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Abstract: One type of visualization of data from digital learning environments focuses on students’ interaction with the
educational content. Students may, for example, answer questions, read texts, or solve problems. We can represent
these interactions as a matrix, where rows correspond to students, columns to educational items, and values to
some aspect of student activity (e.g., the correctness of answers, response times, the order of actions). Visualizing
this matrix is useful for several purposes. For teachers, it can provide an understanding of the skill and behavior of
their  students.  For  system developers,  it  can provide insight  into the behavior  of  both students  and adaptive
algorithms, and it can also help detect suspicious activity. For researchers, it can provide an understanding of the
properties of datasets used in experiments and valuable warnings about biases that are present in data. However,
suitable visualization of the student-item interactions is nontrivial. To facilitate the design of the visualization, we
provide  a  systematic  discussion  of  approaches  to  student-item  matrix  visualization.  Using  data  from  an
introductory programming exercise, we also provide specific illustrations of different visualization designs.
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1. INTRODUCTION

In digital  learning environments,  students do not  just  passively consume learning content  but  also
actively interact with various educational items. In this work, we focus on visualizing these interactions.
We consider  item as a general term encapsulating, among others, multiple-choice questions, fill-in-the-
blank and drag-and-drop exercises, interactive simulations, or programming assignments. We consider
particularly items for which the student interaction can be automatically evaluated as correct or incorrect.

Data on student-item interaction are valuable for many stakeholders. For students and teachers, the
data can provide insight into the state of the learning process. For developers of learning environments,
the data can give impulses  for the  improvement of  their  environments.  For  researchers,  the  data  can
provide inspiration for the design and evaluation of personalization algorithms.

Student-item interaction can be analyzed and visualized in many ways. To put the techniques discussed
in this work into a context, it is useful to consider whether the visualization is concerned with single or
multiple students and items. Figure 1 provides illustrations for different combinations. The figure uses
simplified versions of visualizations and hypothetical data about student interaction with programming
items.
 Single student, single item. The most detailed visualization, focusing on individual actions of a single

student while solving an item. The provided example visualizes student’s edits and submits while
solving a programming assignment.

 Single student, multiple items. This visualization shows the behavior of a single student across multiple
items, e.g., as a bar chart showing the activity of a given student through time. Other examples of this
type  of  visualization  are  MasteryGrid  without  social  features  by  Brusilovsky  et  al.  (2016),  the
summative visualization of student activity using Chernoff faces (France, Heraud, Marty, Carron, &



Heili, 2006), and line chart displaying progress and responses to test items in chronological order
(Costagliola, Fuccella, Giordano, & Polese, 2008).

 Multiple students, single item. For a single item, we can visualize the activity of multiple students to
show different approaches to solving the item. This can be done, for example, using an interaction
network with nodes representing possible partial solutions and edges representing frequent transitions
between them (Johnson, Eagle, & Barnes, 2013).

 Multiple students, multiple items. Finally, we can consider both multiple students and multiple items,
which naturally leads to a matrix-based visualization. This approach is the focus of this chapter.

Figure 1. Examples of visualizations of student-item interactions depending on the number of students and items.

We focus on student-item interaction visualization taking into account multiple students and multiple
items, particularly in the form of a student-item matrix with rows and columns corresponding to students
and items. This type of visualization can be found in the literature under various other names: student-
problem matrix (Khajah, Wing, Lindsey, & Mozer, 2014), student-problem chart (Wang & Chen, 2013),
lesson overview (Molenaar & Knoop-van Campen, 2017), and even just heat map (Confrey, Gianopulos,
McGowan, Shah, & Belcher, 2017). None of these publications provides a systematic discussion of the
student-item matrix. Each of them uses one particular variant of the student-item matrix (e.g., students and
items ordered by their skill and difficulty, cells displaying binary correctness) for a specific purpose (e.g.,
providing feedback to teachers about struggling students).

Analogous matrix visualization has been used to display the interaction of students with other entities
as well. For instance, the columns can correspond to knowledge components (Brusilovsky et al., 2016;
Mazza & Dimitrova,  2007),  courses (A. J.  Bowers,  2010),  errors (Fu,  Shimada,  Ogata,  Taniguchi,  &
Suehiro, 2017), or types of learning activities (Lee, Recker, Bowers, & Yuan, 2016).

