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Abstract We investigate applications of learner modeling in a computerized
adaptive system for practicing factual knowledge. We focus on areas where
learners have widely varying degrees of prior knowledge. We propose a modular
approach to the development of such adaptive practice systems: dissecting
the system design into an estimation of prior knowledge, an estimation of
current knowledge, and the construction of questions. We provide a detailed
discussion of learner models for both estimation steps, including a novel use
of the Elo rating system for learner modeling. We implemented the proposed
approach in a system for practising geography facts; the system is widely used
and allows us to perform evaluation of all three modules. We compare the
predictive accuracy of different learner models, discuss insights gained from
learner modeling, as well as the impact different variants of the system have
on learners’ engagement and learning.

Keywords Learner modeling · Computerized adaptive practice · Elo rating
system · Model evaluation · Factual knowledge

1 Introduction

Online educational systems like Khan Academy, Duolingo, or Coursera are
used by millions of learners. Such systems offer great potential for exploiting
the possibilities of adaptive behavior, i.e., to provide learners with materi-
als and tasks that are most useful to them. This potential is currently only
partially realized, because the development of adaptive learning systems is
complex, lengthy, and expensive.

The general motivation of our work is to make the development of such
systems as automated as possible, particularly to enable systems to learn rel-
evant aspects of educational domains from data so that domain experts can
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Fig. 1 Map of the world colored by prior knowledge of countries. The shading corresponds
to the estimated probability of a correct answer for an average user of outlinemaps.org

(mostly Czech students).

focus on those parts of system development where their input is indispens-
able. This automation is especially important for developing systems for small
target groups of learners, such as those that deal with specialized topics or
languages spoken by relatively small numbers of people.

This work focuses on the development of adaptive systems for learning
factual knowledge, i.e., for storing pieces of information in declarative mem-
ory. Using the terminology of the knowledge-learning-instruction framework
(Koedinger et al, 2012), we focus on knowledge components that have a con-
stant application condition and a constant response. We are particularly con-
cerned with the learning of facts in areas where learners display great variation
in their prior knowledge, e.g., geography, biology (flora and fauna), human
anatomy, or foreign language vocabulary. To illustrate the usefulness of esti-
mating prior knowledge, Fig. 1 depicts significant differences in prior knowl-
edge of world countries.

The main contribution of this paper lies in how it integrates all of the steps
necessary for the application of learner modeling in real adaptive educational
systems, namely, methodical issues related to learner modeling, the evalua-
tion of models, parameter fitting, and practical wide-scale applications. These
issues have been studied before, but mostly in isolation. The integration of
modeling in a real system forces us to consider practical aspects of learner
modeling as well: we need to consider not just the predictive accuracy of mod-
els (the focus of most learner modeling papers), but also the computational
efficiency and applicability of models in an online application.

Our approach is generic and can be applied to the adaptive practice of
facts in any domain. We use a specific domain (geography) as our case study
for which we developed a widely-used system (outlinemaps.org) and we used
it to evaluate learner models and their impact.
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We also provide several specific technical contributions:

• proposals for several novel learner modeling techniques or novel uses of
models, particularly connected to the use of the Elo rating system (Elo,
1978) in the context of learner modeling,

• an evaluation of learner models over large scale historical data,
• interesting insights into the target domain and learner behavior,
• a proposal for and evaluation of techniques for adaptive question construc-

tion,
• an analysis of the relationship between question difficulty and learner mo-

tivation.

2 Related Work

To achieve effective adaptive learning in domain like geography it is necessary
to address several interrelated issues, particularly the estimation of knowledge,
modeling of learning, memory effects (spacing and forgetting), and question
construction. These issues have been studied before, but separately and in
different contexts.

