
User Modeling and User-Adapted Interaction manuscript No.
(will be inserted by the editor)

Bayesian Knowledge Tracing, Logistic Models, and
Beyond: An Overview of Learner Modeling Techniques

Radek Pelánek
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Abstract Learner modeling is a basis of personalized, adaptive learning. The
research literature provides a wide range of modeling approaches, but it does
not provide guidance for choosing a model suitable for a particular situation.
We provide a systematic and up-to-date overview of current approaches to
tracing learners’ knowledge and skill across interaction with multiple items,
focusing in particular on the widely used Bayesian knowledge tracing and lo-
gistic models. We discuss factors that influence the choice of a model and
highlight the importance of the learner modeling context: models are used for
different purposes and deal with different types of learning processes. We also
consider methodological issues in the evaluation of learner models and their
relation to the modeling context. Overall, the overview provides basic guide-
lines for both researchers and practitioners and identifies areas that require
further clarification in future research.

Keywords Learner modeling · Skill modeling · Overview · Evaluation ·
Methodology · Knowledge-learning-instruction framework

1 Introduction

Learner modeling is a key element in adaptive educational systems. Based on
the available observational data about a learner’s interaction with an educa-
tional system, a learner model provides an estimate of the current state of a
learner. This estimated state is used to guide the personalized behavior of an
adaptive system.

Learner modeling has received significant attention from the scientific com-
munity and today encompasses a wide range of constructs including cognitive
skills, affect, motivation, and meta-cognition. In this article we focus on model-
ing knowledge and cognitive skills – the most typical type of learner modeling
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Fig. 1 The context of learner modeling.

as well as being the fundamental model type for adaptive learning. Modeling
of knowledge and skills is concerned with what the learner knows and is able
to do. Such models estimate the current state of a learner’s knowledge and
provide a prediction of future performance. Knowledge modeling is inextrica-
bly linked to modeling the content of a particular domain, e.g., the definition
of knowledge components, the mapping of specific items to these knowledge
components, and the modeling of item difficulty.

Fig. 1 illustrates a typical context of modeling learners’ knowledge: a
learner interacts with an item; data about her performance are processed
by the model; the model outputs (e.g., knowledge estimates, predictions of
future performance) are used to influence her future interactions with the sys-
tem (within one of the “loops”). As the figure illustrates, learner models can
be used for several different purposes. The “inner loop” is concerned with a
learner’s short-term behavior in the process of interacting with a single item.
Other loops are concerned with tracing a learner’s knowledge across multiple
items. In this work we focus mainly on models with this long-term perspective,
which include the extensively studied families of Bayesian knowledge tracing
models and logistic models.

Even this specific area of learner modeling encompasses a wide range
of techniques and issues. Recent intensive research has made considerable
progress that has sparked a lot of innovative ideas in learner modeling. Thanks
to this progress, there are now many aspects that we may elaborate in a learner
model:

– modeling the processes of learning and forgetting (e.g., Bayesian knowledge
tracing, logistic models, neural networks),

– the use of different types of observational data (e.g., correctness of answers,
response times, the use of hints, wrong answers),

– domain modeling (e.g., a definition of knowledge components and their
relations, a mapping of items to knowledge components),

– learner clustering, the level of individualization.
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Learner modeling involves many decisions – we need to decide which as-
pects to include in our model and how exactly to model them. The current
research, unfortunately, provides only little guidance for making these choices.
This is a problem for both researchers and developers. For researchers, it is
difficult to evaluate the merit of newly proposed techniques. Since there are
many potential candidates, it is difficult for a researcher to choose the most
suitable representatives for comparison. For developers of real-world applica-
tions, there is little practical guidance for choosing and tuning a learner model
for a particular application. This ultimately hinders the spread of intelligent
techniques.

There cannot be any simple, universal advice for making the choices, be-
cause learner modeling has a wide range of applications. A different modeling
approach is necessary for a model used for adaptively ordering foreign language
vocabulary and for a model used for the discovery of a suitable structure of
high-school algebra. The proper choice of a learner model depends on the
specific context of learner modeling:

– the type of knowledge being modeled (e.g., simple facts, categorization
rules, or complex skills),

– the input data available for modeling (what kinds of activities are avail-
able in a given educational system and what data about learners can be
collected),

– the purpose of the model, i.e., how will the model results be used (e.g., as
a part of an automated instructional policy, visualized as an open learner
model, or rather serve as a basis for manual intervention based on action-
able insight).

To make sense of the wide learner modeling landscape, it is necessary to take
such contextual information into account.

An important part of learner modeling is model fitting, selection, and eval-
uation. There are also many possibilities within each of these steps. Typically,
we can choose among several parameter fitting procedures, metrics for measur-
ing model quality, cross-validation approaches, and other methodical steps. As
is the case with the choice of the model itself, there are no simple answers or
universal evaluation approaches. The choice of evaluation methodology again
depends on the context of modeling.

This overview provides an up-to-date and systematic overview of ma-
jor trends in modeling learners’ knowledge and skill. Although overviews of
learner modeling are available in previous works (Desmarais and Baker, 2012;
Chrysafiadi and Virvou, 2013; Pavlik et al., 2013), this overview contributes
in several directions:

– Previous overviews consider learner modeling in general while this overview
considers only the modeling of knowledge and skills. With this constraint,
we can provide a more detailed and nuanced discussion of relevant tech-
niques.

– We provide a discussion of recent work. Modeling of knowledge and skills
has received significant attention in recent research – more than 60 papers
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included in this overview have been published since 2014 and are thus not
covered in previous overviews.

– We discuss the purposes of models, e.g., an automatic guidance of system
behavior, open learner modeling, and actionable insight. We describe how
the purpose of a model impacts choices made in learner modeling. Dedi-
cated discussions of such contexts are as rare in individual research studies
as they are in previous overviews.

– We study connections between learner modeling and types of learning pro-
cesses relevant to a particular application (e.g., memory, induction, under-
standing). These connections can help us understand the relative merits of
different modeling techniques.

– We pay significant attention to methodological issues concerning model
fitting and evaluation. We discuss the impact of the purpose of the model
on decisions made in the processes of parameter fitting, comparison, and
the interpretation of models. These aspects are not covered in previous
surveys (or only briefly).

To study the connection between learner modeling and relevant learning
processes, we utilize the Knowledge-Learning-Instruction (KLI) framework
(Koedinger et al., 2012). This framework was chosen because it addresses
learning on a suitable level of granularity. The central focus of both the KLI
framework and learner modeling are “knowledge components” (units of cogni-
tive function). Frameworks that address learning on finer grained levels (e.g.,
theories of learning on a neural level) or coarser grained level (e.g., situated
learning) cannot be easily connected to learner modeling techniques, at least
not in the current state of research.

This overview is targeted at both developers and researchers. For develop-
ers, it should provide guidance in choosing and tuning a suitable learner model
for a particular application. For researchers, it should provide help with plac-
ing their work in the landscape of existing research. Since the current state
of learner modeling research does not fully address all questions about the
suitability of modeling approaches in different contexts, we also propose some
explicit hypotheses for verification in future research.

2 Terminology

This overview covers a wide scope of research, which often uses different termi-
nology for the same or very similar notions. Therefore, we start by clarifying
the terminology as used within the scope of this paper. We also introduce the
relevant parts of the knowledge-learning-instruction framework to which we
relate learner modeling in the following sections.

2.1 Types of Learner Models

The current research uses both “learner modeling” and “student modeling”
with basically the same meaning. As the term “student” tends to imply a
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formal educational setting, we prefer to use the term “learner”, which is more
general and more appropriate in the case of open learning environments in
particular. Nevertheless, this choice is basically only stylistic since it does not
have any impact on the relevance of individual modeling techniques.

A more important terminological issue is a clarification of what falls under
the term “learner modeling”. What aspects of a learner’s state do we model?
The basic and most common type of models focuses on modeling the knowl-
edge and skills of learners. In this work we focus only on models of this type –
this is the primary type of models used in most adaptive educational systems
and even for this class of models we have a wide range of issues to explore.
Many other aspects of learners can be (and have been) modeled, e.g., affect,
motivation, meta-cognition, learner preferences, or behaviors like gaming the
system. Several previous overview papers include a wide discussion of different
types of learner model, see for example Desmarais and Baker (2012); Chrysafi-
adi and Virvou (2013); Nakic et al. (2015); Valdés Aguirre et al. (2016); Pavlik
et al. (2013). Our focus is on a narrower and deeper discussion of skills and
knowledge modeling.

The basic goal of skills and knowledge modeling is to estimate the learners
current knowledge state and to predict future performance based on data
about past performance. The specific type of model application determines
what data are available and what should be the basic form of a model. There
are two basic types of adaptive behavior in educational systems, most often
called inner loop and outer loop (Vanlehn, 2006), while other authors use
“problem solving and solution analysis tutors” and “curriculum sequencing”
(Desmarais and Baker, 2012) or microadaptivity and macroadaptivity (Essa,
2016). In the inner loop the focus is on the learner’s activity while solving
a single multi-step problem. In the outer loop the focus is on a sequence of
independent items, using estimates of knowledge from past items to choose
suitable future items. Originally, the focus of the community has been on
models used in the inner loop, e.g., cognitive tutors (Anderson et al., 1995)
and constraint based models (Mitrovic et al., 2001). These types of models,
however, tend to be rather specific for a particular domain and difficult to
develop (Aleven et al., 2006). Essa (2016) argues that microadaptivity (inner
loop) should be regarded as the primary realm of an instructor while adaptive
systems should focus on macroadaptivity (outer loop). A lot of recent focus
has been on models primarily targeting the outer loop – these include the
extensively studied families of Bayesian knowledge tracing models and logistic
models. This is the main type of models that we discuss in this paper.