Another variation on the standard student-item matrix is to use time as the horizontal axis, resulting in
a sparse dotted chart instead of the dense heat map (Aalst, Guo, & Gorissen, 2013; Sedrakyan, Snoeck, &



De Weerdt, 2014; Trcka, Pechenizkiy, & Aalst, 2010). Such visualization can be considered as a (non-
standard)  student-item matrix only if  the cells  still  correspond to individual  student-item interactions.
Aggregating the interactions, e.g., as the number of interactions per day, can be useful, but we do not call
such visualization a student-item matrix since we cannot make inferences about the individual items.

Other research areas use closely related techniques. In recommender systems, a key data structure is a
user-item matrix with ratings (e.g., movie ratings); Monti, Rizzo, & Morisio (2019) uses 3D visualization
of  this  matrix.  In  process  mining,  similar  methods  are  used  to  visualize  a  resource-activity  matrix
(Janssenswillen, Depaire, Swennen, Jans, & Vanhoof, 2019).

This chapter presents a systematic treatment of the visualization of student-item matrices. The student-
item matrix has many applications (Section 2) and each application leads to specific requirements that
should be taken into account when designing the visualization. Although several studies already used this
visualization, they do not focus on the student-item matrix per se and do not provide any guidance to its
design. We provide a systematic discussion of different aspects of the visualization and also describe
variations  and extensions (Section 3).  The chapter  includes  a case  study with data  from introductory
programming, which illustrates different variants of the student-item matrix and discusses the insights
they provide (Section 4).

2. APPLICATIONS

The general aim of visualizing the student-item matrix is to get an understanding of data and insights
into underlying behaviors and consequently to make informed decisions that will lead to the improvement
in student learning. More specifically, the goal is to understand the behavior of students, algorithms, and
their  interactions.  This  is  nontrivial  since  student’s  behavior  is  complex  and  noisy,  personalization
algorithms are adaptive, and interactions can have surprising effects.

The  visualization  can  serve  several  different  specific  needs,  depending  on  the  target  audience
(students, teachers, developers, researchers). We outline several of these applications. To illustrate them,
we use the matrix shown in Figure 2. This example visualizes student answers to a reading comprehension
exercise, where a student reads a text and then answers several multiple-choice questions. The matrix is
hypothetical, i.e., it is not based on real student data but artificially constructed in order to show in a
compact  space many potential  applications.  Nevertheless,  all  the  discussed patterns  are  based on our
experiences with real data. Real data are, of course, noisier and we do not see so many aspects of student
behavior in such a small sample.



Figure 2. Hypothetical student-item matrix for reading comprehension exercise. The color is based on the
correctness of student answers.

2.1 Feedback to students and teachers

Teachers can use the visualization during a class to decide what to do, e.g., to give feedback to a
particular student or to discuss something with the whole class (Confrey et al., 2017; Molenaar & Knoop-
van Campen, 2017). In our illustrative example in Figure 2, a teacher may quickly conclude that student
s1 works mostly well, student s11 needs help, and student s12 is completely disengaged. Molenaar et al.
(2017)  describe  how teachers  use  the  student-item matrix  and other  visualizations  during class;  they
confirm that these visualizations influence their actions.

The visualization can be incorporated into an open learner model in order to help students to develop
metacognitive skills while simultaneously serving as navigation through the system (Brusilovsky et al.,
2016).

2.2 Understanding behavior, decision support

Student-item  matrix  visualization  can  provide  system  developers  and  content  authors  with  an
understanding of student behavior. How are students interacting with the content? Is the interaction as
expected? Can we detect different types of students? Do we need to modify or extend the available content
(e.g., add more items or add easier items)? Consider the illustration in Figure 2. Here we can see that item
4 is probably too easy, whereas item 7 is very difficult and many students stop the practice at this item.
This is clearly a critical point that requires attention and suitable modification.

Previous work used related techniques and visualizations with similar aims, e.g., detection of student
clusters based on sequences of their actions (Desmarais & Lemieux, 2013), visualization of data about
student behavior in MOOC courses (Coffrin, Corrin, Barba, & Kennedy, 2014), or visualization of data
about player behavior in games (Wallner & Kriglstein, 2013).

