
FACULTY OF INFORMATICS AND CESNET
MASARYK UNIVERSITY, BOTANICKÁ 68A, 602 00, BRNO

Active Router
Communication Layer

CESNET TECHNICAL REPORT NUMBER 11/2004

Tomáš Rebok
e-mail: jeronimo@ics.muni.cz

Brno, Czech Republic, 2004

Abstract

Future computer networks must be more flexible and faster than today. Ac-
tive network paradigm is the way how to add flexibility to the networks
of today. Passive transport medium present in current networks is trans-
formed by application of active network principles into distributed pro-
grammable computing system with a lot of new features but lots of prob-
lems, too. Several architecture models have been proposed to solve problem
of active networks and its elements. A new architecture based on model of
active nodes has been presented by Eva Hladká and Zdeněk Salvet. This ar-
chitecture is designed to be sufficiently general to accommodate any under-
lying packet-based networking technology. This architecture also proposes
a prototype implementation of an active router using PC-class computers
with NetBSD operating system. The main task of this router, which is the
same as for any other usual router, is to transfer data from sending node
to receiving node. Such communication requires special protocols that can
provide the transfers with required quality of service – such protocols are
called transport protocols.

The main goal of this work is to design and implement a new trans-
port protocol called Active Router Transport Protocol that can be used as
a communication layer of the active router being developed at Masaryk
University in Brno. This router has special requirements discussed in this
report and this is the reason why current transport protocols are not suit-
able for the router. Although proposed protocol is primarily designed for
active routers, it is general enough to be usable outside of active networks
environment.

ii

Contents

1 Active Router Transport Protocol (ARTP) 1
1.1 Terminology . 1
1.2 Requirements on Proposed Protocol 2
1.3 ARTP Design Philosophy . 3
1.4 Functional Specification . 4

1.4.1 Header Format . 4
1.4.2 Timestamps . 10
1.4.3 Session Establishment 12
1.4.4 Session Termination 13
1.4.5 Data Communication 13
1.4.6 Interfaces . 15

2 Implementation and Tests . 17
2.1 Prototype Implementation . 17
2.2 How to Use Prototype ARTP Library 17
2.3 Experimental Validation . 18

2.3.1 Throughput Measurement 18
2.3.2 Reliability Test . 19
2.3.3 The Stability Test . 21

3 Conclusions . 23

iii

Chapter 1

Active Router Transport Protocol (ARTP)

1.1 Terminology

Before we discuss the ARTP protocol, we need to introduce terminology
that is used throughout this document:

client – the side that initializes a connection. This is the sender in the case
of one-way communication.

server – side that accepts a connection. In the case of one-way communi-
cation it is the receiver. Each server can be a client for another server
at the same time (it is not the end point of communication but the
middle one).

session – connection made between client and server used for data trans-
mission. Each session can be in one of the two states:

• non-established: used for transmitting requests for new sessions.

• established: used for the actual data transmission. Both end-
points have to have all necessary structures prepared and all
information required for providing Quality of Service must be
kept.

datagram – a data element that is passed between the ARTP and an appli-
cation. Its size is not limited by the ARTP.

packet – a data element that is passed through the network. Its structure is
specified by the ARTP and its size is limited depending on network
architecture used. There are the following types of packets used in the
ARTP:

• data packets: they transmit application data or parts of them
(fragments).

1

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

• control packets: they are used for transmitting control informa-
tion between both communication points. They control session
establishment and management.

• acknowledge packets: they transmit sequence numbers of re-
ceived packets to be acknowledged (see below).

fragment – the part of datagram that is transmitted in one packet. If re-
quired by maximum transmission unit of the underlying network, a
large datagram may be split into fragments on the sender side and
reassembled again into original datagram on the receiver side.

timestamp – the time stored in packet header representing packet sending
time.

buffer – container used for storing data in both communication points.
There are several types of buffers:

• sending buffer: used for storing data to be sent.

• receiving buffer: used for storing received data.

