
DiProNN: Distributed Programmable Network
Node Architecture

Tomáš Rebok1

Faculty of Informatics
Masaryk University

Brno, Czech Republic
xrebok@fi.muni.cz

Abstract

The programmable network approach allows processing of passing user
data in a network, which is highly suitable especially for multimedia
streams processing. However, programming of complex stream pro-
cessing applications for programmable nodes is not effortless since they
usually do not provide sufficient flexibility (both programming flexibil-
ity and execution environment flexibility). In this paper we present the
programmable network node architecture named DiProNN that is able
to accept and run user-supplied programs and/or virtual machines and
process them over passing data. All the DiProNN programs are de-
scribed using our modular programming model based on the workflow
principles that takes advantages of DiProNN virtualization and makes
programming of complex streaming applications easier. As a possible
application we show a sketch implementation of simple MCU (Multi-
point Control Unit) used for large videoconferences that profits from
DiProNN properties.

1 Introduction

The principle called “Active Networks” or “Programmable Networks” is an
attempt how to build an intelligent and flexible network using current networks
serving as a communication underlay. Such a network allows processing of pass-
ing user data in a network, which is highly suitable especially for video streams
processing. However, programming of complex stream processing applications
for programmable nodes is not effortless since they usually do not provide suffi-
cient flexibility (both programming flexibility and execution environment flexi-
bility).

The usage of virtual machines principles [1] can improve the flexibility of pro-
grammable nodes’ execution environment since they are able to run completely
different execution environments simultaneously. Moreover, they can also bring
other benefits (strong isolation, resource management, programming flexibility,
etc.), and thus make the usage of programmable routers easier.

In this paper we present the programmable network node architecture named
DiProNN (Distributed Programmable Network Node) that is able to accept and

run user-supplied programs and/or virtual machines and process them over pass-
ing user data. All the DiProNN programs are described using novel modular
programming model based on the workflow principles that takes advantages of
DiProNN virtualization and makes programming of complex streaming appli-
cations more comfortable. Thanks to DiProNN’s distributed architecture and
possibilities of parallel processing, the DiProNN can also improve the robustness
and scalability of such an active system with respect to number of active pro-
grams simultaneously running on the node and with respect to the bandwidth of
each passing stream processed. As a possible application we show an implemen-
tation of simple MCU (Multipoint Control Unit) used for large videoconferences
that profits from DiProNN properties.

2 DiProNN: Distributed Programmable Network Node

2.1 Architecture

DiProNN architecture we propose assumes the infrastructure as shown in
Figure 1. The DiProNN units form a computer cluster interconnected with
each unit having two connections—one low-latency control connection used for
internal communication and synchronization inside the DiProNN, and at least
one1 data connection used for receiving and sending data.

low latency
interconnect switch

processing units

distribution
unit

aggregation
unit

data link low latency interconnect

network
(Internet) data flow data flow

control unit

network
(Internet)

data switch

Fig. 1: Proposed DiProNN architecture.

The low-latency interconnection is desirable since current common network
interfaces like Gigabit Ethernet or 10 Gigabit Ethernet provide large bandwidth,
but the latency of the transmission is still in order of hundreds of µs, which is not
suitable for fast synchronization of DiProNN units. Thus, the use of specialized
low-latency interconnects like Myrinet network providing as low latency as 10µs

1The ingress data connection could be the same as the egress one.

(and even less, if you consider e.g., InfiniBand with 4 µs), which is close to
message passing between threads on a single computer, is very suitable. However,
the usage of single interconnection serving as data and control interconnection
simultaneously is also possible.

From the high-level perspective of operation, the incoming data are first
received by the DiProNN’s Distribution unit, where they are forwarded to ap-
propriate Processing unit(s) for processing. After the whole processing, they
are finally aggregated using the Aggregation unit and sent over the network to
the next DiProNN node (or to the receiver). As obvious from the Figure 1, the
DiProNN architecture comprises four major parts:

• Distribution unit—the Distribution unit takes care of ingress data flow
distribution to appropriate DiProNN Processing unit(s), which are deter-
mined by the Control unit described later.