2.3 Detecting counterproductive behavior

Students do not always use learning environments in the productive fashion intended by designers.
There are many types of counterproductive behavior, e.g., cheating, systematic guessing, or gaming-the-



system (hint  abuse)  (Baker  et  al.,  2008;  Northcutt,  Ho,  & Chuang,  2016).  There  are  many types  of
counterproductive  behavior  and  students  are  often  surprisingly  creative—we  have,  for  example,
encountered  cases  of  intensive  exploration  of  HTML  source  code  or  JavaScript  console  outputs.
Visualizations can often provide indications of suspicious activity (Costagliola et al., 2008). Once we spot
unexpected  patterns  in  the  visualization,  we  can  build  detectors  to  quantify  them  and  find  them
systematically.

In the  illustration  in  Figure 2,  students  s3  and s6 are  probably  cheating.  At  the  beginning of  the
sequence, they struggle to answer items correctly. At the end of the sequence, they have a long sequence
of excellent and very fast answers. We can also see that student s12 is just guessing, which is another form
of counterproductive behavior.

2.4 Understanding biases in data

The data from learning environments are typically skewed and may contain various biases (Nixon,
Fancsali, & Ritter, 2013; Čechák & Pelánek, 2019), e.g., mastery attrition bias (students who know a topic
are leaving earlier than weak students) or ordering bias (items presented at the beginning of a sequence are
solved by many more students and under different circumstances than items presented later). These biases
can significantly influence the evaluation of student models and learning environments (Pelánek, 2018).
Visualizations can help us understand the biases and skews present in a particular dataset and to make
informed decisions concerning the proper evaluation methodology, e.g., splitting the dataset into a training
and testing set or the approach to the computation of metrics.

The illustration in Figure 2 shows a typical skew in the distribution of answers due to item order. Items
9–13 are solved by only a small subset of students and these students are not a representative sample (only
good or cheating students).

2.5 Inspiration and intuition for student models

Learning environments often provide adaptive behavior that is guided by student modeling (Pelánek,
2017). Based on student activity, a student model provides an estimate of a student state. Student models
can take many forms and use many types of input data; the choice of a suitable model depends on a
specific situation. Visualizations of interaction can often provide guidance and inspiration for the design
of student models. For example, in data from one system, we noticed quite frequent consecutive sequences
of incorrect answers. Based on this observation, we built a simple predictor of next answer correctness,
which was competitive  with more sophisticated student  models  (Řihák & Pelánek,  2016).  A specific
application is the choice of performance data to use. There are many aspects of student performance that
can be used in student modeling (e.g., the correctness of answers, response times, the quality of solutions,
absolute timestamp, class membership). Student-item matrix can capture multiple aspects of performance,
providing insight into how these performance aspects are related, which of them are noisy and which carry
a consistent signal about the student. It is useful to have intuition before one plunges into modeling. For
example, for the data depicted in Figure 2, it seems that response times may be indicative of affective state
(disengagement) and cheating but probably would not be very useful for modeling cognitive state (at least
without nontrivial filtering).

The  student-item matrix visualization is  also used  for  the  illustration of  methodological  issues  in
student  model  evaluation  (train-test  data  split)  (Khajah  et  al.,  2014;  Pelánek,  2018;  Reddy,  Labutov,
Banerjee, & Joachims, 2016). After performing the modeling and evaluation, visualizations can be useful
for checking the validity of results and providing interpretation.



3. DESIGN OF THE MATRIX VISUALIZATION

The  student-item  matrix  is  similar  to  heatmaps  and  scatterplots  but  requires  additional  decisions
concerning filtering, grouping, and ordering of the students and items.  A large number of parameters
makes the student-item matrix a rich and versatile visualization but can be intimidating the first time you
use it. To help design a suitable student-item matrix, this section provides a systematic overview of the
parameters and available options.

3.1 Standard student-item matrix

In the standard student-item interaction matrix, rows correspond to individual students,  columns to
individual items, and cells to interactions between them. Each of these three graphical components —
rows, columns, and cells — has a number of parameters, which are shown in Figure  3. In the following,
we discuss typical options for these parameters.

Figure 3. Parameters of rows, columns, and cells in student-item interaction matrix, together with an example
set of options (printed in italics).