2.2 Learner and Domain Modeling

The modeling of learner knowledge and skills is inherently interconnected with
the modeling of the educational domain concerned. Previous works have used
the terms “learner modeling”, “skill modeling”, and “domain modeling” with
overlapping meanings. In this work we use the following terminology:
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Table 1 Basic categories of knowledge components, according to the KLI frame-
work (Koedinger et al., 2012), simplified.

fluency building

induction, refinement

understanding, sense-making

Learning processesKnowledge components

fact, association

category, concept

rule, principle

constant constant

variablevariable

variable constant

Application
condition

Response Labels

– domain modeling – modeling concerned with the structure of the domain
(e.g., items, knowledge components, and their relations),

– knowledge modeling – the modeling of the current knowledge of learners
with respect to a particular domain model, including learning and forget-
ting processes,

– learner modeling – a general term encompassing the previous two.

Another terminological issue concerns the things that are presented to
learners and their groupings. We use the generic term item, which can rep-
resent both simple questions and complex interactive problems. Although in
some cases it is important to distinguish between a multiple-choice question
and a multi-step problem, for our discussion a generic item view is sufficient.
Items can also be instructional material such as text and video, but we will
focus mainly on interactive items that assess learner knowledge. Items, which
are tangible and specific, are typically linked to more abstract educational
constructs. For these we use the term knowledge components (KC) – other
common terms are skills, concepts, principles, schemata.

2.3 Knowledge Components and the KLI Framework

One of our goals is to connect learner modeling to the Knowledge-learning-
instruction (KLI) framework, which is an instructional framework on the level
of knowledge components (Koedinger et al., 2012). In this framework a knowl-
edge component is defined as “an acquired unit of cognitive function or struc-
ture that can be inferred from performance on a set of related tasks”. The
KLI framework is based on two taxonomies: a taxonomy of knowledge compo-
nents and a taxonomy of learning processes. Table 1 presents an overview of
these taxonomies and their relations. Note that our presentation of the KLI
framework is simplified. We cover only those aspects that are directly relevant
to our discussion of learner modeling and we highlight only the main ideas
behind the framework; for a more detailed discussion we refer the reader to
Koedinger et al. (2012).

The taxonomy of KCs is based on the condition of application and the
learner’s response to assessment events concerning a KC. Both application
conditions and responses can be either constant or variable.
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The simplest KCs are applied under constant conditions and require con-
stant response. Such KCs are typically called facts or associations; typical
examples are second language vocabulary or geography facts. More complex
KCs, called categories or concepts, require constant responses under variable
conditions, e.g., English determiners and the applications of Pythagoras’ the-
orem. The most complex KCs require variable responses under variable condi-
tions, e.g., solving an algebra word problem or a programming exercise. Such
KCs are often called principles, procedures, plans, or rules.

Learning processes are also classified into three main types (Koedinger
et al., 2012):

– Memory and fluency-building processes. Non-verbal processes that strengthen
memory and compile knowledge. They make knowledge more automatic
and composed.

– Induction and refinement processes. Non-verbal processes like generaliza-
tion, discrimination, classification, categorization, and schema induction.
They make knowledge more accurate and suitably general.

– Understanding and sense-making processes. Explicit, verbally mediated
learning in which learners attempt to understand or reason – this includes
the comprehension of descriptions, self-explanation, and scientific discovery
processes.

The basic relation between the KC taxonomy and the learning processes
taxonomy is that more complex types of KCs require more complex learning
processes. But the relation between learning processes and types of KCs is
asymmetrical (as depicted in Table 1). Fluency building and induction are
also relevant for rules and principles – in many cases it is not sufficient to
understand a rule, but also to be fluent in its application (a typical example
is single digit multiplication). On the other hand, understanding and sense
making processes are not useful for learning facts.

Knowledge components can be considered on different levels of granularity.
Table 2 provides examples of knowledge components from different domains, of
different types, and different levels of granularity. Note that the granularity can
influence the type of knowledge components – on a very fine level of granularity
nearly everything becomes a “constant-constant” knowledge component (but
not usually a useful one). Finer grained KCs lead to potentially more precise
models, but also more complex ones with more parameters, fewer data per KC,
and thus worse consistency of parameter estimates. The chosen granularity of
KCs thus has a significant impact on learner modeling.

3 Context and Purpose of Learner Modeling

Fig. 1 provides a simplified view of the context of learner modeling in an ed-
ucational system. Learner modeling provides several outputs that can serve
different purposes – the figure illustrates some common uses of learner mod-
eling. As illustrated, learner modeling is typically part of a “loop”, i.e., of an
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Table 2 Examples: KC types and levels of granularity.

granularity the type of knowledge component

constant-constant variable-constant variable-variable
fact category rule

coarse names and locations
of countries

capitalization rules fractions

medium names and locations
of African countries

capitalization of
nouns

addition of fractions

fine location of Egypt capitalization of
days of the week

addition of fractions
with the same
denominator

iterative process where learner modeling is one of the steps. The notions of
“inner loop” and “outer loop” are commonly used in the literature on intel-
ligent tutoring systems (Vanlehn, 2006). Based on recent developments, we
have also included in the figure the notion of “human-in-the-loop” – cases
where outputs of a learner model are interpreted by a human (a researcher,
a system developer) and this interpretation has specific consequences for the
educational system concerned (e.g., the manual update of a domain model or
the addition of new items).

A learner model can be used in many ways. We outline four typical uses
of models to illustrate the scope of potential applications. The purpose of the
model determines which model outputs are important. Whereas instructional
policies consider mainly model predictions, open learner modeling focuses on
learner parameters, and discovery with models may focus on item parameters.
Consequently, the purpose of the model has an impact on the treatment of
identifiability issues. A model is non-identifiable when different parametriza-
tions of the model provide the same predictions of learner performance. Iden-
tifiability may not matter much for the use of models in instructional policies,
but may be very important for open learner modeling. This illustrates that
the purpose of a model has direct consequences for the choice of modeling
approach, parameter fitting procedures, and evaluation methodology.

3.1 Inner Loop

The inner loop can use the current knowledge estimate to personalize a learner’s
activity while they are interacting with an item. The item can involve multi-
ple solution steps and the interaction can involve feedback on progress, hints,
explanations, or solution review. Based on the estimated knowledge, a system
can provide personalized feedback, dynamically adjust the user interface, and
provide adaptive scaffolding and personalized hints. Specific algorithmic deci-
sions may concern if and when to actively propose (enable) hints and which
hint to choose. Inner loop behaviors are discussed in more detail by Vanlehn
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(2006); Aleven and Sewall (2016) provide an analysis of inner loop behaviors
in a practical system.

The complexity of the inner loop depends on the type of relevant learning
process:

– Memory and fluency building processes: Typically the item is just a simple
question, the only feedback is information about correctness and, in the
case of a mistake, a correct answer.

– Induction and refinement processes: Items are still rather simple, but in
this case it is often reasonable to provide explanations for answers which
can be personalized based on estimated knowledge.

– Understanding and sense-making processes: Knowledge can be still tested
using simple items, but in this case it also makes sense to use more com-
plex items, e.g., multi-step problems with feedback on the correctness of
individual steps, available hints, etc. The interaction with learner modeling
may be much richer than in the previous two cases.

The use of learner modeling to personalize the inner loop is thus relevant
mainly for understanding and sense-making processes. Applications that uti-
lize modeling in the inner loop were indeed developed chiefly for mathematics,
programming, and physics, i.e., domains with significant focus on understand-
ing and sense-making processes. Specific well-known systems deal with algebra
(Anderson et al., 1995), SQL database query language (Mitrovic et al., 2001),
and physics (Vanlehn et al., 2005).

Two common modeling methods for the inner loop are model tracing mod-
els and constraint-based models. Model tracing models (Corbett and Ander-
son, 1994; Anderson et al., 1995) are based on the ACT theory of skill acquisi-
tion. A model is specified as a set of production rules – low level cognitive steps
encoded as “if-then” rules. Using these rules a model can monitor a learner’s
progress through the problem, and the interaction with a user can thus be
based on the current state of problem solving. Production rules may encode
also “buggy rules”, common misconceptions of learners. Using these rules a
tutoring system can provide appropriate feedback after mistakes.

Constraint-based models (Ohlsson, 1994; Mitrovic et al., 2001, 2007, 2003)
specify a set of constraints that a problem solution must satisfy. Violating a
constraint triggers an action such as a feedback message. In contrast to model
tracing, constraint-based models typically do not attempt to explicitly model
paths toward solutions. As a consequence, they are applicable to more open-
ended problems.

