). Nevertheless, DiProNN users may use the ARTP’s extended
functionality to make their active programs be aware of real data receiver (e.g.,
using proper option inside each ARTP datagram). In this case, the Aggregation
unit forwards these packets to the destination given inside ARTP datagram
instead the one(s) given in DiProNN program.

The usage of symbolic names in DiProNN doesn’t force active programs to be
aware of their neighbourhood—the active programs processing given DiProNN
session before and after them—they are completely independent on each other
so that they just have to know the symbolic names of ports they want to com-
municate with and register them at the control module of the Processing unit
they run in.

4 Related Work

With the potential for many applications, the active networks principles are very
popular and investigated by many research teams. Various architectures of active
routers/nodes have been proposed—in this section we briefly describe only those
mostly related to our work.

C&C Research Laboratories propose the CLARA (CLuster-based Active
Router Architecture, [4]) providing customizing of media streams to the needs
of their clients. The architecture of another programmable network node, LARA
(Lancaster Active Router Architecture, [5]) in comparison with CLARA encom-
passes both hardware and software active router design. The LARA++ (Lan-
caster’s 2nd-generation Active Router Architecture, [6]), as the name indicates,
evolved from the LARA. Against the LARA, which provided innovative hard-
ware architecture, the LARA++ lays the main focus on the software design of
its architecture.

However, in comparison with the DiProNN, none of these distributed pro-
grammable architectures addresses promising virtualization technology and its
benefits, and tries to provide enhanced flexibility (both programming flexibility
and execution environment flexibility).

5 Conclusions and Future Work

In this paper, we have proposed a VM-oriented distributed programmable net-
work node architecture named DiProNN. The DiProNN users are able to ar-
range and upload a DiProNN session consisting of a set of their own active
programs independent on each other and possibly running in their own virtual
machine/operating system, and let their passing data being processed by the
DiProNN. The communication among such active programs is provided using

8 TOMÁŠ REBOK

standard network services together with machine hypervisor so that active pro-
grams are not forced to be aware of their neighbourhood. DiProNN cluster-based
design also enables simultaneous parallel processing of active programs that are
intended to run in parallel.

Concerning the future challenges, the proposed DiProNN architecture is be-
ing implemented based on the Xen virtual machine monitor [7]. Further we want
to explore the mechanisms of QoS requirements assurance and scheduling mech-
anisms to be able to utilize DiProNN resources effectively. We want to explore
all the three perspectives of DiProNN scheduling—scheduling active programs
to VMs (when they do not have their own VM specified), scheduling VMs to
appropriate Processing units and scheduling active programs/virtual machines
to suitable DiProNN nodes (when there are more DiProNN nodes on the path
from a sender to a receiver, which are able to process given DiProNN session).
For the efficiency purposes we plan to implement some parts of the DiProNN in
hardware, e.g., based on FPGA-based programmable hardware cards [8].

Acknowledgement: This project has been supported by research project “In-
tegrated Approach to Education of PhD Students in the Area of Parallel and
Distributed Systems” (No. 102/05/H050).

References

1. Rebok, T.: Active Router Communication Layer. Technical Report 11/2004, CES-
NET (2004)

2. Cichocki, A., Rusinkiewicz, M., Woelk, D.: Workflow and Process Automation:
Concepts and Technology. Kluwer Academic Publishers, Norwell, MA, USA (1998)

3. Thies, W., Karczmarek, M., Amarasinghe, S.: Streamit: A language for streaming
applications. In: International Conference on Compiler Construction, Grenoble,
France (2002)

4. Welling, G., Ott, M., Mathur, S.: A cluster-based active router architecture. IEEE
Micro 21(1) (2001) 16–25

5. Cardoe, R., Finney, J., Scott, A.C., Shepherd, D.: Lara: A prototype system for
supporting high performance active networking. In: IWAN 1999. (1999) 117–131

6. Schmid, S.: LARA++ Design Specification (2000) Lancaster University DMRG
Internal Report, MPG-00-03, January 2000.

7. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., m, P.B.,
Neugebauer, R.: Xen and the Art of Virtualization. In: Proceedings of the ACM
Symposium on Operating Systems Principles, Bolton Landing, NY, USA (2003)

8. Novotný, J., Fuč́ık, O., Antoš, D.: Project of IPv6 Router with FPGA Hardware
Accelerator. In: Field-Programmable Logic and Applications, 13th International
Conference FPL 2003. Volume 2778., Springer Verlag (2003) 964–967