3.1.1 Rows — students

There might be several orders of magnitude more students than we can fit into the visualization, so we
must choose just a subset of them. In addition to the selection of students, the second key parameter is the
ordering, which can often greatly enhance the intelligibility of the visualization.

 unit: individual student, group of students (class, cluster)
Typically, we want to see individual students, but lower granularity is certainly possible. Each row
would then represent a set of students, e.g., a cluster of students with similar behavior.

 select: filter by condition, random sample, top N
First, we can filter students satisfying a specific condition, e.g., students from a specific class or
students who attempted at least 10 items. Then — if there are still too many students — we take a
random sample, possibly stratified (e.g., an equal number of male and female students) or blocked
(e.g., students with activity within one randomly chosen week). Alternatively, we can select top N
students with respect to a criterion such as the number of answers.

 group: grade, class, school, or another categorical attribute



If we want to compare multiple groups of students, we can put the rows of the students from the
same group together and insert a small gap (or simply an empty column) between the groups.

 order: activity, skill, or another numerical attribute
A reasonable default choice is a summary of a student’s activity, such as the number of interactions,
success  rate,  or  a  skill  estimated  by  a  student  model.  Sometimes,  other  orderings  are  more
appropriate. For instance, ordering by the time of students’ first (or last) activity may reveal group
cheating or the impact of new items. A more sophisticated way to put similar students close to each
other  is  to  define  the  similarity  between  two  students  and  use  1D dimensionality  reduction  or
dendrogram resulting from hierarchical clustering (Lee et al., 2016).

 label: ID, name, or another categorical attribute
Identifying individual students is important when the matrix is used as an overview for a teacher, but
for most of the other applications, labels are not needed.

3.1.2 Columns — items

There are typically much fewer items than students, so it might be feasible to show all of them. If not,
we can either aggregate them to larger units or select just a subset of items. As for the students,  the
ordering of items is an important decision.

 unit: individual items, steps, item sets, knowledge components, courses
The default choice are individual items, but both lower and higher granularity is possible; e.g., units
of higher granularity are steps within an item, units of lower granularity are item sets.

 select: all, filter by condition, random sample
If there are too many items, we can select a group of closely related items such as an item set or a
knowledge component. Alternatively, we can use a random sampling strategy, analogically as for
students.

 group: item set, type of item, or another categorical attribute
There are often natural groups of items, such as item sets or item types (e.g., multiple-choice vs.
free-response questions). It might be helpful to visually separate these groups.

 order: presentation order, difficulty, or another numerical attribute
If  the  items have some predetermined ordering within the  system,  it  is  natural  to use the  same
ordering also in the student-item matrix. For some use cases, alternative orderings might make sense,
e.g., by difficulty (e.g., success rate) or by the time when the item was created. Using per-student
ordering of items is possible (e.g.,  in the order they solved the items), but then columns do not
correspond to unique items; this is discussed separately in section 3.2.

 label: ID, or another categorical attribute
There is  not  much space in  the  header  for  each item.  If  we want  to  show the names (or  even
complete item statement), we need to either rotate the labels, transpose the matrix (i.e., dedicate rows
to items), or use interactive features such as mouse hover.

3.1.3 Cells — interactions

Given a student-item pair, we can display various data about their interaction:
 student’s performance (e.g., correctness, solution quality, response time, the number of attempts or

requested hints),



 time of the interaction (e.g., date, the time within a day, the time from the first student’s interaction,
the order of the student’s interaction),

 prediction of a student model (e.g., the predicted probability that the student solves the item, that he is
frustrated, or that he is cheating).

These data attributes can be mapped to any subset of the cells’ graphical attributes shown in Figure 3:
color, shape, size, and text. The graphical and data attributes are nearly orthogonal and can be combined in
many  ways.  One  constraint  is  that  some  graphical  attributes  are  only  suitable  for  categorical  data
attributes. It  is, however, possible to discretize a numerical attribute into a few categories, e.g.,  using
“short/long solution” instead of the continuous length of the solution.

 color: performance, time, any categorical or numerical attribute
Changing the color is the least disruptive way to vary the appearance of the cells without making the
matrix more difficult  to  navigate.  Color  can represent  both categorical  data  (using a  qualitative
colormap) and numerical data (using a sequential colormap). It is even possible to show multiple
performance aspects, either by mapping separately hue and lightness to two different aspects (e.g.,
correctness and response time), or by combining multiple aspects into a single category, e.g., “weak
performance”  when  either  the  response  time  is  high  or  the  quality  of  the  solution  is  low.
Recommendations on how to perform such answer classification in various domains exist (Pelánek
& Effenberger, 2020).