Models used in the inner loop can be characterized as “short-term” mod-
els, whereas models used in the outer loop are “long-term” models (Mayo
and Mitrovic, 2001). Short-term models are typically connected to long-term
models, e.g., a short-term model specifies constraints and monitors their vi-
olations, whereas a long-term model estimates the probability that a learner
understands individual constraints (Mayo and Mitrovic, 2001).
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3.2 Instructional Policy

A typical application of learner modeling is concerned with choosing or propos-
ing items that are then presented to a learner; this algorithm is often denoted
as an instructional policy and is typically based on predictions provided by a
learner model. A common approach to developing an instructional policy is
based on the principle of mastery learning. This approach is today used on
large scale, for example in Carnegie Learning systems (Ritter et al., 2016). Mas-
tery learning policy focuses on a definition of a “stopping criterion” – learners
solve items within a particular knowledge component, the system estimates
their knowledge and presents new items until a stopping criterion is satisfied.
Once mastery is declared, the learner progresses to the next knowledge com-
ponent. A common stopping criterion is “95 % chance that a learner knows the
next item”, but recently more complex criteria have been proposed (Rollinson
and Brunskill, 2015; Käser et al., 2016). On the other hand, this instructional
policy may be used even without a learner model, e.g., using a simple “k cor-
rect in row” stopping criterion. The advantage that learner modeling brings to
instructional policies is not yet completely clear and may depend on the type
and the granularity of a specific knowledge component.

Another common instructional policy is adaptive item sequencing, where
the algorithm selects and orders the items (within a particular KC), taking into
account the predictions provided by a model. The policy typically takes into
account not just the model prediction, but also other factors, e.g., a desired
difficulty of questions or timing information. These factors can be combined
using some heuristic scoring function (Papoušek et al., 2014; David et al.,
2016). A more principled approach is to use a decision theoretic approach and
try to maximize the utility of a selected item (Mayo and Mitrovic, 2001).

For some knowledge components (particularly facts), it is important to
take into account forgetting. Instructional policies in these cases try to realize
the spaced repetition learning principle (Pavlik and Anderson, 2005), typically
in the form of scheduling policies based on estimated knowledge (Reddy et al.,
2016; Pavlik and Anderson, 2008; Pavlik Jr et al., 2008).

3.3 Open Learner Model

An open learner model (Bull and Kay, 2007, 2010; Mitrovic and Martin, 2007)
makes the representation of a fitted model available to learners. It provides a
visualization of estimated knowledge, typically in the form of skillometers or
progress bars, possibly also using more complex visualization techniques like
hierarchical trees or conceptual graphs. The idea of opening a learner model to
learners has several potential goals, e.g., promoting the meta-cognitive abilities
of learners (reflection, self-monitoring), facilitating discussion between learn-
ers and teachers (or parents), supporting self-regulated learning by providing
navigation to items most relevant for a particular learner, enhancing engage-
ment by using open models for social comparison, or increasing learner trust
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in an adaptive system. In the case of persuadable models (Bull et al., 2016),
where learners can provide additional or corrective information, the opening
of a model can also increase the accuracy of model data.

For open learning modeling the key aspect of a model is the estimate of
a learner’s knowledge state. The visualization is typically structured in the
same way as the domain model, it thus also relies heavily on the knowledge
component structure of the learner model.

A consequence of opening a learner model to learners is the increased im-
portance of the intuitive behavior of model outputs. For example, a learner
would typically expect that after a correct answer a skill estimate will increase
and after an incorrect answer a skill estimate will decrease. Although such
behavior may seem straightforward, some models (particularly more complex
models like neural networks or mixture models) are able to achieve good pre-
dictive accuracy without guaranteeing this behavior.

3.4 Actionable Insight and Discovery with Models

The previously discussed applications of learner models are “automatic”, i.e.,
model outputs directly influence user experience. But model outputs may also
be useful for humans who use them to “manually” influence the system behav-
ior or the learners. This line of application corresponds to Baker’s argument
for “stupid tutoring system, intelligent humans” (Baker, 2016) – keeping sys-
tems relatively simple and focusing on the use of model outputs for guiding
human decisions.

Learner models can provide interesting insight for tool developers, content
authors, teachers, or educational researchers. Typical model aspects useful for
such insight are item difficulties, item learning rates, knowledge component
structure and relations, and learner clusters. To be useful, insights obtained
from a model should not only be interesting, but also actionable, i.e., they
should have specific consequences for further development of the educational
system concerned or for relevant stakeholders (e.g., teachers, researchers). Ex-
amples of such actions are the identification of problematic items (items that
need to be removed, added, or changed), a change to the structure of knowledge
components (including changes to the user interface), and the identification of
learner groups that need specific treatment.

Typical examples of such applications are described in papers on “closing
the loop” (Koedinger et al., 2013; Liu et al., 2014; Cen et al., 2007; Koedinger
and McLaughlin, 2016) – an analysis of model results is used to redesign
an educational tool and the new version of the tool is evaluated to measure
the impact of the change. Another type of actionable insight is reasoning
about system features or educational strategies based on the interpretation
of model parameters, e.g., the evaluation of help (Beck et al., 2008a) or scaf-
folding Sao Pedro et al. (2013a). A less typical example of actionable insight
is reported by Streeter (2015) – the use of mixture modeling led to the iden-
tification of a group of learners with a specific tool setting (disabled sound).



12 Radek Pelánek
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Fig. 2 Learner modeling components. Note that this figure is a zoom of the middle part of
Fig. 1.

Another closely related use of learner models (more research oriented) is “dis-
covery with models” (Baker and Yacef, 2009) – a process where an existing
model is used as a key component in a new analysis. An example of such
an analysis is the use of knowledge estimates in a carelessness detector (Her-
shkovitz et al., 2013). Insight obtained with the use of learner models can be
useful for development not just of interactive educational systems, but also for
other types of instructional material (Aleven and Koedinger, 2013).

4 Model Components

After clarifying the overall context of learner modeling, we now discuss learner
modeling itself. In this section we describe the main components of a learner
model and in the next section we discuss choices for their realization.

Fig. 2 provides an overview of the main components of a typical “long-
term” model of learner knowledge. The figure distinguishes between the “data”
part of models (parameters, relations) and “procedures” used to compute the
data.

4.1 Data

Data for both a knowledge model and a domain model can be further sep-
arated into “local data” (information about individual learners and items)
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and “global data” (information about the whole population and the domain).
Local data are dynamic and they are updated often (after each answer or at
least periodically), whereas global data are typically rather static with updates
performed either manually or by computationally intensive procedures.

For a domain model, global data consist of the definition of KCs and their
structure. A typical example is a mapping of items to KCs and the definition
of relations between KCs, e.g., prerequisite relations. Local data consist of the
parameters of individual items. A typical example is the difficulty of items,
other potential parameters are the easiness of learning or the rate of forgetting.

For a knowledge model, global data consist of global parameters for the
whole population. A typical example is the distribution of the expected prior
knowledge in the population. Global data may also include a definition of
learner clusters and parameters for these clusters. Local data contain infor-
mation about the current knowledge state of individual learners – for each
knowledge component there is an estimate of a learner’s knowledge.

4.2 Procedures

The model data are set and updated by specific procedures. The main types
of procedures are:

– KC structure search. Based on the input of a domain expert or on the
analysis of existing data (or combination of both) we search for a “good”
specification of KCs and their relation.

– Parameter fitting. We use the collected data to optimize model parameters
(typically global population parameters and local item parameters).

– Update equation. Based on the recent data concerning learner performance,
local data are updated, particularly the current knowledge estimate for a
learner and often item parameters as well.

– Prediction equation. For a given learner and an item the equation predicts
future performance. This computation is typically triggered by a request
from an instructional policy.

Fig. 2 shows the typical relations between different types of data and pro-
cedures. From a practical perspective there is a key difference in speed re-
quirements on different kinds of procedures – this is stressed in the figure by
distinguishing between “online” and “offline” procedures. Online procedures
are performed as soon as each answer is given. Therefore, for any realistic
practical application they have to be very fast (constant or nearly constant
computational complexity). On the other hand, a KC structure search and
model fitting need only be done offline from time to time and thus they can
be more computationally demanding. Nevertheless, due to the volume of data
from real applications, even offline procedures should have linear complexity
at most; for large data sets it may be preferable to require only a single pass
of the data. These computational requirements with differences for individual
procedures are sometimes not taken into account in the research literature.
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Fig. 3 The basic structure and equations for the BKT model (c denotes the correctness of
an observed answer).

An example of this would be methods based on techniques, such as Markov
chain Monte Carlo, which are slow even in the offline analysis and can not be
directly used for updating or predicting.

4.3 Examples

Fig. 2 is, of course, a simplification and does not capture perfectly every learner
modeling approach. Nevertheless, for the mainstream approaches the figure
provides a reasonable fit. As a concrete illustration of the described model
components we now discuss two commonly used types of models: Bayesian
knowledge tracing and Performance factor analysis. Here we outline only basic
versions of these models; extensions are discusses in the next section.

4.3.1 Bayesian Knowledge Tracing

Bayesian knowledge tracing (BKT) (Corbett and Anderson, 1994) is a special
case of a hidden Markov model. In BKT, skill is modeled as a binary variable
(known/unknown) and learning is modeled by a discrete transition from an
unknown to a known state. The basic structure of the model is depicted in
Fig. 3; see van de Sande (2013) for a detailed analysis of the model. The basic
BKT model uses the following data:

– Global learner data: Pi is the probability that the skill is initially learned,
Pl is the probability of learning a skill in one step, Ps is the probability
of an incorrect answer when the skill is learned (a slip), and Pg is the
probability of a correct answer when the skill is unlearned (a guess).