• acknowledge buffer: used for storing sequence numbers of in-
coming packets to be acknowledged.

1.2 Requirements on Proposed Protocol

The common task of all transport protocols is to transmit data between
sender and receiver. The quality requirements on the transfer can differ
vastly depending on the application.

Proposed protocol is designed to be used in the active router being de-
veloped at Masaryk University in Brno. Its properties are given by router
requirements – they can be divided into the following groups:

1. Basic data transfer
Proposed communication protocol must be able to transfer datagrams
in both directions between its users. Transferred data can be separated
into two types – control data (used for session management) and the
actual application data. Application data may consist of two parts, too
– encrypted data and data signature.

2. Reliable communication
The protocol must ensure reliable data transport (the whole data sent
by sender must be received by receiver). It must recover from data

2

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

loss, duplication, or delay imposed by the underlying communication
medium, e. g. Internet networks. Received datagrams are not passed
to the receiver application in the sent order (protocol does not need to
ensure delivery in the right order).

3. Flow control
The sender has to control the amount of data sent to the network to
avoid network and receiver congestion. In typical passive network
medium that doesn’t signalize congestion state in some explicit way,
the congestion is usually signalized by packet loss. If the communica-
tion passes without problems the amount of data sent to the network
may increase. When the receiver or network become congested, pro-
tocol must react as soon as possible by decreasing sending rate.

4. Multiplexing
The protocol should allow to create more than one session between
two communication points (they are specified by their IP addresses
and ports). Each session must be unambiguously defined.

1.3 ARTP Design Philosophy

The ARTP protocol is connection oriented transport protocol providing re-
liable communication channel without ensuring that the data will be re-
ceived in the same order as they were sent. A client that wants to use ARTP
protocol for data transport to the server must create a connection before
starting this transport. The established connection has to be closed at the
end of transmission.

Since session multiplexing is basic requirement for ARTP design, a ses-
sion identification number is provided. Each session created between two
points is unambiguously defined by its IP addresses and ports and its iden-
tification number. This allows more connections to be created between two
applications. New session creation is initiated by client by sending a con-
nection request to the server. Server considers this request and sends its
reply to the client. When a positive reply is sent, both sides create necessary
structures for session management and the session turns into established
state.

Established session can be used for duplex data transport. There are
two types of data that can be sent by the ARTP protocol – control data
and main data. Control data are dedicated to both end-point application
management. Each control information includes its identifier, type (request

3

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

or reply) and its value. Main data consists of two parts – encrypted data
and its signature. Each main data datagram includes its identification num-
ber (data sequence number). This identifier is chosen by sender application
itself. Datagram size is not limited by the ARTP.

Transmitted data are encapsulated into packets. Each packet consists of
its header (it contains necessary information about the packet) and its data
part (it contains transmitted data). Every packet may include ARTP control
information, too. It can be used for communication between both communi-
cation points (e.g. controlling maximum packet size, session prioritization,
etc.). ARTP control information is not passed to the applications. Every im-
plementation of the ARTP may choose its protocol control information ar-
bitrarily.

ARTP packet header must contain a timestamp (the information about
its sending time) and expiration time describing how long the given packet
is valid. This information is necessary for too delayed packets detection1.

The reliability of the transmission is based on individual acknowledge-
ments of received packets and duplicity detection. Every packet contains
its sequence number (stored in its header) that identifies the packet unam-
biguously. The receiver sends the list of received sequence numbers to their
sender periodically (those received since last acknowledgement sending).
If some packet is considered to be lost (the acknowledgement did not come
in specified time) it is retransmitted.

The ARTP controls the amount of data sent to the network to avoid
receiver or network congestion. For this purpose the congestion window
mechanism has been chosen. The congestion window indicates the maxi-
mum amount of data that may be sent to the network without being ac-
knowledged (shown in Fig. 1.1). The window size varies depending on the
actual transport state – it increases when the transport proceeds without
packet loss supposing that the capacity of the network is not saturated. The
congestion is detected by packet loss – the sender decreases the window
size and thus the amount of data sent to the network.