 shape: suspicious behavior, correctness, or another categorical attribute
If  the  matrix  is  dense,  using  multiple  shapes  would  produce  unintelligible  visualization.  This
graphical  attribute  can be  useful  if  there  are  a  few interactions  that  we  want  to  highlight,  e.g.,
detected cheating.  Another  example might  be using crosses  for  serious unfinished attempts in a
problem-solving exercise where nearly all of the items are eventually solved.

 size: response time, or another numerical attribute
We can either change just the width or height of the shape or both dimensions simultaneously. For
example, we can scale crosses representing unfinished attempts proportionally to the response time
in order to make the non-serious attempts less prominent.

 text: item ID, or another categorical or numerical attribute
If there are not many interactions and the cells are large enough, we might be able to fit a short text
(letter, 2-digit number) in each cell. However, in a more typical scenario, there are many interactions
and the cells are thus too small. A possible remedy is to use interactive features — showing the text
on mouse hover, click, or after sufficient zoom-in.

 multiple: composing graphical attributes, nesting shapes, stacking cells
Often, we want to directly compare two data attributes, e.g., two aspects of performance, predicted
vs. actual performance, or the performance vs. the difficulty of the item. The most obvious way to
show multiple data attributes for each interaction is to vary multiple graphical attributes of the cells.
For  instance,  a  shape  can  denote  correctness  and  color  response  time.  There  are  two  other
approaches, which might better preserve the grid regularity: nesting and stacking. Figure  2 illustrates
nesting multiple shapes in a single cell. The nested shape might not be just a binary indicator; it can
possess any of the discussed graphical attributes.

3.2 Non-standard student-item matrix

In  the  standard  version  of  the  student-item interaction  matrix,  each  row corresponds  to  a  unique
student, each column to a unique item, and each cell to the interaction between them. If we drop the
requirement  on  the  rows  and  columns  but  insist  that  each  cell  still  corresponds  to  a  student-item



interaction,  we obtain a much broader set  of  visualizations,  which we call  non-standard student-item
interaction matrices.

A prominent class of non-standard student-item interaction matrices uses the  x-axis to display time
instead of to identify the items. Such visualization is called dotted chart in the process mining community
(Janssenswillen et al., 2019; Song & Aalst, 2007). It is useful when the temporal aspect is important, e.g.,
for debugging a student model or investigating possible cheating before the homework deadline.

There  are  many notions  of  time  to  consider,  and  the  appropriate  choice  depends  on  the  specific
application. There is a fundamental trade-off between the fidelity of the time-axis and the compactness of
the visualization, which is illustrated in Figure 4. Three basic choices are absolute, relative, and logical
time.

Figure 4. Comparison of standard and non-standard student-item interaction matrices. The non-standard versions
use three different notions of time for the x-axis.

 absolute time: The columns represent discretized absolute time. To avoid overlapping interactions, we
may use just absolute dates, using the specific time only to order the interactions within the day. To
avoid too wide visualization, we can decrease the width of each cell; this strategy is used in Figure 9.

 relative time: Absolute time becomes impractical if the times for the set of selected students differ
widely. In such a case, we might use time relative to a given student, e.g., nth day since the student’s
first interaction.

 logical time: The most compact — and least faithful — visualization is obtained by keeping only the
information about the ordering of the interactions, i.e., nth column corresponds to nth interaction for a
given student. The resulting time-ordered student-item interaction matrix is dense, with no empty cells
between interactions; see Figures 7 and 8.

Other variants of non-standard student-item interaction matrices are possible but much less frequently
useful. For instance, if new content was added to our learning system and we want to explore how this
change impacted performance on the existing items,  we could use rows to identify items (instead of
students) and the x-axis to display time before and after the content update.

3.3 Extensions

Figure 5  shows  examples  of  additional  graphical  elements  that  can  be  added  to  the  student-item
interaction matrix.



Figure 5. Four examples of student-item interaction matrix extensions.

3.3.1 Facets

Comparing multiple student-item matrices might bring a deeper insight than looking at just one matrix.
We  can  compare  sets  of  students  (e.g.,  control  vs.  treatment  group),  sets  of  items  (e.g.,  code
comprehension  vs.  code  writing),  or  time  periods  (e.g.,  June  vs.  November).  In  some  cases,  the
comparison can be performed within a single matrix, using either groups or stacked cells (e.g., to compare
predictions of multiple student models). If a single matrix is not sufficient, we can always arrange multiple
matrices into a facet grid.