– Local learner data: probability θ that a learner is in the known state.
– Global domain data: a definition of knowledge components (sets of items).

There are no relations among KCs, i.e., parameters for individual KCs are
independent.

– Local domain data: not used in the basic model; extensions of BKT contain
such parameters as item difficulties (Pardos and Heffernan, 2011).

The update equation and the prediction equation are shown in Fig. 3 – the
probability of being in the known state is updated using a Bayes rule based
on an observed answer.
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Parameter fitting for the global learner parameters (the tuple Pi, Pl, Ps, Pg)
is typically done using the standard expectation-maximization algorithm, al-
ternatively using a stochastic gradient descent or exhaustive search. The spec-
ification of KC is typically done manually, potentially using an analysis of
learning curves.

4.3.2 Performance Factor Analysis

Performance factor analysis (PFA) (Pavlik et al., 2009) is a specific model from
a large class of models based on a logistic function. A common feature of these
models is that the data about learner performance are used to compute a skill
estimate and this estimate is then transformed using a logistic function into
the estimate of the probability of a correct answer. The PFA model specifically
uses the following data:

– Global learner data: parameters γk, δk specifying the change of skill asso-
ciated with correct and wrong answers for a given KC k.

– Local learner data: a skill estimate θk for each KC k.
– Global domain data: a KC difficulty parameter βk, a Q-matrix Q specifying

item-KC mapping; Qik ∈ {0, 1} denotes whether an item i belongs to KC
k.

– Local domain data: not used in the basic model; the model can be easily
extended to include item difficulty parameters, see for example the Elo
rating system (Pelánek, 2016).

The online equations take the following form (c is the correctness of an
answer, i is the index of an item):

– Update equation: θk := θk +Qik(γc+ δ(1− c)) for each k.
– Prediction equation: Pcorrect = 1/(1 + e−m), where m =

∑
kQik(βk + θk).

Note that the original formulation of PFA (Pavlik et al., 2009) uses a slightly
different notation (using the number of correct and wrong attempts). We have
used a transformed but equivalent formulation to highlight the fit of the model
to Fig. 2.

Parameter fitting for parameters β, γ, δ can be done easily using standard
logistic regression. The Q-matrix is typically manually specified, but can be
also fitted using automated techniques like matrix factorization.

5 Overview of Learner Modeling Techniques

Now we discuss several aspects of modeling: the modeling of learning and for-
getting, domain modeling, the type of observational data used, and learner
clustering. For each of these aspects we provide an overview of available mod-
eling approaches with pointers to specific techniques. These aspects are to a
large degree independent and thus there is a vast number of possible combi-
nations that can be used for practical applications.
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Fig. 4 An overview of basic approaches for modeling learning and forgetting.

5.1 Modeling Learning and Forgetting

The basic goal of a learner model is to estimate the current knowledge and
future performance of a learner based on data about their past performance.
This can be seen as a typical machine learning task of estimating a hidden
state based on noisy observations. A specific feature of learner modeling is
the presence of learning and forgetting processes that lead to changes in the
hidden knowledge state. The choice of the basic approach to modeling learning
and forgetting is thus the key decision in learner modeling. Fig. 4 provides a
schematic overview of basic approaches.

Probably the most commonly used approach is the Bayesian knowledge
tracing model, which was described in the previous section. From the perspec-
tive of learning dynamics, the key assumption of this model is the discrete
transition from an unknown to a known state. The basic version of the model
presented here has many extensions and variants including forgetting (Khajah
et al., 2016), item difficulty (Pardos and Heffernan, 2011), individualization
(Pardos and Heffernan, 2010a; Yudelson et al., 2013), and time between at-
tempts (Qiu et al., 2011).

The second major approach to modeling learning is a class of logistic mod-
els. In this case skill is modeled by a continuous variable and learning is mod-
eled by a gradual change. Models typically include an item difficulty parameter
and the basic principle of predictions is to map a difference between a skill
and an item difficulty into the probability of a correct answer using a logistic
function σ(x) = 1/(1+e−x). Such models are intensively used in item response
theory; the basic one parameter logistic model (Rasch model) corresponds to
the description provided. Item response theory is typically used in testing and
thus it does not consider learning (skill is not expected to change during a test),
although extensions that allow for a dynamic change of skill do exist (Wang
et al., 2013). In the case of learner modeling a typical logistic model is the
Performance factor analysis (Pavlik et al., 2009) described in the previous sec-
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tion. Other similar models are the Additive factors model (Käser et al., 2014b;
Cen et al., 2006), Instructional factors analysis Chi et al. (2011), and the Elo
rating system (Pelánek, 2016). Logistic models are used particularly often in
the case of declarative knowledge and the modeling of forgetting (Pavlik and
Anderson, 2005; Pelánek, 2015; Rubin et al., 1999; White, 2001; Sense et al.,
2016). Logistic models are used not just in the context of education and human
learners, but also for the analysis of behavioral experiments with rats (Smith
et al., 2004).

The choice between BKT and logistic models is currently not fully resolved.
Although some researchers have compared the two approaches (Gong et al.,
2010), the results are not conclusive and probably do not generalize – an
appropriate choice of a modeling approach depends on a particular domain and
on the purpose of a model. However, in many cases researchers pick one of the
two modeling approaches without providing any rationale for the choice. The
KLI framework may provide guidance and support for this choice. For memory
and fluency building processes the knowledge state changes gradually and is
thus more naturally modeled by logistic models. BKT assumptions (discrete
transition from unknown to known state) are more appropriate for modeling
understanding and sense making processes but only for fine grained knowledge
components.

Recently, researchers proposed several generalizations and combinations of
logistic models and knowledge tracing (Khajah et al., 2014a; González-Brenes
et al., 2014; Khajah et al., 2014b). Another flexible modeling approach that
generalizes both basic types of models is mixture modeling (Streeter, 2015).
Dynamic item response theory models combine modeling based on logistic
functions with Bayesian techniques (Wang et al., 2013).

BKT and logistic models differ in their basic assumptions about learning.
An alternative approach is to avoid making any specific assumptions about
learning. This can be done by using simple approaches like computing a mov-
ing average of answer correctness. These simple methods are not based on any
specific assumptions about learning, but by discarding or discounting past an-
swers they can model changing skills. A specific simple, yet useful technique
is the exponential moving average, where past attempts are weighted by an
exponentially decreasing function. Such simple techniques often provide rea-
sonable predictions (Pelánek, 2014; Wauters et al., 2012) and have pragmatic
advantages such as the ease of application and computational efficiency. More-
over, the absence of specific assumptions about learning may be an advantage
in some circumstances, e.g., a smaller impact of misspecified knowledge com-
ponents.

We can also compensate for the lack of built-in assumptions about learning
by learning patterns from data using more complex machine learning tech-
niques, which include collaborative filtering techniques (Toscher and Jahrer,
2010), ensembles of models (Pardos et al., 2012a), and recurrent neural net-
works (Piech et al., 2015; Khajah et al., 2016). These models are often able
to achieve good predictive accuracy, but at the price of poor interpretabil-
ity. Since in educational applications we are often concerned with the inter-
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Fig. 5 Basic types of observational data that can be used for modeling knowledge.

pretability and the validity of models, these approaches are not typically used
in practical applications at this time.

5.2 Observational Data

Learner knowledge is a latent construct that we try to quantify based on
available observational data. The basic information used for learner modeling
is the correctness of answers. In many cases this is the only source of data
in current use. However, there are many other potentially useful sources of
information (Fig. 5): response times, the use of hints, specific values of wrong
answers, or the history of previous attempts (including their timestamp).

Response times have been studied thoroughly in the context of item re-
sponse theory (Goldhammer, 2015). Van Der Linden (2009) provides an overview
of conceptual issues in response time modeling in IRT, including a discussion
of approaches that model the accuracy and the speed of test takers separately
(linked within a hierarchical model). In learner modeling, response times have
been typically used in a simpler fashion by combining correctness and response
time into a single performance measure (Klinkenberg et al., 2011; Řihák, 2015).
Response times have also been used for scheduling the learning of declarative
knowledge (Mettler et al., 2011) or in an analysis of slip and guess behav-
ior (Baker et al., 2008). Some modeling approaches even focus specifically
on response times (Pelánek and Jarušek, 2015). The current research clearly
demonstrates that response times are potentially a useful source of informa-
tion, but precisely how it is to be exploited awaits further research.

When the interaction of a learner and an item is iterative, such as solving
a multistep mathematics problem, we can use data on the solution process.
It is not uncommon for educational systems to provide learners with hints.
As with response times, data about hint usage provide an indirect but po-
tentially useful source of information about a learner’s knowledge. The basic
application of hint usage is the use of a ‘partial credit‘ (Wang and Heffernan,
2013; Van Inwegen et al., 2015), i.e., instead of treating the correctness of an
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answer as a binary variable, the answer is graded by a partial credit in the
interval [0, 1] based on the use of hints and potentially on the response time
and other information. Data about hint usage have also been used for mod-
eling help utility (Beck et al., 2008a) and for analyzing hint usage and hint
seeking behavior (Goldin et al., 2013). As with response times, the use of hints
is potentially useful information. Moreover, the partial credit approach can be
combined with most learner modeling approaches. An open issue is how to
specify the credit function in a systematic way.