• Processing units—the Processing unit (described in detail in Section 2.2
receives packets and forwards them to proper active programs for process-
ing. The processed data are then forwarded to next active programs for
further processing or to the Aggregation unit to be sent away.
Each Processing unit is also able to communicate with the other ones using
the low-latency interconnection. Besides the load balancing and fail over
purposes this interconnection is mainly used for sending control informa-
tion of DiProNN sessions (e.g., state sharing, synchronization, processing
control).

• Control unit—the Control unit is responsible for the whole DiProNN
management and communication with its neighborhood including commu-
nication with DiProNN users to negotiate new DiProNN sessions (details
about DiProNN sessions establishment are given in Section 3) and, if re-
quested, providing feedback about their behavior.

• Aggregation unit—the Aggregation unit aggregates the resulting traffic
to the output network line(s).

2.2 DiProNN Processing Units

The usage of virtual machines enhance the execution environment flexibility
of the DiProNN node—they enable DiProNN users not only to upload active
programs, which run inside some virtual machine, but they are also allowed to
upload a whole virtual machine with its operating system and let their passing
data being processed by their own set of active programs running inside uploaded
VM(s). Similarly, the DiProNN administrator is able to run his own set of fixed
virtual machines, each one with different operating system, and generally with
completely different functionality. Furthermore, the VM approach also allows
strong isolation among virtual machines, and thus allows strict scheduling of
resources to individual VMs, e.g., CPU, memory, and storage subsystem access.

Nevertheless, the VMs also bring some performance overhead necessary for
their management [2]. This overhead is especially visible for I/O virtualization,
where the Virtual Machine Monitor (VMM) or a privileged host OS has to
intervene every I/O operation. We are aware of this performance issues, but we

decided to propose a VM-based programmable network node architecture not
being limited by current performance restrictions.

2.2.1 Processing Unit Architecture

The architecture of the DiProNN Processing unit is shown in Figure 2. The
privileged service domain (dom0 in the picture) has to manage the whole Pro-
cessing unit functionality including uploading, starting and destroying of the
virtual machines, communication with the Control unit, and a session account-
ing and management.

Fig. 2: DiProNN Processing Unit Architecture

The virtual machines managed by the session management module could be
either fixed, providing functionality given by a system administrator, or user-
loadable. The example of the fixed virtual machine could be a virtual machine
providing classical routing as shown in Figure 2. Besides that, the set of another
fixed virtual machines could be started as an active program execution envi-
ronment where the active programs uploaded by users are executed (those not
having their own virtual machine defined). This approach does not force users
to upload the whole virtual machine in the case where active program uploading
is sufficient.

2.3 DiProNN Communication Protocol

For data transmission, the DiProNN users may use both the User Datagram
Protocol (UDP) and the transmission protocol called Active Router Transmis-
sion Protocol (ARTP, [3])—a connection oriented transport protocol providing
reliable duplex communication channel without ensuring that the data will be
received in the same order as they were sent. Depending on an applications’
demands the users choose the transmission protocol they want to use—whether
they want or have to use ARTP’s extended functionality or not.

3 DiProNN Programming Model

The programming model we propose for DiProNN programming is based on
the workflow principles [4] and was inspired by the idea of the StreamIt [5], which
is a language and compiler specifically designed for modern stream applications
programming.

For the DiProNN programming model we adopted the idea of independent
simple processing blocks (so called Filters in StreamIt), that composed into a
processing graph constitute required complex processing. In our case, the pro-
cessing block is an active program and the communication among such active
programs is thanks to the virtualization mechanisms provided by machine hyper-
visor using standard network services (details about DiProNN internal commu-
nication are provided in Section 4). The interconnected active programs then
compose the “DiProNN session” described by its “DiProNN session graph”,
which is a graphical representation of an “DiProNN program” (an example is
given in the Figure 3). Furthermore, to make DiProNN programming easier
all the active programs as well as the input/output data/communication inter-
faces are referred by their hierarchical names as shown in the MCU example in
Section 5.