3.3.2 Margins

Any relevant student/item attributes can be added to the margins of the matrix. These attributes can be
summaries of the displayed values in the rows and columns, facilitating the exploration of multiple levels
of abstraction. Various summary curves can be seen as a projection of a specific student-item matrix. For
example, a survival curve (Eagle & Barnes, 2014) is a projection that counts the number of interactions in
columns  of  a  time-ordered  matrix,  and  an  item ordering  bias  curve (Čechák & Pelánek,  2019)  is  a
projection that averages columns in a time-ordered matrix with values set to the item presentation order.
Figures 7 and 8 show these two summary curves represented as heatlines, which is a compact alternative
to point plots or bar charts.

3.3.3 Annotations

When the matrix is used to deliver a message (e.g., in a research paper), we may want to highlight or
delineate  some  parts.  Examples  of  such  annotations  include  a  line  showing  a  homework  deadline,
background  highlight  in  columns  of  new items,  and  icons  with  exclamation  marks  put  on  the  cells
corresponding to interactions where a student model made a huge error in the predicted performance.

3.3.4 Interactivity

Interactive  features  can  greatly  simplify  exploration  on  multiple  levels  of  abstractions,  readily
providing details on demand (e.g., hovering over or clicking on a cell). Dropdowns and sliders can allow
to easily select different subsets of data and change all the parameters of the student-item matrix discussed
in previous sections. A valuable feature for debugging student models would be an option to interactively
change the data, such as the observed performance of a student, to see how it would impact the model
behavior.

4. CASE STUDY

In this section,  we show several  examples of student-item matrices using real-world data from an
online learning system for learning programming. For this case study, we selected a single high-school
class (28 students) and five item sets from a Python programming exercise (51 items in total). Each item
asks students to write a short function, e.g., to compute a factorial or to detect a palindrome. In contrast to
multiple-choice questions, these programming items take much longer to solve and most attempts are
eventually successful. Also, the binary success is not the only relevant aspect of performance: the speed of
the  students  and  the  quality  of  the  code  matter  as  well. Effenberger  & Pelánek (2021)  showed that



considering these other aspects of performance is necessary for valid and reliable student models in this
context.

4.1 Standard student-item matrix

Figure 6 shows a standard student-item matrix for this data. Cell colors represent the performance of a
student on an item, considering both the product quality (code length) and fluency (speed of the student).
The thresholds for each performance category are computed per item, using the length of the author’s
solution and data from all students (not just the single selected class). Unsuccessful interactions that took
less than one minute are labeled as not serious. Effenberger & Pelánek (2021) demonstrated that for this
programming exercise,  such  performance  measure  leads  to  valid  and reliable  estimates  of  skills  and
difficulties, while binary correctness does not. Computing the mean performance — which is shown in the
margins — requires specifying a mapping from the discrete performance categories to numbers.

Figure 6. Standard student-item matrix for one class of students and a programming exercise with 51 items.
Students are ordered by the number of attempted items. Items are grouped by item sets and ordered as in the learning

system. The color of each cell represents performance and margins show mean performance for each student and
item.

To the teacher, this visualization confirms that the selected exercise was a rather good fit for the class:
neither were the items trivial for the students nor is any student extremely struggling. There are not huge
differences in skills — the mean performance of all students is similar — but a few students did not even
try to solve most of the items, indicating a lack of motivation.

Some topics are worth further practicing with the whole class: logic expressions, loops, and strings. A
quick glance at the bottom margin suggests specific items that the teacher can analyze with the whole
class (e.g., item 11 from the logic item set). In the last two item sets, the students managed to solve the
items,  just  with  a  too  long  code,  so  the  teacher  can  prepare  an  activity  to  specifically  address  this
shortcoming, e.g., letting the students find a shorter solution to one of these items.

The  same  visualization  would  provide  different  insights  to  the  developers  and  content  authors,
although they should select a larger and random sample of students to get a more representative picture.
Had this been a random sample, we would conclude that some items are too difficult (e.g., item 11). We
then could either make these items easier (e.g., by adding a hint or scaffolding) or make the students who



encounter them more skillful (e.g., by moving the item at the end of the item set or adding similar but
easier items to pretrain students).

Observing the frequency of too long programs, we might want to help the students to write shorter
solutions. First, we should dig deeper and find what causes the excessive length. For example, in the logic
item sets, many students fail to use “return (logic expression)” idiom instead of a four-line if-else block.
With this knowledge, we can think of many possible interventions: adding scaffolded items demonstrating
the use of this idiom, adding code refactoring items, showing a targeted feedback message to students who
fail to use this idiom, and possibly even enforcing usage of this idiom by item structure, e.g., limiting the
length of the program or the available code structures.