The analysis of wrong answers typically shows that the distribution of mis-
takes is highly uneven with few common wrong answers (Pelánek and Řihák,
2016). Such common wrong answers can be used for improving model predic-
tions (Řihák and Pelánek, 2016), the labeling of errors (McTavish and Larus-
son, 2014; Straatemeier, 2014), clustering learners (Merceron and Yacef, 2005),
and affect detection (Wang et al., 2015). The use of specific wrong answers
in learner modeling may be useful particularly in conjunction with an explicit
modeling of misconceptions in a learner model (Liu et al., 2016). The research
analyzing wrong answers is mostly very recent and provides mainly illustra-
tions of the potential of the data source: more research in this direction is
needed.

Another potential source of information is the history of attempts – what
a learner did before submitting a particular answer. This source of data can
serve many different purposes. Models can, for example, incorporate sequential
(ordering) effects (Pardos and Heffernan, 2009; Tang et al., 2015), an effect of
a new session (Qiu et al., 2011), or a contextual estimation of slip and guess
parameters (Baker et al., 2008). A specific (but common) case of sequential
effects is the case where items are presented in a fixed order with items of
increasing difficulty. In this case modeling often faces an identifiability problem
– it is hard to distinguish learning from increase in item difficulties (González-
Brenes et al., 2014; Khajah et al., 2014a; Pelánek and Jarušek, 2015).

The history of attempts may contain information not just about interac-
tive items, but also about instructional steps, e.g., information that a learner
viewed a video or went through lecture materials. Such information can be
included into models to improve model predictions, e.g., Performance factor
analysis has been extended in this way into Instructional factors analysis (Chi
et al., 2011), the BKT model has been extended to include scaffolding and tu-
tor context (Sao Pedro et al., 2013a). Such models may be used for evaluating
the quality of instructional materials (MacHardy and Pardos, 2015).

The importance of different types of observational data depends on the
type of relevant knowledge components and learning processes. For example,
response times are particularly relevant for fluency building, whereas the anal-
ysis of hint usage and the modeling of misconceptions are relevant only for
understanding and sense-making processes.
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Fig. 6 Domain modeling – the illustration of basic approaches.

5.3 Domain Modeling

Domain modeling is concerned with the assignment of individual items to
knowledge components and with the modeling of relations among KCs. The
basic approaches to domain modeling are illustrated in Fig. 6. The simplest
approach is to consider KCs as disjoint sets of items. This can be extended in
three main directions: multiple KCs per item, a hierarchy of KCs (capturing
skills of different granularity), and relations between KCs (particularly their
prerequisite structure).

A principled way of modeling KCs with relations is provided by (Dynamic)
Bayesian networks (Millán et al., 2010; Conati et al., 2002; Käser et al., 2014a;
Carmona et al., 2005; Käser et al., 2013a). Bayesian networks can model not
only skill relations, but also the uncertainty of estimated skill parameters. How-
ever, the use of Bayesian techniques makes high demands on computational
resources, because parameter estimation becomes difficult. Another approach
to modeling skill relations based on formal foundations is knowledge space the-
ory (Doignon and Falmagne, 2012) and its variants (Desmarais et al., 2006).
This approach is useful particularly for modeling prerequisite relations. For
practical applications it is useful to consider more heuristic approaches, e.g.,
a hierarchical extension of the Elo rating system (Nižnan et al., 2015b).

A rather difficult problem for learner modeling is posed by the presence
of multiple skills per item, i.e., solving an item requires knowledge spanning
multiple KCs. An item-skill mapping is in this case a bipartite graph (illus-
trated in Fig. 6), typically coded using a so called Q-matrix (Tatsuoka, 1983;
Barnes, 2005; Desmarais, 2011). The use of multiple skills per item leads to
the “credit assignment problem”: How do we model the relations between per-
formance and related skills? If the learner answers incorrectly, which skill is
to be “blamed” for this mistake? Researchers have explored many ways of
combining several skills, e.g, using a compensatory (additive) model (Ayers
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and Junker, 2006), conjunctive (product) model (Cen et al., 2008; Koedinger
et al., 2011; Beck et al., 2008b), logistic regression (Xu and Mostow, 2012),
or taking the weakest skill (Gong et al., 2010). A related set of models (used
more commonly in psychometrics) is the NIDA/NIDO/DINA/DINO family
of models, e.g., NIDA model (noisy input, deterministic and) (Junker and Si-
jtsma, 2001) or DINA (deterministic inputs, noisy and) model (De La Torre,
2009). It seems that there is no universal solution to the credit assignment
problem; a suitable approach depends on a particular domain and the type
of knowledge component. Moreover, in many cases parameter estimation is
computationally demanding and for practical application this also needs to be
taken into account.

Once we decide which domain modeling approach to use, we have to find
a specific domain model (e.g., the mapping of items to KCs, relations between
KCs). As the illustration in Fig. 6 shows, even for a simple domain like basic
arithmetic it is far from clear what makes a good domain model. What should
be the granularity of KCs? What relations should be modeled? What is the
assignment of items to KCs? The model can be provided either by a domain
expert or determined using skill discovery. An example of a domain model of
basic arithmetic specified by an expert is provided by Käser et al. (2013a).

Since the manual specification of a domain model is time consuming and
error-prone, automatic model discovery has received significant attention. Re-
searchers have studied many approaches including learning factor analysis us-
ing A* search (Cen et al., 2006), matrix factorization (Thai-Nghe et al., 2011;
Desmarais, 2011; Lan et al., 2014), Chinese restaurant process (Lindsey et al.,
2014), spectral clustering (Boroš et al., 2013), or analysis using simulated stu-
dents (Li et al., 2011). Specific techniques focus on discovering the prerequisite
structure (Chen et al., 2015; Scheines et al., 2014; Gasparetti et al., 2015; Chen
et al., 2016).

It is, of course, possible to combine input from experts with automated
techniques based on data. As a basic step, we can compare several manually
created domain models and choose the one that fits the data best. A specific
example of such an approach is the comparison of models of different skill
granularity (Feng et al., 2006; Pardos et al., 2010; Koedinger et al., 2016). A
more sophisticated approach is to take an expert provided model and refine it
based on data (Desmarais and Naceur, 2013; Desmarais et al., 2014; Nižnan
et al., 2014).

When choosing a domain modeling approach for a particular application, it
is useful to take into account the KLI framework. For understanding and sense-
making processes it is typically important to take into account a prerequisite
structure of the domain. On the other hand, for memory and fluency-building
processes it is typically sufficient (and preferable) to use a simpler domain
model, such as “KCs as disjoint sets”.
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5.4 Learner Clustering and Individualization

The basic learner modeling approach is to treat all learners as coming from
the same homogeneous population. This is clearly a simplifying assumption as
a learner population is never completely homogeneous. The important ques-
tion is whether learners fall into sufficiently different clusters, which could be
exploited for learner modeling. Such broad diversity may appear when sys-
tems are used by both children and adult learners, in the presence of learners
with different forms of learning disabilities, and among learners from different
countries.

The clustering of learners (Hämäläinen et al., 2014) has been explored by
many researchers, e.g., in mathematics learning with respect to different forms
of dyscalculia (Käser et al., 2013b; Carlson et al., 2013) and for the evaluation
of logic learning (Merceron and Yacef, 2005). Basic clustering is done using
individual answers, but it is also possible to cluster sequences (Desmarais
and Lemieux, 2013; Klingler et al., 2016). A principled approach to model-
ing learning in the presence of learner clusters is mixture modeling (Streeter,
2015), which reveals the clusters and fits their learning patterns at the same
time (using the EM algorithm). A specific type of cluster is “wheel-spinning
learners” (Beck and Gong, 2013). These are learners who are unable to master
a topic, as happens for example, when learners do not have the prerequisite
knowledge.

Detected learner clusters can be applied to improve predictions by using
different models or parameter values for each cluster (Trivedi et al., 2011;
Pardos et al., 2012b; Gong et al., 2012) and for gaining insight into learner
behavior, e.g., identifying user interface issues (Streeter, 2015).

A closely related issue is the level of granularity and individualization in
a learner model. Some model parameters can be considered either as global
(population level) or individual. The impact of this choice has been studied
particularly in the context of the BKT model and parameters for prior knowl-
edge and speed of learning (Pardos and Heffernan, 2010a; Lee and Brunskill,
2012; Yudelson et al., 2013; Pardos and Xu, 2016). Individualization increases
the number of model parameters and carries the risk of overfitting. The indi-
vidualized parameters are fitted using only few data points and thus can be
significantly influenced by the noise in data. To avoid this risk, it is also possi-
ble to consider “individualization” on the level of learner groups, e.g., having
the same parameters for all learners in one class (Wang and Beck, 2013) or
in a learner cluster automatically detected by one of the above-mentioned
techniques.