Adaptation has been studied thoroughly in the context of computerized
adaptive testing (CAT) with the use of item response theory (De Ayala, 2008).
In CAT the primary goal is to determine the abilities of learners. Therefore,
the focus is on precision and statistical guarantees. The research does not
usually address learning since skills are not expected to change during a test,
and motivation, which is typically extrinsic in the case of test taking. We
focus on computerized adaptive practice. In this setting the primary goal is
to improve learners’ skills: the estimation of skills is a secondary goal, which
helps to achieve the main one. Thus, we do not need to focus on statistical
guarantees provided by the skill estimation as much as in CAT. On the other
hand, the issues of learning, forgetting, and motivation are crucial for adaptive
practice. An example of a typical computerized adaptive practice system is
Math Garden (Klinkenberg et al, 2011), which focuses on practising basic
arithmetical operations.

Adaptability in the context of learning is studied mainly in the area of intel-
ligent tutoring systems (Vanlehn, 2006). These systems focus more on learning
complex cognitive skills than on learning facts, e.g., mathematics (Koedinger
and Corbett, 2006), physics (Schulze et al, 2000), or computational thinking
(Basu et al, 2017). An important part of the research into intelligent tutoring
systems includes issues like step-by-step solution monitoring, hints, scaffold-
ing, and forms of feedback, which are issues not directly relevant to practising
facts.

A fundamental part of all adaptive educational systems is learner model-
ing (Desmarais and Baker, 2012). A learner model provides an estimate of
learners’ knowledge based on their answers. The estimated knowledge is then
used by other components of a system to adapt its behavior and provide feed-
back to learners. Two of the most popular approaches to learner modeling are
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Bayesian knowledge tracing (Corbett and Anderson, 1994) and models based
on a logistic function (which can be seen as extensions of the Rasch model from
item response theory), e.g., Performance factor analysis (Pavlik et al, 2009).
A lot of research focuses on the acquisition of skills while less attention is paid
to prior knowledge and forgetting; exceptions include Pardos and Heffernan
(2010); Qiu et al (2011). Learner modeling techniques most related to our ap-
proach are recent methods that integrate item response theory and knowledge
tracing (González-Brenes et al, 2014; Khajah et al, 2014a,b). These methods
can model both prior knowledge and learning and they do it in a principled
way. However, they use algorithms that cannot be easily adapted for use in
a realistic educational system (EM algorithm, Monte Carlo Markov Chain).
We use methods based on the Elo rating system (Elo, 1978), which are more
heuristic, but fast and easily applicable in an online setting. The Elo rating
system was originally developed for rating chess players, and it has recently
been adapted for use in educational systems (Klinkenberg et al, 2011; Pelánek,
2016; Wauters et al, 2011). We describe extensions of the Elo rating system re-
lated to learner models based on Bayesian networks (Conati et al, 2002; Käser
et al, 2014; Millán et al, 2010).

We use the learner model to automatically construct suitable questions.
Previous research has proposed many techniques for automatic item gener-
ation (Gierl and Haladyna, 2012), particularly using natural language pro-
cessing techniques (Mitkov et al, 2006), ontologies, and domain models (Gierl
et al, 2012). In contrast to this research we construct relatively simple multi-
ple choice questions about factual knowledge, but we place greater focus on
personalization (connecting the question construction to learner modeling).

The learning of facts is well studied in research on memory, e.g., in the
study of spacing and forgetting effects (Pavlik and Anderson, 2005) and spaced
repetition (Karpicke and Roediger, 2007). These studies are not, however,
usually done in a realistic learning environment, but in a laboratory and in
areas with little prior knowledge, e.g., learning arbitrary word lists, nonsense
syllables, obscure facts, or Japanese vocabulary (Delaney et al, 2010; Pavlik
and Anderson, 2005). Such an approach facilitates some interpretation of the
experimental results, but the models developed so far are not easily applicable
in educational settings where prior knowledge is an important factor. There are
also many implementations of the spaced repetition principle using “flashcard
software” (a well-known example is SuperMemo), but these implementations
usually use scheduling algorithms with fixed ad-hoc parameters and do not
try to learn from collected data (or only in a limited way). Spaced repetition
was also studied specifically for geography (Zirkle and Ellis, 2010), but only
in a simple setting.