1.4 Functional Specification

1.4.1 Header Format

Each ARTP packet starts with 20 B header followed by transmitted data.

1. It is essential to remember that the actual sequence number space is bounded, though
the counter range is very large.

4

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

Figure 1.1: The congestion window mechanism.

Each information larger than one byte is stored in network byte order
in an ARTP packet (in the context of microprocessors, this is known as big
endian).

Figure 1.2: ARTP packet header.

VER (Version): 4 bits
Version of the ARTP protocol (currently 1).

PT (Packet type): 4 bits
Type of data stored in the ARTP packet. Available types are:

• data packet

• control packet

• acknowledge packet

5

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

SID (Session identifier): 8 bits
Session identification number.

OPTSZ (Option field size): 8 bits
The total size of OPTIONS array (in bytes).

SEQ (Sequence number): 32 bits
Packet sequence number.

TS – sec (Timestamp – seconds): 32 bits
Packet sent time – the amount of seconds since 1.1.1970.

TS – usec (Timestamp – microseconds): 32 bits
Packet sent time – the amount of microseconds.

EXP – usec (Expiration time – microseconds): 32 bits
Packet validity time from its sending (in microseconds).

OPTIONS: variable size
Protocol control information sent in each packet (see below).

DATA: variable size
Data sent in packet (see below).

OPTIONS array consists of 0 or more structures as shown in the follow-
ing picture.

Figure 1.3: OPTIONS array structure.

SZ (Option total size): 16 bits
The total size of the given control information.

OPTID (Option identifier): 16 bits
The identification mark of the given control information.

OPTDATA (Option data): variable size
The data of the given control information.

6

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

The DATA array is used for storing transmitted data and its structure
depends on packet type.

Application data

The DATA array contains exactly one structure shown in Fig. 1.4.

7

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

Figure 1.4: DATA array structure.

The MSG array contains exactly one structure shown on the picture 1.5.
This information is fragmented when the datagram size is too big.

Figure 1.5: MSG array structure.

DSEQ (Data sequence number): 32 bits
Sequence number indicating the right order of given datagram.

FRAG (Fragment identifier): 16 bits
The number of given data fragment.

NFRAG (Fragment count): 16 bits
The total count of data fragments of given datagram.

SIGSZ (Signature size): 32 bits
The total size of SIGDATA array (in bytes).

SIGDATA (Data signature): variable size
Data signature.

ENCDATA (Encrypted data): variable size
Encrypted data.

8

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

Session control information

The DATA array contains at least one structure shown on the picture 1.6.

Figure 1.6: CTRL array structure.

SZ (Control option size): 16 bits
The total size of given session control information.

TYPE (Control option type): 8 bits
The type of given control information – request or reply.

OPTID (Control option identifier): 8 bits
The identification mark of given session control information.

VALUE (Control option value): variable size
The data of given session control information.

Acknowledge packets

The DATA array contains at least one structure shown on the picture 1.7.

Figure 1.7: ACK array structure.

SEQ (Sequence number): 32 bits
The acknowledge packet number.

9

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

1.4.2 Timestamps

As mentioned above, there is the timestamp stored in each packet header.
Timestamp is the information about packet sending time and together with
expiration time it serves for too delayed packets detection.

In the general case there is no synchronization between clocks on sender
and receiver. That is the reason why we can not base delayed packets detec-
tion simply by comparing packet sending time (expressed in sender time)
with packet receiving time (expressed in receiver time) increased by packet
expiration time.

ARTP timestamps

Due to possible time difference between sender and receiver time the ARTP
sender must maintain the supposed difference between its time and the
other side time (let us name it ts delta). When the duplex communication
occurs this time is maintained by both sides.

The ARTP mechanism of inserting timestamps into packet headers is as
follows:

• if the time difference between both communication sides is not known
(ts delta) then the actual sender time is inserted into every packet.
The expiration time is set to 0 simultaneously.