Yet different insights would this visualization provide to researchers who would like to use this data
for student  modeling.  There are only a few unsolved attempts,  rendering most  of  the current  student
modeling techniques useless since they focus on predicting the correctness of answers (Pelánek, 2017). A
useful  student  model  would  need  to  consider  also  the  other  aspects  of  performance.  Looking at  the
student-item matrix, we can guess which information is necessary for any student model to perform well.
In our case, there is more variability across items than across students, and the item-average model seems
like a reasonable baseline.

4.2 Time-ordered student-item matrix

Figure 7. Time-ordered student-item matrix for the same class and items. Each cell represents one student-item
interaction and its color denotes the student’s performance. The columns correspond to the within-student order of

the interactions. Margins show the total number of interactions.

For student modeling, the information about the order in which the students solved the items is crucial.
In the time-ordered student-item matrix (Figures 7, 8), we can see which information is already available
to the student model — just the previous cells on the same row — which can help us to understand its
performance. Figure 7 shows the information used by a student model that disregards items and uses just
the series of previous performances. While using only binary success for adaptation would be hopeless,
there are streaks of the same performance category. We could use stacked or nested cells (discussed in



section 3.1) to simultaneously show the difficulty of the attempted item or the prediction of a specific
student model that we debug.

Figure 7 also reveals that  the data are skewed, i.e.,  the number of interactions differ  considerably
between students; the bottom margin corresponds to the survival curve. Figure 8 use the same ordering but
different aspect of the interactions: the presentation order of the item in the learning system. We can
clearly see  strong item ordering bias  (Čechák & Pelánek,  2019),  i.e.,  a  high correlation between the
presentation ordering and the order in which the students solve the items.

Figure 8. Time-ordered student-item matrix illustrating ordering bias. Each cell represents one student-item
interaction; its column corresponds to the within-student order of the interaction, while the color corresponds to the

presentation order of the item. The bottom margin shows the mean presentation order and the right margin shows the
correlation between the presentation order and the within-student order.

4.3 Absolute-time student-item matrix

Instead of using the time just to order the interactions, we can directly place the interactions according
to the specific date they happened. The resulting visualization is much less compact but gives a more
complete picture of the student behavior over time. We can even see possible interactions between the
students.  Figure 9 illustrates such an  absolute-time student-item matrix. Unlike the previous examples,
here we use relative response time to color each interaction so that we can see suspicious streaks of fast
solutions. It seems that there was a deadline on November 15 and many of the students might have been
cheating. To confirm our suspicion, we looked at the submitted solutions of the suspicious students before
the deadline. Indeed, many of these solutions were identical or unlikely similar.



Figure 9. Absolute-time student-item matrix for the same class. Each cell represents one interaction; its
horizontal position corresponds to the date, color to the relative speed of the student.

5. SUMMARY

In this chapter, we provided a detailed discussion of the visualization of the student-item interaction
matrix, which is one of the approaches to visualizing interaction between students and educational items,
focusing on a global overview of student activity (“multiple students, multiple items” view).

In  practical  applications  of  this  visualization,  it  is  important  to  start  with  the  clarification  of  the
purpose.  The  student-item  interaction  matrix  can  be  visualized  in  many  ways;  the  purpose  of  the
visualization  should  guide  the  design  choices.  To  facilitate  these  choices,  we  provided  a  systematic
discussion of visualization aspects and design options.

The  visualization  is  also  useful  for  researchers.  Before  applying  statistical  or  machine  learning
techniques,  we  recommend inspecting  data  using  the  visualization  of  student-item  interactions.  This
visualization provides insight into the biases and peculiarities of the dataset.  It  can also be useful for
understanding and explaining results.

There is also a potential for future research on the visualization itself.  In Section  3.3, we outlined
several  extensions  of  the  basic  visualization  approach;  most  of  these  deserve  further  attention  and
elaboration. Another important direction is the evaluation of visualization. The usefulness of a particular
visualization  depends  on  a  particular  use  case  and a  dataset,  so  we  cannot  expect  simple,  universal
evaluation  results.  However,  the  description  of  evaluation  methods  and  specific  case  studies  would
certainly be useful.
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