Another important aspect of educational systems is engagement, which
the adaptive system can influence for example by selecting suitably difficulty
questions in order to aim at the flow state (Csikszentmihalyi, 1991). This is
a typical general aim of adaptive systems, but the specification of adaptive
behavior is usually based on the intuition of system developers without proper
evaluation (Klinkenberg et al, 2011) or evaluated using only comparisons to a
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control group without any adjustments to the level of difficulty (Barla et al,
2010). The most relevant research is by Lomas et al (2013) who evaluated
the “Inverted-U Hypothesis” by testing many variants of an educational game
(number line estimation). However, they did not manage to find any U-shaped
relationship between difficulty and engagement. For their study the relation-
ship was a monotone function (simpler problems were more engaging). Ex-
plaining the results, they state that maybe they “never made the game easy
enough” (Lomas et al, 2013). Our experiments are similar, the main difference
being that we use a more realistic educational application. Another similar
study was done using Math Garden software (Jansen et al, 2013). The authors
compared three conditions (target success rate 60%, 75%, 90%) and showed
that the easiest condition led to the best learning (mediated by a number of
solved problems). Our results, in contrast, suggest that more difficult questions
are better for learning facts.

An interesting historical perspective is provided by the comparison of
our system with a 45 year old computer-assisted instruction system called
Scholar (Carbonell, 1970), whose principles were demonstrated in the domain
of South American geography. On one hand, the Scholar system was more
ambitious than the current system in that it was capable of a mixed-initiative
dialog in a natural language and incorporated many geography facts (not just
names and locations as in the system we are presenting). The system was, how-
ever, much more difficult to develop and required time consuming knowledge
engineering. The main conceptual difference of our system is the “learning
from data” approach, which makes the development of educational systems
simpler and more scalable.

This paper is based on previously published conference papers (Nižnan
et al, 2015; Papoušek and Pelánek, 2015; Papoušek et al, 2014, 2015; Pelánek,
2015; Papoušek et al, 2016b,c). It provides a systematic integration of previ-
ously published results with updated evaluations and several additional results.

3 System Description

The basic functionality of the proposed architecture is simple: the system
provides a series of questions about items and learners answer them. Since
we are dealing with learning factual knowledge, the structure of questions is
also simple (e.g., multiple-choice questions) and the feedback consists only of
information about correctness and a provision of the correct answer after a
mistake. The core of the system lies in estimating learners’ knowledge and
selecting suitable questions.

3.1 General Structure

We break down the design of an adaptive practice system for facts into three
steps and treat each of them separately.
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1. Estimating prior knowledge. The system estimates the probability that a
learner l knows an item i before the first question about this item. This is
based on the learner’s previous answers and on other learners’ answers to
questions about the item.

2. Estimating current knowledge. The system estimates the probability that
a learner l knows an item i based on the estimation of prior knowledge
and a sequence of previous answers of the learner l on questions about the
item i.

3. Question construction. Constructing a suitable question for a learner is
based on the estimate of their current knowledge and a recent history
of answers. The question construction phase also includes the choice of
distractors for multiple choice questions.

Each of these issues is described and evaluated in a single section. While treat-
ing each of these steps independently is a useful simplification, inasmuch as it
makes the development of systems and learner models more tractable, such a
simplification has its limitations. For example, we are aware that estimating
prior knowledge and current knowledge would be more accurate if they were
more interconnected.

3.2 Modeling Approach

Although our focus is on modeling the learner’s knowledge of facts, in the
description of models we use the common general terminology used in learner
modeling, particularly the notions of items and skills. In applying this to
geography, items correspond to locations and names of places while skills cor-
respond to the knowledge (memory activation) of these facts.