• if the time difference is known then the expiration time is inserted de-
pending on application requests. The timestamp is inserted depend-
ing on packet type:

– the supposed receiver time (sender actual time that is adjusted
by ts delta) is inserted into data and control packets.

– the actual sender time is stored into acknowledge packets.

The mechanism of packet validity detection is:

• if the packet expiration time is set to 0 then this packet is always said
to be valid.

• otherwise next steps depend on packet type:

– when control or data packet is received the sum of time stored
in packet header2 and the packet expiration time is compared

2. This timestamp is stored in supposed receiver time so it does not have to be adjusted by
ts delta .

10

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

with the actual receiver time. The packet validity is determined
according to the comparison.

– acknowledge packet contains its sending time (it is expressed in
sender time) stored in its header. This time has to be adjusted by
actual ts delta 3 – this time is now expressed in receiver time.
The sum of this counted time with the packet expiration time is
compared with the actual receiver time. The packet validity is
determined according to this comparison.

The time difference between sender and receiver time (ts delta) is es-
timated using acknowledge packets that inform about non-retransmitted
packets only. The calculation formula is:

ts delta = CT−
(

ST +
RTT

2

)
where

• CT . . . the receiving time of given acknowledge packet,

• ST . . . the sending time stored in packet header of given acknowledge
packet,

• RTT . . . the time passed between sending packet and receiving its ac-
knowledgement (Round Trip Time)4.

The algorithm says that there are all sent packets set as non-expirable
at the beginning of the communication. When some acknowledgement is
received, the time difference between sender time and receiver time is com-
puted. This time difference is used for calculating estimated receiver time
that is inserted into data and control packet header. Estimated time differ-
ence is periodically recalculated based on acknowledgement packets (their
sending time is expressed in sender time).

Given algorithm can be used for both simplex and duplex communica-
tion.

3. This is not true for the first packet received – it is always said to be valid because it is
used for time difference computing
4. Instead of RTT we can use SRTT time (Smooth Round Trip Time) that is not so suscep-
tible to sudden network deviations. It can be periodically calculated using this formula:
SRTT = (α · SRTT) + ((1 − α) · RTT), where α = 0.875.

11

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

1.4.3 Session Establishment

Session establishment is done in two stages in the ARTP protocol. In the first
stage, a new session must be set up between the communication partners.
Depending on the result of the first stage the second one takes place (session
creation). After the successful completion of both stages the session is said
to be established.

1. Session arrangement
The client application must request for available session identifier
of new session. When some identifier is available the client applica-
tion sends control packet with new session request to the server. The
server application decides whether the request should be accepted or
not and send the result to the client using control packet, too. In the
case of positive decision both sides must create arranged session be-
fore any data sending.

The typical communication between some client and some server is
shown in Fig. 1.8.

Figure 1.8: Session arrangement between client and server.

2. Session creation
The session must be created to ensure the reliable communication be-

12

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

tween both communication end points – send and receive buffers are
created, necessary structures are initialized and so on.

1.4.4 Session Termination

The session termination is done in two stages similar to the session es-
tablishment. In the first stage, the termination request must be sent to the
communication partner5. This stage is not defined by the ARTP itself. The
second stage takes place after completion of the first stage – all allocated
information is released and session is terminated.

1.4.5 Data Communication

Data exchange

As soon as the session is established the data transfer may begin. The data
exchange between the ARTP and the application is done using data blocks
called datagrams. The datagrams may have arbitrary size so they may not
pass through the network at once. The sender must fragment them into
smaller parts called packets, a packet header is added and it is sent over
the network to their receiver. When the receiver receives all fragments of a
datagram it reassembles them into original datagram and passes the data-
gram to the receiver application. The order of passing assembled datagrams
is not given – the ARTP guarantees the correct datagrams assembling only.