The modeling of learner populations is closely associated with domain mod-
eling, particularly to the granularity of KCs. For coarse grained KCs (e.g.,
“fractions”, “capitalization rules”) the heterogeneity of learner population can
be an important factor as different types of learners may be strong in different
parts of a coarse KC. For fine grained KCs clustering should not be a very
important factor – it should be sufficient to differentiate learners by their skill
estimates.
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5.5 Summary of Modeling Aspects

The overview provided in this section shows that there are many different
aspects of learner modeling and many possible choices for each aspect. Where
should we focus our modeling effort for a particular application? Fig. 7 provides
a summary of the main modeling aspects and their importance with respect
to model purposes and with respect to learning processes (as defined in KLI).

The figure provides only a basic orientation. The “importance” of modeling
aspects is not precisely defined and at the current stage of research in many
cases it may be disputable. In particular, the relevance of modeling techniques
for different learning processes has not yet been thoroughly studied and the
proposed mapping should be verified and clarified in future research.

The main point of the figure is that we cannot reach any universal conclu-
sions about questions like “Which learner model is better?” or “Is it useful to
use X in learner modeling?” (for some source X of data about learners such as
response times or hint use). Answers to such questions depend on the context
in which learner modeling happens.

For illustration consider two specific contrasting examples. At first, let us
consider the use of learner modeling for a personalized practice of foreign
language vocabulary. A model is used for automatic item choice (a word to
practice) with the goal of supporting memory and fluency processes. In this
case the modeling approach should clearly focus on learning and forgetting
processes; probably using one of the models from the family of logistic models.
Timing information is here clearly important: the period since the previous
exposure to an item in the assessment of forgetting, the response time in the
assessment of fluency. On the other hand, the role of modeling KCs structure
is not fundamental.

Secondly, let us consider the use of learner modeling for the analysis of
historical data about the usage of a fraction tutor that is concerned with
understanding and sense-making processes. Moreover, let us assume that the
purpose of a model is getting actionable insight that will be used for a manual
redesign of the tutor, e.g., the evaluation of the available hints and scaffolding
problems, or an analysis of a suitable granularity of the knowledge components
used. In this case some version of the BKT model should be relevant and
domain modeling is clearly very important. From observational data it may be
useful to utilize data about the use of hints and other instructional materials.
Timing information is not as important as in the vocabulary case.

Another important issue is the combination of different aspects. As noted
at the beginning of this sections, the aspects described are to a large degree
independent, e.g., the approaches depicted in Fig. 4, Fig. 5, and Fig. 6 can be
combined in many ways. Nevertheless, some combinations are more difficult
than others. For example, it is easier to use “multiple KCs per item” with
logistic models than with BKT. To add new observational data into simple
models of learning, it is necessary to hand-craft the model features and their
role in a model, whereas with neural networks the addition of new observa-
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tional data may be trivial even though it may require significantly more data
and longer processing times.

We hypothesize that for learner modeling to progress, it is more important
to clarify the mapping between modeling methods and contexts (as outlined
in Fig. 7) and to explore the interoperability of all the aspects of modelling
than to keep making incremental innovations in individual modeling methods.

6 Model Fitting and Evaluation

Once specific learner modeling approach has been selected, we still need to
find values of model parameters. In this step we also face several choices.
What procedure do we use for parameter filtering? What criteria do we use
to choose among competing models or parametrizations of a chosen model?
How do we address overfitting? How do we treat potential biases in data and
in parameter estimation? As was the case in choosing a modeling approach,
there are no universally applicable answers to these question. An appropriate
choice of model evaluation methodology depends on the specific domain, the
type of knowledge components, and especially the purpose of the model. We
will now discuss the most important methodological issues in model evaluation
and highlight their relation to the context of modeling.

6.1 Metrics for Model Comparison

To compare models we need to quantify their quality. This is typically done by
comparing their predictive accuracy, i.e., their ability to predict future learner
performance. Table 3 provides examples of several commonly used metrics for
quantifying predictive accuracy; see Pelánek (2015) for definitions and prop-
erties of individual metrics. These metrics measure model performance using
“within system” predictions. An alternative approach is to use external mea-
sures like the correlation of knowledge estimated by the model with an external
test, e.g., a high stakes test outside of a system.

The choice of a specific metric can have significant impact on model com-
parison and parameter fitting (Pelánek, 2015; Huang et al., 2015b; Stamper
et al., 2013). Model comparisons can be influenced even by details of metric
computation that are typically not explicitly described in research papers. For
example, Khajah et al. (2016) discuss the issue of averaging in the AUC com-
putation: using all predictions to compute AUC versus computing AUC on
a per-skill basis and then taking an average. They found that it significantly
inflated differences between models in a previous work.

The appropriate choice of a metric depends on the purpose of the model
to be evaluated. For example if the model output is used by an instructional
policy that considers absolute values of predictions, it is not meaningful to
perform model evaluation using the AUC metric, since it considers only the
relative ordering of predictions (Pelánek, 2015).



26 Radek Pelánek

Table 3 Examples of metrics for the predictive accuracy of learner models.

type of metric specific metric

probabilistic understanding of errors RMSE root mean square error
LL log-likelihood
R2 normalized RMSE

qualitative understanding of errors Acc accuracy
F1 harmonic mean of precision and recall

assessing ranking of examples AUC area under the ROC curve

Comparing predictive accuracy is important even in cases where the pri-
mary purpose of a model is not predictions (e.g., in “discovery with models”),
since parameter fitting procedures typically optimize predictive accuracy – of-
ten implicitly log-likelihood. For this reason, performance metrics are quite
central to learner modeling. But the way we interpret the results is not uni-
versal and depends heavily on the specific purpose of a model. A particular
recurring issue in learner modeling research is the importance of small dif-
ferences in predictive accuracy. Research papers often report improvement in
learner modeling with statistically significant, but rather small differences in
predictive accuracy. Some researchers have expressed doubts about the use-
fulness of such improvements (Beck and Xiong, 2013). In many cases, the
impact of a slightly improved predictive accuracy is negligible, particularly if
the model is used only to provide predictions and the predictions of competing
models are highly correlated. However, when models are used for actionable
insight, even a small difference in their metric value results in a significant im-
pact on learner practice (Yudelson and Koedinger, 2013; Pardos et al., 2012c;
Liu et al., 2014).

One of the common purposes of learner models is to provide input data for
an instructional policy. In these cases, we can evaluate the impact of different
models on the decisions made by the policy. So far, this type of model evalu-
ation has been done mainly for the mastery learning policy by measuring the
impact of a model on the number of learner practice opportunities (Lee and
Brunskill, 2012; González-Brenes and Huang, 2015; Rollinson and Brunskill,
2015; Käser et al., 2016). Most evaluation techniques used in this research are,
however, closely intertwined with Bayesian knowledge tracing – they incorpo-
rate assumptions of this modeling approach and are thus applicable only to
models based on BKT.

To better understand model predictions, it is useful to go beyond a single
number provided by accuracy metrics. Specifically, it is useful to analyze the
reliability and the resolution of predictions, which can provide useful insight
into model behavior and provide directions for model improvement (Pelánek,
2015). It may be also useful to check for specific undesired behaviors. For
example, some models can predict mastery even for a learner who always
answers incorrectly – for example a basic mixture model described by Streeter
(2015). If such cases are uncommon in the testing data, the impact on an
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accuracy metric is negligible, yet for practical applications such model behavior
can have a significant undesirable impact by undermining users’ trust in the
system.

6.2 Parameter Fitting and Analysis

For a specific model there may be several applicable parameter estimation
procedures and the choice of a parameter fitting procedure may influence the
resulting parameters and the predictive accuracy of a model. There is a par-
ticularly rich literature for estimating the parameters of the BKT model, e.g.,
Pardos and Heffernan (2010b); Hawkins et al. (2014); Beck and Chang (2007);
Falakmasir et al. (2013). This issue was also studied for logistic models, e.g.,
Gong et al. (2010); Papoušek et al. (2014). The reported results suggest that
different parameter estimation procedures often lead to similar parameters
(and consequently also similar predictive accuracy), but there are often signif-
icant differences in the computational complexity of procedures.

The issue of computational efficiency is very important in practice, but
sometimes does not get the research attention it deserves – in particular the
distinction between updates that need to be performed online versus offline, as
discussed in Section 4. Complex learner models may require computationally
demanding parameter fitting procedures, such as models based on Bayesian
networks which are typically fitted by Markov chain Monte Carlo (Khajah
et al., 2014a). Such procedures may not be applicable for online educational
systems or even for the offline analysis of large data sets, e.g., Khajah et al.
(2014a) reports a runtime in excess of 10 minutes for a data set with 110,000
attempts, which is quite small in terms of many practical applications.

What is the relative importance of the computational efficiency of param-
eter fitting on one hand and the predictive accuracy of the fitted model on the
other hand? The answer depends on the purpose of the model. If the model is
used only to provide predictions used by an instructional policy to make online
decisions, computational efficiency is a key factor whereas small differences in
predictions are not very significant. If, on the other hand, we use a model for
obtaining “actionable insight” that is interpreted “offline” by humans, small
differences in predictive accuracy may be very important since they may lead
to different conclusions from the discovery process Pardos et al. (2012c). The
computational efficiency of parameter fitting is in this case less important as
long as it scales to the size of a particular data set.

If the primary purpose of a model is open learner modeling or getting
actionable insight, we are more interested in model parameters than in model
predictions. In these cases, previous research has sometimes been based on
the implicit argument, “if prediction accuracy is improved then the additional
factor in the model is meaningful and parameters can be interpreted”. For
examples see Gong and Beck (2011); Beck et al. (2008a); Huang et al. (2015a).