In all models we use the logistic function σ(x) = 1
1+e−x as a link between a

skill and a probability that a learner answers correctly. In the case of multiple-
choice questions the probability of a correct answer can be modeled naturally
by a shifted logistic function σ(x, n) = 1

n+(1− 1
n ) 1

1+e−x , where n is the number
of options. The same approach to modeling guessing is used for example, in the
standard three-parameter logistic model of item response theory (De Ayala,
2008). We are only concerned with online models, i.e., those that are updated
after each answer. Such models can adapt to user behavior quickly and are
therefore very useful in adaptive practice systems.

3.3 Specific System – Geography

For experiments we use an adaptive educational system outlinemaps.org –
an application for learning geography (Papoušek et al, 2014). Learners can
choose a specific map (e.g., Africa, Germany) and a type of place (e.g., coun-
tries, regions, cities, rivers). The system uses just two simple types of ques-
tions: questions about the location of a selected place (“Where is France?”)
and questions about the name of a selected place (“What is the name of the
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highlighted country?”). The questions are either open (select any item from
a given map) or multiple-choice with 2 to 6 options. The focus of the system
is on adaptivity, thus the questions are selected according to the estimated
knowledge of a particular learner.

Learners answer questions using an interactive ‘outline map’. After a se-
quence of 10 questions, the system provides feedback on the learner’s progress.
Learners can also access a visualization of their knowledge using an open
learner model.

The application is currently used by hundreds of learners per day, the
majority of whom are from the Czech Republic (> 85%) and Slovakia (> 10%)
since the interface was originally in Czech. English, Spanish, and German
versions have since become available. The system is available to everyone, free
of charge. We store no personal information about learners – we only log their
IP address. We have no control over the number of answered questions, the
time when learners practice, or whether they ever return to the system after
one session of practice.

4 Estimation of Prior Knowledge

At first, we process the estimation of prior knowledge. Our aim in this step
is to estimate the learners’ knowledge before they start using the system. We
specifically want to estimate the probability that a learner l knows an item i
based on previous answers of the learner l to questions about different items
and previous answers of other learners to questions about the item i. For a
simpler interpretation of the data, we use only the first answer about each
item for each learner in this step and we assume that learner’s knowledge of
an item i is not influenced by answering questions about other items – this is
a simplification in the case of multiple-choice questions where the item i can
occur as a distractor in a question about other items.

4.1 Basic Model

The basic model assumes that both learners and studied facts are homoge-
neous. It assumes that learners’ prior knowledge in the domain can be modeled
by a one-dimensional parameter.

We model the prior knowledge using the Rasch model, which entails hav-
ing a learner parameter θl corresponding to the global domain knowledge of
a learner l and an item parameter di corresponding to the difficulty of an
item i. The probability that the learner answers correctly is estimated using
a logistic function of a difference between the global skill and the difficulty:
P (correct |θl, di) = σ(θl − di).

A common approach to parameter estimation for the Rasch model is joint
maximum likelihood estimation. In its basic form this approach is an itera-
tive procedure that is slow for large data, and is not suitable for an online
application which needs to continuously adjust estimates of parameters.
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Parameter estimation can be done efficiently using a variant of the Elo
rating system (Elo, 1978). The Elo rating system was originally devised for
chess rating, but we can use it in learner modeling by interpreting a learner’s
answer to a question about an item as a “match” between the learner and the
item. The skill and difficulty estimates are updated as follows:

θl := θl +K · (correct − P (correct |θl, di)),
di := di +K · (P (correct |θl, di)− correct),

where correct denotes whether the question was answered correctly and K
is a constant specifying the sensitivity of the estimate to the last attempt.
An intuitive improvement, which is used in most Elo extensions, is to use
an “uncertainty function” instead of the constant K – the update should get
smaller as we have more data about a learner or an item. We use an uncertainty
function U(n) = α/(1 + βn), where n is the number of previous updates to
the estimated parameter and α, β are meta-parameters.