The DiProNN program defines active programs optionally with virtual ma-
chines they run in2, which are necessary for DiProNN session processing, and
defines both data and control communication among them. Besides that, the
DiProNN program may also define other parameters (e.g., resources required)
of active programs as well as the parameters for the whole DiProNN session.

The main benefit of the DiProNN programming model is, that the com-
plex functionality required to be done on the programmable node can be sep-
arated into several single-purpose active programs with the data flow among
them defined. Furthermore, the usage of symbolic names doesn’t force active
programs to be aware of their neighbourhood—the active programs processing
given DiProNN session before and after them—they are completely independent
on each other so that they just have to know the symbolic names of ports they
want to communicate with and register them (as sketched in the next section)
at the control module of the Processing unit they run in.

4 Session Establishment and Data Flow

When a new DiProNN session request arrives to the node, the Control unit
decides, whether it could be satisfied or not (depending on actual DiProNN
usage). If the request could be satisfied, the session establishment takes place. It
means, that each DiProNN node receives its relevant part of the whole DiProNN
session (including all the active programs and virtual machines images) and the
Control unit of each DiProNN node decides, which Processing units each active

2In DiProNN, each active program may run in completely distinct execution environment
(e.g., different OS) from the others. However, it is also possible that single VM may contain
several active programs running inside.

program/virtual machine will run on. After that, both the control modules (a
part of each Processing unit) and the Distribution units of all the DiProNN nodes
used are set appropriately. Then all the active programs and virtual machines
are started, and moreover, all the requested resources are reserved, if any.

Since the DiProNN programming model uses symbolic names for communi-
cation channels (both data and control channels) instead of port numbers, the
names must be associated with appropriate port numbers during a DiProNN
session startup. This association is done using the control module where each
active program using simple text protocol registers the couple (symbolic name,
real port). The control module using the information about registered couples
together with the virtual machine and port number a packet is coming from
properly sets the receiver of passing packets, which are then automatically for-
warded to proper active programs.

However, this approach does not enable active programs to know the real data
receiver (each packet is by VMM destined to given VM address and given active
program’s port). Nevertheless, the DiProNN users may use the ARTP’s extended
functionality to make their active programs being aware of real data receiver. In
this case, the Aggregation unit forwards these packets to the destination given
inside ARTP datagram instead of the one given in DiProNN program.

5 Example: Simple MCU Unit in DiProNN

In this section we sketch a possible implementation of simple MCU unit
(Multipoint Control Unit, [6]) used for videoconferencing. The MCU unit we
want to implement should have following functionality: the unit should be able
to accept up to twelve input ARTP streams of audio and video data (e.g., 6 audio
streams + 6 video streams) of videoconference participants (in this simple case
we do not deal with permissions of participants to attend the conference). All the
input video streams should be merged into one outgoing video stream and the
current speaker should be somehow highlighted (greater picture and/or lighter-
colored). The outgoing audio and merged video streams should be synchronized
with defined precision.

The possible DiProNN session graph together with a fragment of the DiProNN
program is depicted in the Figure 3. First, from incoming audio stream there
is a current speaker determined3 using the determine speaker active program
(AP). The identification of current speaker is then using low-latency control
interconnection sent to the video distr AP, where relevant ARTP option in-
dicating current speaker is added to the speaker stream. This option is read
by the transcode AP4 where the current speaker is highlighted before/after
transcoding. All the video streams are then merged into one video stream (one
big picture is created) and thus have to be synchronized. Finally, the outgoing

3The real method of determining current speaker is not important for this example. The
possible methods of speaker recognition could be found in [7].

4Note, that the transcode AP might be processed in parallel and each parallel instance
may communicate with the others, as indicated in the DiProNN program.

audio and video streams are also fully synchronized.

video_distr

video_input

transcode merge_video

sync_all

user AP

output

in

out

in

out

out

sync_video

out
in

built-in AP

parallelizable AP
determine_speaker

audio_input
audio_in

video_in

outoutput in

sort_ARTP1

ctrl_in

ctrl_out

out
in

sort_ARTP2

Project My_simple_MCU.first_attempt;

project parameters (owner, notifications, resource requirements, ...)