When a valid packet is received6, the receiver must send an acknowl-
edgement of received sequence number to the sender. These sequence num-
bers may be merged into bigger blocks. The acknowledgement sending in-
terval must be set carefully because too long sending interval may cause
too many retransmissions (see the discussion below).

Since the receiver side must detect duplicities of incoming packets, it is
necessary that the receiving side must keep and manage sequence numbers
history. When packet duplicity is detected, the duplicate packet is acknowl-
edged again but it is not stored into the buffer.

5. This stage could be skipped and the session could be terminated immediately and
the communicating partner would recognize session termination by other way – see Sec-
tion 1.4.5.
6. Invalid or expired packets are discarded immediately.

13

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

Retransmissions

To ensure reliable data communication the ARTP provides retransmission
mechanism. The sent packet is kept in the send buffer until its acknowl-
edgement is received and then it is thrown away. When this acknowledge-
ment does not come in the specified time (retransmission timeout) the packet
is sent again and the whole procedure repeats until the acknowledgement
is received or the timeout for its sending is out. When this timeout expires
the session is said to be dead.

Note: The retransmission timeout must be recalculated dynamically. One
can use the RTT (Round Trip Time) for this calculating. To ensure robust-
ness to sudden network fluctuation it is better to use the SRTT (Smooth
Round Trip Time). See footnotes in the chapter 1.4.2 (ARTP timestamps) or
documentation of ARTP prototype implementation.

Congestion control

The congestion control is provided using congestion window in the ARTP.
Every session knows the maximum amount of data that may be sent to the
receiver without waiting for an acknowledgement and the amount of data
actually sent. Another packet may only be sent iff the sum of actual window
size and size of the packet is equal or less than the maximum window size.

The congestion window size is increased when an acknowledgement is
received. The congestion is detected when packet loss occurs, i. e. when a
retransmission occurs, the window size is decreased. When the session is
not used for the defined time the congestion window size is set to the initial
value in order to avoid sudden receiver congestion.

Congestion window management has great impact on the ARTP trans-
fer performance. Slow window size increase in the case of error-less transfer
or steep window size decrease in the case of error occurance may signif-
icantly degrade the ARTP performance. A suggested congestion window
management strategy could look as follows:

• the initial window size is set to the three times Maximum Segment
Size (3×MSS).

• when an acknowledgement is received, the window size is increased
by

MSS2

CWNDold
,

where CWNDold is the previous window size.

14

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

• when packet loss is detected, the window size is set to

max(0.5 · CWNDold,CWNDinit)

where CWNDold is the previous window size and CWNDinit is its ini-
tial size.

1.4.6 Interfaces

In this section, we describe the basic user interface of proposed protocol.
Every implementation of the ARTP protocol may specify its functionality
on its own and that is the reason why the function description here is lim-
ited to the very basic functions that have to be implemented in every ARTP
implementation.

1. Create session
Format:

CREATE(session identifier, receiver address,
receiver port[, session attributes])

The purpose of this function is to create session to allow data commu-
nication with specified receiver – it creates all necessary structures,
initializes all attributes, etc.

When the parameter session attributes is set, this function may
set required session behavior as well (e.g. maximum segment size,
expiration time, etc.).

2. Close session
Format:

CLOSE(session identifier, receiver address,
receiver port)

This function closes previously established session and releases all
previously allocated structures.

3. Send datagram
Format:

SEND(datagram, session identifier,
receiver address, receiver port)

15

1. ACTIVE ROUTER TRANSPORT PROTOCOL (ARTP)

This function is used for sending datagram through defined session.
The user data may be sent through established session only. Control
information (e.g. requests for new sessions, etc.) may also be sent
through non-established session. First of all, the function finds out
whether the session is alive and buffers are not full (when limited). If
one of these events occurs the function fails.

Datagrams are inserted into packets (as fragments if necessary) which
are provided with packet headers and stored into sending buffer. We
assume asynchronous environment so that this function ends after
saving the packet(s) successfuly and does not wait for sending.