4.2 Bayesian Model

In our basic model, uncertainty is modeled as a simple function of the number
of attempts. Such an approach is a simplification since some answers are more
informative than others and thus the effect of answers on the reduction of un-
certainty should be differentiated. This can be done using a Bayesian modeling
approach. For this model we treat θl, di and correct as random variables. We
can use Bayes’ theorem for updating our beliefs about skills and difficulties:

P (θl, di|correct) ∝ P (correct|θl, di) · P (θl, di).

We assume that the difficulty of an item is independent of a learner’s skill
and thus P (θl, di) = P (θl) · P (di). The updated beliefs can be expressed as
marginals of the conditional distribution, for example:

P (θl|correct) ∝ P (θl) ·
∫ ∞
−∞

P (correct|θl, di = y) · P (di = y)dy.

In the context of rating systems for games, the basic Elo rating system has been
extended in this direction, particularly in the Glicko system (Glickman, 1999).
It models prior skill by a normal distribution and uses a numerical approxi-
mation to represent the posterior by a normal distribution and to update the
mean and the standard deviation of the skill distribution using closed form
expressions. Another Bayesian extension is TrueSkill (Herbrich et al, 2006),
which further extends the system to allow team competitions.

This approach is, however, difficult to modify for new situations, e.g., in
our case we want to use the shifted logistic function for modeling answers
to multiple-choice questions. Therefore, we use a more flexible particle based
method to represent the skill distribution. The skill is represented by a skill
vector θl, which gives the values of skill particles, and a probability vector



Elo-based Learner Modeling for the Adaptive Practice of Facts 9

pl, which gives the probabilities of the skill particles (sums to 1). The item
difficulty is represented analogically by a difficulty vector di and a probability
vector pi. In the following text the notation plk stands for the k-th element
of the vector pl.

The skill and difficulty vectors are initialized to contain values that are
spread evenly in a specific interval around zero. The probability vectors are
initialized to proportionally reflect the probabilities of the particles in the se-
lected prior distribution. During updates, only the probability vectors change,
while the vectors that contain the values of the particles stay fixed. Particles
are updated as follows:

plk := plk ·
n∑
j=1

P (correct|θl = θlk, di = dij) · pij ,

pij := pij ·
n∑
k=1

P (correct|θl = θlk, di = dij) · plk.

After the update, we must normalize the probability vectors so that they
sum to one. A reasonable simplification that avoids summing over the particle
values is:

plk := plk · P (correct|θl = θlk, di = E[di]),
pij := pij · P (correct|θl = E[θl], di = dij),

where E[di] (E[θl]) is the expected difficulty (skill) particle value (i.e., E[di] =
di
T ·pi). By setting the number of particles we can trade precision on one hand

for speed and memory requirements on the other.
Using this particle model in a real-world application would require stor-

ing the probabilities for all the particles in a database. If we assume that our
beliefs stay normal-like even after many observations, then we can approxi-
mate each of the posteriors by a normal distribution. This approach is called
assumed-density filtering (Minka, 2001). Consequently, each posterior can be
represented by just two numbers, the mean and the standard deviation. In this
simplified model, each update requires the generation of new particles. We gen-
erate the particles in the interval (µ−6σ, µ+6σ). Otherwise, the update stays
the same as before. After the update is performed, the mean and the standard
deviation are estimated in a standard way: µθl := θl

T · pl, σθl := ‖θl − µθl‖2.
The model can be extended to include multiplicative factors for items (qi)

and learners (rl), similarly to the Q-matrix method (Tatsuoka, 1983; Barnes,
2005) or collaborative filtering (Koren and Bell, 2011). Let k be the number
of factors, then when x is passed to the likelihood function σ(x), it has the

form: x = θl − di +
∑k
j=1 qi,j · rl,j . The updates are similar – we only need to

track more variables.