This approach, however, is not sufficient. Before seriously interpreting pa-
rameter values, it is necessary to analyze their consistency – parameters may
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have different values when the model is trained on different training sets or
when different parameter fitting procedures are used. There are several rea-
sons for this including noise in the data, model identifiability issues, and local
optima in parameter fitting. The analysis of parameter consistency has been
recently proposed as one aspect in a framework for multifaceted evaluation of
models (Huang et al., 2015b). Different approaches can be used to perform
such analyses, e.g., estimating confidence intervals using bootstrapping, ana-
lyzing parameter values for independent subsets of data (Pelánek and Jarušek,
2015), analyzing parameters for closely similar items (Klinkenberg et al., 2011;
Arroyo et al., 2010), or analyzing the correlation of parameter values with some
external measure like a pretest scores (Gong et al., 2011).

6.3 Cross-validation Approach

An important general issue in machine learning is overfitting: the aim of ma-
chine learning is to develop models that do not just fit training data, but also
generalize to new circumstances. One approach to avoiding overfitting is to use
performance metrics like Akaike information criterion (AIC) or Bayesian infor-
mation criterion (BIC), which are extensions of log-likelihood penalizing model
complexity. Another approach is to use cross-validation, which involves eval-
uating a model on a separate test set. Although under certain circumstances
these approaches may be asymptotically equivalent (Stone, 1977), practical ap-
plications typically exhibit far from asymptotic behavior. More importantly,
cross-validation allows us to take into account the type of generalization that
is relevant for a particular model purpose. Therefore, cross-validation is a bet-
ter approach for model evaluation in most applications. A possible reason to
use metrics like AIC and BIC is better computational efficiency, which is im-
portant in computationally demanding “search for a model” procedures like
learning factors analysis (Cen et al., 2006). In such cases, it is important to
analyze relations between these metrics and cross-validation results, as done
for example by Stamper et al. (2013).

Cross-validation evaluates model ability to generalize by using different
data for training (parameter fitting) and testing (measuring predictive accu-
racy). For educational data it is necessary to pay close attention to the way
data are partitioned into a training set and a test set. In many areas a division
of data points into training and testing set can be done by simple random se-
lection. In the case of learner modeling simple random allocation is incorrect
– since we deal with sequential data, we would end up using future actions for
predicting past actions. We also need to take into account the asymmetry be-
tween learners and items. Items are usually rather fixed, whereas new learners
arrive continuously, so we mainly want to be able to evaluate generalizations
across learners actions.

Fig. 8 illustrates several basic approaches to performing cross-validation.
The figure uses two basic dimensions:

– The division of data with respect to learners:
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Fig. 8 An illustration of the basic options for cross-validation methodology. Similar way to
illustrate division into training and testing set was previously used by Khajah et al. (2014a)
and Reddy et al. (2016).

– Testing on the same learners. The beginning of each sequence is in a
training set, the end of the sequence is in a test set.

– Testing on new learners. All attempts of a learner are either in a train-
ing set or in a test set.

– The update of predictions:
– Offline evaluation. Predictions for a whole learner’s sequence are made

at the same time.
– Online evaluation. Predictions are continuously updated after observing

each answer.

To illustrate the scope of different cross-validation approaches, we provide
examples of specific methods used in previous work. Online evaluation on new
learners was used, for example, by Streeter (2015); Nižnan et al. (2015b);
Pardos and Heffernan (2011); it is also typically employed in research based
on BKT. Offline evaluation on new learners was used, for example, by Käser
et al. (2014b); Klingler et al. (2015); and also in other works using the AFM
model. González-Brenes et al. (2014) used offline evaluation on new learners,
but only the second half of sequence is used for evaluation. Offline evaluation
on the same learners was used for example by Khajah et al. (2014b); Pelánek
and Jarušek (2015) (using the last 20% of attempts). KDD cup 2010 data
set (used for example by Thai-Nghe et al. (2011)) has the same learners in a
test set with a combination of online and offline evaluation – for each learner
predictions are made for a single problem that involves multiple steps. Finally,
some researchers use only a single attempt per learner for the evaluation of
predictions (Pardos and Heffernan, 2010a; Reddy et al., 2016).

A proper cross-validation methodology depends on the specific purpose
of the model being evaluated. In the standard scenario where the purpose of
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the model concerns “predictions”, the preferable cross-validation methodology
should be “online, generalization to new learners”, because it directly corre-
sponds to the actual application of a learner model in an educational system.

So far we have discussed learner-stratified cross-validation, which tests gen-
eralization to new learners. Depending on a particular application and the
purpose of a model, we may also need to explore other types of generaliza-
tion: generalization to new items in the case of knowledge components with
a nontrivial churn rate, such as those in educational systems for information
technology, generalization to new knowledge components, or generalization to
new learner populations, which is relevant particularly in the case of discovery
with models. For these situations, it is necessary for data to be adequately
divided into a training set and a test set – previous research has shown that
different kinds of stratification may lead to different results (Sao Pedro et al.,
2013b).

6.4 Data Collection

Data collection mechanisms are another aspect where the context of learner
modeling is important. This is especially the case when using naturally oc-
curring observational data, which is a common practice in research on learner
modeling. The way in which this data were collected may significantly influ-
ence the results such as parameter values or the comparison of models (Pelánek
et al., 2016). Several aspects of data collection exhibit this influence.

A common feature present in many educational data sets is attrition bias
– a selection bias caused by differences in the way learners use an educational
system. A typical example is mastery attrition bias caused by the mastery
learning principle explicitly implemented in a system (Nixon et al., 2013).
Attrition bias can be also caused by self-selection (Papoušek et al., 2016)
and it can have a significant impact on learning curves and fitted learner
parameters (Käser et al., 2014b; Murray et al., 2013).

Another important aspect of data collection is the ordering of items. If all
learners attempt items in a similar order, it may be impossible to disentangle
learning from an increase in problem difficulty. This confounding effect has
been noted in different forms in several recent works (González-Brenes et al.,
2014; Khajah et al., 2014a; Pelánek and Jarušek, 2015).

This effect disappears once we use an adaptive choice of items and the or-
dering is personalized for each learner. This, however, creates another, poten-
tially more complex problem for model evaluation – it creates a feedback loop
between learner modeling and data collection (Nižnan et al., 2015a; Pelánek
et al., 2016). For example, if data are collected using an adaptive system that
provides learners with items of appropriate difficulty, even a simple baseline
model achieves a good predictive accuracy and differences between models
may become small even though the consequences of using different models in
an application would be large (Pelánek et al., 2016).



Title Suppressed Due to Excessive Length 31

The most important step in overcoming biases caused by data collection is
to be aware of them. We need to explicitly formulate them and to consider their
importance with respect to a particular purpose of a studied learner model. If
we have control over data collection, it may be useful to introduce controlled
randomization into data collection, as used for example by Papoušek et al.
(2016). If we only have access to historical data sets, it is useful to filter the
available data to test the robustness of results, for example, by limiting the
number of answers per learner to reduce the impact of attrition bias.

6.5 Summary of Model Fitting and Evaluation

Model fitting and evaluation entails a wide range of choices (e.g., evalua-
tion metric, parameter fitting procedure, cross-validation approach). The cur-
rent state-of-the-art does not provide crystal clear guidance to making these
choices. The first step is making these choices explicit and connecting them to
the specific purpose of a model – currently many choices are made implicitly,
often without a proper description or rationale (particularly cross-validation
approaches).

To illustrate the importance of the purpose of the model on decisions, we
use the same two examples as in the previous section. The first example is
the use of learner modeling for a personalized practice of foreign language
vocabulary, where a model is used for automatic item choice. This is an online
application of a learner model, i.e., it requires an online parameter fitting and
online cross-validation methodology. The key model outputs are predictions
of learners’ performance on specific items. Comparison of models should focus
on the predictive accuracy of models and on the impact of models on the final
choice of items that are presented to learners. Ultimately, we are concerned
with the impact of models on learning, i.e., an ideal evaluation should be done
using a randomized control trial using the real system. If the evaluation is done
using historical data, it is necessary to pay attention to the potential biases
present in data, particularly when the data were collected using a system that
already implements adaptive behavior.

The second example is the use of learner modeling for the analysis of
historical data about the usage of a fraction tutor, where the purpose of a
model is getting actionable insight for manual improvement of the system.
For this application the parameter fitting is done offline and thus its speed is
not fundamental. We are interested primarily in model parameters, not model
predictions, so the analysis should focus primarily on the stability of model
parameters. For cross-validation it may be reasonable to use the offline ap-
proach, but with more focus on the level of stratification. For the verification
of actionable insight, it may be useful to test the generalization to new learner
populations, i.e., to use population-stratified cross-validation.
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7 Discussion and Future Work

In learner modeling we have to make many decisions. Research literature cur-
rently offers an abundance of choices, but it provides little guidance on how
to choose a particular approach for a specific situation. To deal successfully
with these decisions we need to take a wider context of learner modeling into
account. What types of knowledge components and learning processes are rel-
evant? What sources of data can be used for learner modeling? What is the
main purpose of learner modeling in a particular application? How will the
outputs of learner modeling be used? Some conflicting results in research lit-
erature may be due to differences in such contexts. Beel et al. (2016) discuss
similar issues for the closely related domain of recommender systems.