{AP name="determine_speaker" ref=recognize_speaker1;

AP parameters

inputs = audio_input(DIPRONN_INPUT(10002));

requested DiProNN input port is 10002

outputs = output(sort_ARTP1.in);

control_outputs = ctrl_out(my_VM1.video_distr.ctrl_in);

}

{VM name="my_VM1" ref=my_VM1_image;

VM parameters

{AP name="transcode" ref=transcode_video;

inputs = in, stateshare_in;

stateshare_in ... input for communication among parallel instances

outputs = out(sort_ARTP2.in),

stateshare_out(my_VM1.transcode.state_in);

parallelizable; # parallelizable AP

} # ... other APs

}

{VM name="my_VM2" ref=my_VM2_image;

{AP name="sync_all" ref=syncer;

inputs = audio_in, video_in;

precision = 0.001; # 1ms

outputs = out(DIPRONN_OUTPUT(SEE_ARTP));

the real receiver inside ARTP packets

} # ... other APs

} # ... other APs/VMs

Fig. 3: DiProNN session graph for simple MCU unit together with a fragment
of relevant DiProNN program.

6 Conclusions and Future Work

In this paper, we have proposed a virtual machine oriented distributed pro-
grammable network node architecture named DiProNN. The main features of
the DiProNN are that its users are able to upload their DiProNN session con-
sisting of a set of their own active programs independent on each other and

possibly running in their own virtual machines, and let their passing data being
processed by the DiProNN. The communication among such active programs is
provided using standard network services by machine hypervisor so that active
programs are not forced to be aware of their neighbourhood. DiProNN cluster-
based design also enables simultaneous parallel processing of active programs
that are intended to run in parallel.

Concerning the current and future challenges, the proposed DiProNN archi-
tecture is being implemented based on the XEN virtual machine monitor. Fur-
ther we also want to explore the mechanisms of QoS requirements assurance and
scheduling mechanisms to be able to utilize DiProNN resources effectively. We
want to explore all the three perspectives of DiProNN scheduling—scheduling
active programs to virtual machines (when they do not have their own virtual
machine specified), scheduling virtual machines to appropriate Processing units
and scheduling active programs/virtual machines to suitable DiProNN nodes
(when there are more DiProNN nodes on the path from a sender to a receiver,
which are able to process given DiProNN session).

Acknowledgement

This project has been supported by research intent “Integrated Approach to
Education of PhD Students in the Area of Parallel and Distributed Systems”
(No. 102/05/H050).

References

1. Jim E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems
and Processes. Elsevier Inc., 2005.

2. Aravind Menon and Jose Renato Santos and Yoshio Turner and G. (John) Janaki-
raman and Willy Zwaenepoel. Diagnosing performance overheads in the XEN vir-
tual machine environment. VEE ’05: Proceedings of the 1st ACM/USENIX inter-
national conference on Virtual execution environments, 2005, USA.

3. Tomáš Rebok. Active Router Communication Layer. Technical report, 29 pages,
CESNET, Prague, 2004.

4. Andrzej Cichocki and Marek Rusinkiewicz and Darrell Woelk. Workflow and Pro-
cess Automation: Concepts and Technology. Kluwer Academic Publishers, Norwell,
MA, USA, 1998.

5. William Thies and Michal Karczmarek and Saman P. Amarasinghe. StreamIt: A
Language for Streaming Applications. In Proceedings of the 11th International
Conference on Compiler Construction, pages 179-196, 2002.

6. Willebeek-LeMair, M.H. and Kandlur, D.D. and Shae, Z.-Y. On multipoint control
units for videoconferencing. Local Computer Networks, 1994. Proceedings, 19th
Conference on. Minneapolis, MN, USA, pages 356-364, 1994.

7. Douglas A. Reynolds and Larry P. Heck. Automatic Speaker Recognition: Recent
Progress, Current Applications, and Future Trends. Presentation at the AAAS
2000 Meeting Humans, Computers and Speech Symposium, 2000.