4.3 Hierarchical Model

In the models discussed so far items were characterized only by their difficulty,
otherwise the domain was assumed to be homogeneous. In the next model we
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try to capture the domain in more detail by relaxing this assumption. Items are
divided into disjoint sets – usually called ‘concepts’ or ‘knowledge components’,
e.g., the allocation of countries to continents. The model now uses a two-level
hierarchy of skills: in addition to the global skill θl, there are now concept
skills θlc. To estimate the model parameters we extend the Elo rating system.
Predictions are done in the same way as in the basic Elo rating system, the
global skill being corrected just by the concept skill: P (correct |θl, θlc, di) =
σ((θl + θlc)− di). The update of parameters is also analogical:

θl := θl + U(nl) · (correct − P (correct |θl, θlc, di)),
θlc := θlc + γ · U(nlc) · (correct − P (correct |θl, θlc, di)),
di := di + U(ni) · (P (correct |θl, θlc, di)− correct).

For the uncertainty function U(n) we use the same function as before; γ is a
new meta-parameter specifying the sensitivity of the model to concepts.

The proposed model is related to several learner modeling approaches. It
can be viewed as a simplified Bayesian network model (Conati et al, 2002;
Käser et al, 2014; Millán et al, 2010). In a proper Bayesian network model
we would model skills by a probability distribution and update the estimates
using Bayes’ theorem; equations in our model correspond to a simplification
of this computation using only point skill estimates. The Bayesian network
model can also model more complex relationships (e.g., prerequisites), which
are not necessary in our case, i.e., learning factual knowledge. Other related
modeling approaches are the Q-matrix method (Tatsuoka, 1983; Barnes, 2005),
which focuses on modeling mapping between skills and items (mainly using
N : M relations), and models based on knowledge space theory (Doignon and
Falmagne, 1999). Both these approaches are more complex than the proposed
model. Our aim here is to evaluate whether even a simple concept-based model
is practical for modeling factual knowledge.

The advantage of the hierarchical model is that learners’ knowledge is rep-
resented in more detail and the model is thus less sensitive to the assumption
of homogeneity among learners. However, to use the hierarchical model, we
need to determine concepts, which involves dividing items into disjoint sets.
This can be done in several ways. Concepts may be specified manually by a do-
main expert. In the case of the geography learning application some groupings
are natural (continents, countries). In other cases the construction of concepts
is more difficult, such as in the case of foreign language vocabulary where it
is not clear how to determine coherent groups of words. It is also possible to
create concepts automatically or to refine concepts provided by an expert with
the use of machine learning techniques (Desmarais et al, 2012; Nižnan et al,
2014).

To determine concepts automatically, it is possible to use classical clus-
tering methods. For our experiments we used the spectral clustering algo-
rithm (Von Luxburg, 2007) with similarity of items i, j defined as a Spear-
man’s correlation coefficient cij of correctness of answers (represented as 0 or
1) of shared learners – those who answered questions about both items i and
j. To take into account the use of multiple-choice questions, we decrease the
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binary representation of a response r by the guess factor to r − 1/k (k being
the number of options).

It is also possible to combine the manual and the automatic construction
of concepts (Nižnan et al, 2014). With this approach the manually constructed
concepts are used as item labels. Items with these labels are used as a training
set of a supervised learning method for which we used logistic regression with
regularization. For the item i, the vector of correlation with all items cij is
used as a vector of features. Errors of this classification method are interpreted
as “corrected” labels; see Nižnan et al (2014); Nižnan et al (2014) for more
details.