4. Receive datagram
Format:

RECEIVE(session identifier, receiver address,
receiver port, received datagram)

RECEIVEfunction can be used for receiving datagrams that belong to
the indicated session. When the datagram consists of more than one
fragment it is first assembled and then passed to the calling appli-
cation. Calling this function is non-blocking – if the receive buffer is
empty, the function ends with appropriate error code.

16

Chapter 2

Implementation and Tests

One part of this work is prototype implementation of proposed ARTP pro-
tocol. The source codes are released under BSD license and can be found on
the web page http://www.fi.muni.cz/˜xrebok/artp/ . Documenta-
tion and demonstration programs are available there as well.

2.1 Prototype Implementation

The prototype implementation is written as a library using C language be-
cause of speed requirements. The library was developed and tested on the
Linux operating system (Debian with kernel 2.4.26 and Mandrake with ker-
nel 2.4.23). The comments are written in doxygen style and the provided
documentation is generated using doxygen tool.

The library implements the whole functionality of proposed ARTP pro-
tocol. Due to supposed ARTP development, there were several key requests
required – simpleness, legibility, and structureness of the source code. This
is the reason why the legibility and coding style was chosen over efficiency
if it was necessary.

2.2 How to Use Prototype ARTP Library

It is necessary to initialize all structures and threads to start the ARTP li-
brary correctly using artp init function. One may pass the path to ARTP
configuration file as a parameter to this function. After the initialization
step, the ARTP is prepared to establish new sessions (using the function
artp prepare connection), sending datagrams (artp send dgram), etc.
Detailed information about implementation interface can be found in the
documentation of implemented library. The module that wants to use these
functions has to include artp/artp.h file. When linking the resulting ex-
ecutable, it is necessary to attach the protocol library libartp .

17

2. IMPLEMENTATION AND TESTS

2.3 Experimental Validation

The functionality of the library was tested using three tests – thoughput test,
transport reliability and code stability. The network architecture used for all
tests is shown in Fig. 2.1 and configuration of PCs used for experiments was
as follows:

1. 1 Gbit/s network
DELL PowerEdge 1600 SC, 2 × Intel Xeon CPU 2.8 GHz, 1024 MB
memory, Intel PRO/1000 32 bit/66 MHz network interface card, Linux
Debian Woody operating system with 2.4.26 kernel.

2. 100 Mbit/s network
Intel Pentium 4 2.0 GHz, 512 MB memory, Intel PRO/100 VE 32 bit
33 MHz network interface card, operating system Linux Debian Woody
2.4.26.

Figure 2.1: Network architecture used for ARTP tests.

All tests were performed on 1 Gbit/s network except for the speed test,
that was done on 100 Mbit/s network, too. We have developed special-
ized testing tool for speed testing and the other tests were implemented
using demonstration program mentioned above. The test data was gener-
ated pseudo-randomly from /dev/urandom device.

The ARTP configuration used for tests was uniform – all buffers were
limited to 10 MB (unlimited buffers were used for fragmentation test only)
and the maximum segment size was set to 2 KB.

2.3.1 Throughput Measurement

The thoughput measurement was focused on determining the maximum
transfer rate and its comparison with some existing transport protocol. For

18

2. IMPLEMENTATION AND TESTS

the experiment, we have chosen the most common transport protocol –
TCP. The transfer rate was computed by counting transferred data only, i. e.
without headers of any protocol (TCP, IP, Ethernet). The maximum band-
width available on the network was measured using UDP transport proto-
col for reference.

Both the ARTP and the TCP protocols were measured using three differ-
ent sizes of transferred datagrams – 2048 B, 5000 B and 10000 B. The results
for the TCP protocol are very similar so the results are shown for single
datagram size only in graph for the sake of legibility.