In this work we presented an overview of the current state of learner mod-
eling taking this wider context into account. The arguments presented here
have several consequences for both developers and researchers.

7.1 Developers’ Perspective

The performance of real world educational systems is to a large degree deter-
mined by the “weakest link”. For example, it is important to consider all the
links in Fig. 1. It is typically better to have a simple implementation of all im-
portant components than to have a very sophisticated model of learning, but
poor implementation of an instructional policy and missing an open learner
model. Previous work already noted this risk: “it is easy to get carried away
by the sheer intellectual challenge of assessment and to overbuild this part of
the tutoring system” (Vanlehn, 2006). Moreover, real-world machine learning
systems often have high maintenance costs (Sculley et al., 2015). From the de-
velopers’ perspective it is thus preferable to use simple learner models unless
there is a clear reason to prefer more complex models.

Even when we decide to employ “simple” models, we still need to make
many choices, e.g., about the granularity of the knowledge components used
or the scope of observed data. Throughout this paper we have argued that
the KLI framework can provide guidance for making these choices. An explicit
clarification of the types of knowledge components and learning processes rele-
vant for a particular application is useful not only for choosing a proper learner
model, but it can be also helpful in other design decisions (e.g., the organiza-
tion of the user interface or the design of interactive activities). Similarly, it
is important to clarify the purpose of the model for a particular application
and to take it into account when choosing a modeling approach. For example,
model interpretability is not fundamental for an automatic instructional pol-
icy, but very important for getting actionable insight (“human-in-the loop”).

Fig. 7 provides an overview of the main relations between types of learn-
ing processes, purposes of models, and aspects of learner modeling. Given
the state-of-the-art, the figure can provide only a basic guidance. Reports on
practical case studies that explicitly focus on the relations between the KLI
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framework and learner modeling decisions would be beneficial for further clar-
ification and verification of the proposed guidelines.

From the developer’s perspective an important issue is model portability
– it is advantageous when models can be transferred from one environment
to another. The issue of portability has received attention in learner modeling
only recently (Valdés Aguirre et al., 2016). Further research in this direction
should take the context of learner modeling explicitly into account – it is
probable that portability is feasible only in environments that have a very
similar context, i.e., having the same purpose of the model and addressing
similar types of knowledge components and learning processes.

7.2 Researchers’ Perspective

Putting learner modeling into a relationship with the KLI framework and
purposes of models provides an inspiration for future research work. The ar-
guments presented about the relationships outlined in Fig. 7 should be further
specified and experimentally tested.

For illustration we present several specific hypotheses of this type. These
hypotheses are mostly based on arguments presented in this work and on
previous research, but currently there is not sufficient evidence to provide
clear backing of them. Moreover, we expect that even if they are valid in
their general form, further research will lead to adding clarifications and more
nuanced formulations.

– Hypothesis 1: The relative performance of Bayesian knowledge tracing ver-
sus logistic models of learning depends on the type of relevant learning
processes. Logistic models are better for modeling fluency and memory
processes, while Bayesian knowledge tracing is better for understanding
and sense making processes.

– Hypothesis 2: The modeling of forgetting is very important for fluency and
memory processes, but for understanding and sense making processes it
brings only slight improvement (as measured by the predictive accuracy of
models or by an impact on an automated instructional policy).

– Hypothesis 3: If the model is used for mastery detection, it is more impor-
tant what data are used for modeling than the exact details of models, e.g.,
incorporating response times to mastery criteria has higher impact than
using a different model of learning. Slightly different models with the same
input data lead to very similar mastery decision.

– Hypothesis 4: If the model is used for actionable insight, then even slightly
different models with the same input data and with similar predictive ac-
curacy can lead to different conclusions and thus different actions being
taken.

Model evaluations presented in research papers should pay more attention
to the purpose of models. The purpose of evaluated models should be explicitly
stated and evaluation methodology should be selected accordingly for the given
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purpose (e.g., the choice of a metric and a cross-validation approach). From
the research perspective an important type of model purpose is “actionable
insight”. This type of analysis is typically based on the interpretation of model
parameters. Therefore, for this purpose it is important to pay specific attention
to the consistency of parameters and not just analyze the prediction accuracy
(Huang et al., 2015b). It is also important to consider the potential impact
of data collection or at least to describe the way data were collected and to
mention limitations due to data collection (Pelánek et al., 2016).

An interesting problem connecting the researchers’ and developers’ per-
spective is the identification of leverage points (Meadows, 1999) – modeling
decisions with the highest impact. It would be useful to develop general tech-
niques and guidelines that would help to identify leverage points for a partic-
ular learner modeling application.
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Cen H, Koedinger K, Junker B (2008) Comparing two irt models for conjunc-
tive skills. In: Proc. of Intelligent Tutoring Systems, Springer, pp 796–798

Chen Y, Wuillemin PH, Labat JM (2015) Discovering prerequisite structure of
skills through probabilistic association rules mining. In: Proc. of Educational
Data Mining, pp 117–124

Chen Y, Gonzlez-Brenes J, Tian J (2016) Joint discovery of skill prerequisite
graphs and student models. In: Proc. of Educational Data Mining

Chi M, Koedinger K, Gordon G, Jordan P, VanLehn K (2011) Instructional
factors analysis. In: Proc. of Educational Data Mining

Chrysafiadi K, Virvou M (2013) Student modeling approaches: A literature
review for the last decade. Expert Systems with Applications 40(11):4715–
4729

Conati C, Gertner A, Vanlehn K (2002) Using bayesian networks to manage
uncertainty in student modeling. User modeling and user-adapted interac-
tion 12(4):371–417

Corbett AT, Anderson JR (1994) Knowledge tracing: Modeling the acquisi-
tion of procedural knowledge. User modeling and user-adapted interaction
4(4):253–278

David YB, Segal A, Gal YK (2016) Sequencing educational content in class-
rooms using bayesian knowledge tracing. In: Proc. of Learning Analytics &
Knowledge, ACM, pp 354–363

De La Torre J (2009) Dina model and parameter estimation: A didactic. Jour-
nal of Educational and Behavioral Statistics 34(1):115–130

Desmarais M (2011) Conditions for effectively deriving a q-matrix from data
with non-negative matrix factorization. In: Proc. of Educational Data Min-
ing

Desmarais M, Lemieux F (2013) Clustering and visualizing study state se-
quences. In: Proc. of Educational Data Mining

Desmarais M, Beheshti B, Xu P (2014) The refinement of a q-matrix: Assessing
methods to validate tasks to skills mapping. In: Proc. of Educational Data
Mining

Desmarais MC, Baker RS (2012) A review of recent advances in learner and
skill modeling in intelligent learning environments. User Modeling and User-
Adapted Interaction 22(1-2):9–38

Desmarais MC, Naceur R (2013) A matrix factorization method for mapping
items to skills and for enhancing expert-based q-matrices. In: Proc. of Arti-
ficial Intelligence in Education, Springer, pp 441–450

Desmarais MC, Meshkinfam P, Gagnon M (2006) Learned student models
with item to item knowledge structures. User Modeling and User-Adapted
Interaction 16(5):403–434

Doignon JP, Falmagne JC (2012) Knowledge spaces. Springer Science & Busi-
ness Media

Essa A (2016) A possible future for next generation adaptive learning systems.
Smart Learning Environments 3(1):16

Falakmasir MH, Pardos ZA, Gordon GJ, Brusilovsky P (2013) A spectral
learning approach to knowledge tracing. In: Proc. of Educational Data Min-



Title Suppressed Due to Excessive Length 37

ing
Feng M, Heffernan N, Mani M, Heffernan C (2006) Using mixed-effects mod-

eling to compare different grain-sized skill models. In: Proc. of Educational
Data Mining: Papers from the AAAI Workshop

Gasparetti F, Limongelli C, Sciarrone F (2015) Exploiting wikipedia for dis-
covering prerequisite relationships among learning objects. In: Proc. of In-
formation Technology Based Higher Education and Training, IEEE, pp 1–6

Goldhammer F (2015) Measuring ability, speed, or both? challenges, psycho-
metric solutions, and what can be gained from experimental control. Mea-
surement: Interdisciplinary Research and Perspectives 13(3-4):133–164

Goldin I, Koedinger K, Aleven V (2013) Hints: You can’t have just one. In:
Proc. of Educational Data Mining

Gong Y, Beck J (2011) Items, skills, and transfer models: which really matters
for student modeling? In: Proc. of Educational Data Mining

Gong Y, Beck JE, Heffernan NT (2010) Comparing knowledge tracing and
performance factor analysis by using multiple model fitting procedures. In:
Proc. of Intelligent Tutoring Systems, Springer, pp 35–44

Gong Y, Beck JE, Heffernan NT (2011) How to construct more accurate stu-
dent models: Comparing and optimizing knowledge tracing and performance
factor analysis. International Journal of Artificial Intelligence in Education
21(1-2):27–46

Gong Y, Beck JE, Ruiz C (2012) Modeling multiple distributions of student
performances to improve predictive accuracy. In: User Modeling, Adapta-
tion, and Personalization, Springer, pp 102–113
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