4.4 Networked Model

The hierarchical model enforces a strict division of items into groups. With the
next model we bypass this division by directly modeling the relations between
individual items, i.e., we treat items as a network, hence the name ‘networked
model’. For each item we have a local skill θli. For each pair of items we
compute cij – the degree to which they are correlated, which is computed in
the same way as in the concept detection. This is done from training data or
– in the real system – once a certain number of answers has been collected.
After the answer to the item i, all skill estimates for all other items j are
updated based on cij . The model still uses the global skill θl and makes the
final prediction based on the weighted combination of the global skill θl and
the local skill θli: P (correct |θl, θli) = σ(w1θl + w2θli − di). Parameters are
updated as follows:

θl := θl + U(nl) · (correct − P (correct |θl, θli)),
θlj := θlj + cij · U(nl) · (correct − P (correct |θl, θli)) for all items j,
di := di + U(ni) · (P (correct |θl, θli)− correct).

This model is closely related to the multivariate Elo rating system previously
proposed in the context of adaptive psychometric experiments (Doebler et al,
2014).

For illustration of the model, Fig. 2 shows a selection of the most important
correlations for European countries. Note that this automatically generated
figure contains some natural clusters (from the perspective of a typical user of
our system): Balkan countries (top center), Baltic countries (top left), Scan-
dinavian countries (bottom right), and well-known countries (bottom left).

4.5 Evaluation

This section reports our experience with fitting model parameters and the com-
parison of different models with respect to the accuracy of their predictions.
The experiments are based on a data set that is publicly available (Papoušek
et al, 2016a). Our aim at this point is to model prior knowledge, so we selected
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Fig. 2 Illustration of the networked model on European countries. Only the most important
edges for each country are shown.

for each learner and item the first answer only. The used data set contains ap-
proximately 3,900,000 answers of 91,000 learners. The data set was split into
a training set (30%) and a test set (70%) in a learner-stratified manner. All
the reported models work online. The training of models (parameters θl, di)
continues on the test set, but only predictions on this set are used to evaluate
models.

4.5.1 Model Parameters

The training set was used for finding the values of the meta-parameters of
individual models. The grid search was used to find the best parameters of
the uncertainty function U(n) = α/(1 + βn). Optimal performance over the
training set was achieved for values α = 1 and β = 0.06; this exact choice of
parameter values is not crucial as many choices of α, β provide very similar
results. We also used these values for derived models that use the uncertainty
function.

The basic Elo rating system with its uncertainty function provides both
fast, rough estimates after a few answers and stability in the long run (see
Fig. 3 left). It also provides nearly identical estimates as the joint maximum
likelihood estimation (JMLE), which is the standard approach to estimating
parameters of the Rasch model (Fig. 3 right, correlation 0.97). JMLE is an
iterative procedure requiring several iterations over the whole data set, whereas
the Elo rating system requires only a single pass of the data. More importantly,
the Elo rating system can be easily used online (performing a simple update
for each new observation). It is possible to modify the JMLE approach for
online usage – learning item parameters offline and computing online only
skill estimates, which are based on only a small subset of data. But such
modification is still more complex than using the Elo rating system. Since the
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Fig. 3 Estimation of prior knowledge: Development of estimates of difficulty of selected
countries under the Elo rating system (left). Comparison of Elo and JMLE difficulty esti-
mates (right).

Table 1 Comparison of models on the test set.

Model RMSE LL AUC

Mean of learner and item success rate 0.4348 −1.5260 × 106 0.6797
Elo (α = 1, β = 0.06) 0.4142 −1.4073 × 106 0.7431
Bayesian model 0.4147 −1.4106 × 106 0.7414
Bayesian model (3 skills) 0.4117 −1.3924 × 106 0.7503
Hierarchical model 0.4115 −1.3915 × 106 0.7514
Networked model 0.4118 −1.3918 × 106 0.7509

estimates of the two methods are nearly identical, we conclude that the Elo
rating system is preferable in our context.