Achieved results on the gigabit network are shown in Fig. 2.2, the results
on the 100 Mbps network in Fig. 2.3. The following table summarizes aver-
age rates achieved for measured protocols and their standard deviations.

on 1 Gbps network [Mbps] on 100 Mbps network [Mbits]
Datagram UDP TCP ARTP UDP TCP ARTP

2048 B 898.46 ± 2.49 882.94 ± 30.15 215.24 ± 9.45 91.75 ± 0.00 90.00 ± 0.00 84.01 ± 1.47
5000 B – 881.63 ± 27.67 359.82 ± 7.18 – 89.53 ± 0.00 87.50 ± 1.43
10000 B – 881.27 ± 32.42 387.98 ± 9.72 – 89.17 ± 0.00 87.80 ± 1.48

Table 2.1: Summary of resutls for throughout measurement of ARTP and
TCP transport protocols.

One can see the prototype implementation is competitive on the 100Mbit
network but it falls behind on the gigabit network significantly. This may
be caused by several factors, but the major is that the prototype implemen-
tation is primarily focused on legibility and not optimized for performance.
On the other hand production implementation of TCP in Linux is known to
be highly tuned even at the cost of “hacking” the code in obscure manner
(see [13]).

The results on the gigabit network also show that the achievable through-
put of the ARTP protocol depends on datagram size – the throughput in-
creases with increasing datagram size. This behavior is similar to e. g. well
known influence of MTU or MSS on transmission efficiency on Ethernet
and TCP layers respectively.

2.3.2 Reliability Test

This test was designed to verify whether prototype implementation trans-
fers data reliably and without any failures, duplicities or other defects. The
test had two parts: the first one verified the reliability of data transport and
the second one verified the correctness of fragmentation and reassembly
process.

19

2. IMPLEMENTATION AND TESTS

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000

sec

M
b

it
/s

UDP
TCP
ARTP (2048 B)
ARTP (5000 B)
ARTP (10000 B)

Figure 2.2: Throughput achieved using ARTP and TCP protocols on 1 Gbps
network.

1. Reliability of data transport
A pseudo-random file was created for the purpose of this test. Its size
was 10.15 GB and it was transferred in 10000 B datagrams to the re-
ceiver. The whole file was correctly transferred by the ARTP protocol.
However, the validation may not be done by simply comparing the
source and the resulting files as the ARTP protocol does not ensure
right order of datagrams delivered.

We should mention that the time taken by this test differed a lot de-
pending on writing received datagrams into a file or just summing
their size only. When making sum of received datagrams size only the
test took 3 minutes and 56 seconds (the average speed 352.33 Mbps).
But when the received datagrams was written into the file, the elapsed
time increased due to waiting for disc I/O to 20 minutes and 7 sec-
onds (the average speed was 69 Mbps).

2. Fragmentation correctness
The fragmentation correctness was verified on file transfer – an pseudo-
random file was created and its size was 102.57 MB. This file was read

20

2. IMPLEMENTATION AND TESTS

0 20 40 60 80 100 120 140
60

65

70

75

80

85

90

95

100

sec

M
b

it
/s

TCP
UDP
ARTP (2048 B)
ARTP (5000 B)
ARTP (10000 B)

Figure 2.3: Throughput achieved using ARTP and TCP protocols on
100 Mbps network.

into one string and passed as a one datagram to the ARTP protocol1.
The ARTP had to separate this datagram into fragments and transfer
them to the receiver. The receiver had to reassemble all received frag-
ments into original datagram and pass it to the receiver application.

This file was transferred by the ARTP correctly. The fragmentation
correctness was verified using MD5 hash algorithm – its result was
the same on both sides. Thus we can conclude that the ARTP frag-
ments datagrams correctly.

2.3.3 The Stability Test

This test had to verify whether the prototype implementation works cor-
rectly in long-term process (especially the correctness of memory manage-
ment).

The ARTP transferred 9.71 TB of pseudo-random data and this test took
exactly 75 hours (the average speed was 301.68 Mbit/s). There were no

1. Unlimited buffers had to be used due to big file transferred.

21

2. IMPLEMENTATION AND TESTS

problems found regarding memory – each allocated block was released cor-
rectly. That is why we may say that this test was also successful.

22

Chapter 3

Conclusions

The main goal of this work was to design and implement new transport
protocol that can be used as a communication layer of active router devel-
oped at Masaryk University in Brno. Proposed protocol had to implement
reliable communication between the active routers without necessarily pre-
serving right order of received data. This main goal has been successfully
accomplished as the proposed protocol implements all features described
in this report.

The prototype implementation of proposed ARTP protocol has been de-
veloped in order to verify real-world behavior of the protocol. It covers all
functionality of the ARTP protocol and its behavior was tested and mea-
sured on 100 Mbps and 1 Gbps networks. This implementation was compa-
rable to existing implementations of TCP and UDP transport protocol on
100 Mbps network whereas on 1 Gpbs network, it achieved roughly 1/3 of
performance of TCP and UDP protocols. The reasons for this behavior are
discussed in this report and the next work on the ARTP protocol and es-
pecialy its implementation should thus focus on efficiency in high-speed
networks. Possible ways are these ones:

• making memory management and structures used in created imple-
mentation more efficient – especially send and receive buffers; this
step could be reached easily due to modular architecture of created
prototype implementation,

• proposing better algorithms for congestion window management and
evaluating its behavior,

• putting the ARTP into kernel space of Linux/Unix operating systems.

There are also other directions that could be explored in further devel-
opment of the protocol:

• due to putting the ARTP into operating system kernel, the implemen-
tation should support more applications simultaneously,

23

3. CONCLUSIONS

• tracking development of the active router to keep up with new re-
quired features and properties as they arise from the active router.

Proposed protocol can be practically used as a communication layer of
active router being developed. Although it is not capable of saturating a
high-speed networks, it is still sufficient for lots of applications. The first
stage of router development requires full functionality of all its layers and
the communication layer provided by the ARTP protocol complies with this
requirement.

24

Bibliography

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.
RFC 2581, April 1999.

[2] T. Bova and T. Krivoruchka. Reliable UDP protocol. Internet-Draft,
February 1999.

[3] Stefan Covaci (Ed.). Active Networks. Springer, GmbH & Co.KG,
Tiergartenstrasse 17, Heidelberg, 1999.

[4] Atanu Ghosh, Michael Fry, and Glen MacLarty. An Infrastructure for
Application Level Active Networking. 2000.

[5] Eva Hladká and Zdeněk Salvet. An Active Network Architecture: Dis-
tributed Computer or Transport Medium. In First International Con-
ference on Networking, volume 2094 of Lecture Notes in Computer
Science, pages 612–619. Springer, July 2001.

[6] Information Sciences Institute, University of Southern California. In-
ternet Protocol. RFC 791, September 1981.

[7] Information Sciences Institute, University of Southern California.
Transmission Control Protocol. RFC 793, September 1981.

[8] Van Jacobson and Michael J. Karels. Congestion Avoidance and Con-
trol. In ACM SIGCOMM ’88, pages 314–329, Stanford, CA, August
1988.

[9] D. Murphy. Building an Active Node on the Internet. Technical Report
MIT/LCS/TR-723, 1997.

[10] J. Postel. User Datagram Protocol. RFC 768, August 1980.

[11] K. Psounis. Active Networks, Applications, Safety, Security, and Ap-
plications. IEEE Communication Surveys Magazine, 1999.

25

BIBLIOGRAPHY

[12] W. Richard Stevens, Bill Ferner, and Andrew M. Rudoff. Unix Network
Programming – The Sockets Networking API. AW, 75 Arlington Street,
Suite 300, Boston, 2004.

[13] S. Ubik and P.Cimbal. Debugging End-to-End Performance in Com-
modity Operating Systems. PFLDnet2003, CERN, Geneva, 2003.

[14] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols. In IEEE
Conference on Open Architectures and Network Programming, pages
117–129, April 1998.

26