4.5.2 Accuracy of Predictions

Table 1 shows the results of model comparison. As a baseline we report
‘learner-item success rate’: this prediction is given by averaging the success
rate of previous learners on a given item and the success rate of a given learner
on previous items. To compare models we use standard performance metrics.
As a primary metric we consider the root mean square error (RMSE), since
the application works with absolute values of predictions (see Pelánek (2015)
for more details on choice of metric). In addition to RMSE we also report log-
likelihood (LL) and the area under the ROC curve (AUC). The main results
are not dependent on the choice of metric. In fact, predictions of models are
highly correlated. For example, in the case of the basic Elo model and the
hierarchical model, most predictions (95%) differ by less than 0.1.

The hierarchical model reported in Table 1 uses manually determined con-
cepts based on both location (e.g., continent) and type of place (e.g., country).
Both the hierarchical model and the networked model bring an improvement
to the basic Elo model. The improvement is statistically significant (as deter-
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mined by a t-test over results of repeated cross-validation), but it is rather
small. Curiously, the Particle Bayes model is slightly worse than the simple
Elo rating system, i.e., the more involved modeling of uncertainty does not im-
prove predictions. The performance improves only when we use the multiple
skill extension.

We hypothesize that the improvement of the hierarchical (respectively mul-
tiple skill) extensions model would be more significant for less homogeneous
populations of learners. We probed this hypothesis by artificially creating het-
erogeneous data sets using location information from IP addresses. From the
original data set we created two test sets. The first one consists of 6,000 Czech
learners and represents a homogeneous population. The second one consists
of 6,000 learners spread all over the world and represents a heterogeneous
population. The results of the evaluation across these data sets show that the
hierarchical and network model has the same performance on both data sets,
whereas the basic model struggles with the heterogeneous data set and has
significantly higher RMSE than for the homogeneous data set.

4.6 Using Models for Insight

In learner modeling we are interested not just in predictions, but also in getting
insight into the characteristics of the domain and the learning process. The
advantage of more complex models may lie in additional parameters that bring
or improve such insights.

The extensions of the basic model (networked, hierarchical, Bayesian with
multiple skills) bring insight into the domain thanks to the analysis of rela-
tions among items, e.g., by identifying the most useful clusters of items or by
exploring relationships among items (see Fig. 2). Such results can be used for
improving the behavior of an adaptive educational system. For example, the
system can sequence the practice in such a way that items from one concept
are practiced in a row (which is in many cases natural from the user experience
perspective). Another possible use of concepts is for the automatic construc-
tion of multiple-choice questions with good distractors (falling under the same
concept).

The hierarchical model can be used to evaluate the quality of different
concepts. We used it to compare concepts obtained in three different ways:
‘manual’ (specified by authors using data about items type and location), ‘au-
tomatic’ (derived completely automatically and based on the available data),
and ‘corrected’ (manually specified concepts refined using the data available).
The methods used to realize the ‘automatic’ and ‘corrected’ approaches are
described in Section 4.3. We used several approaches for specifying the con-
cepts manually: based on type (e.g., countries, cities, rivers), location (e.g.,
Europe, Africa, Asia) and combination of the two approaches (e.g., European
countries, European cities, African countries). Since we have the most answers
for European countries, we also considered a data set containing only answers
for European countries. For this data set we used two sets of concepts. The
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Table 2 Comparison of manual, automatically corrected manual, and automatic concepts
(C is the number of concepts). Quality of concepts is expressed as RMSE improvement
(∆ RMSE) of the hierarchical model with these concepts over the basic model.

All items C ∆ RMSE

manual – type 14 0.00144
corrected – type 14 0.00132
manual – location 22 0.00195
corrected – location 22 0.00183
manual – combination 56 0.00268
corrected – combination 56 0.00249
automatic 5 −0.00004
automatic 20 0.00163
automatic 50 0.00156

Europe C ∆ RMSE

manual 3 −0.00009
corrected 3 0.00011
manual 6 −0.00024
corrected 6 0.00004
automatic 2 −0.00001
automatic 3 0.00009
automatic 5 −0.00028

first is the partition into Eastern, Western, North-western, Southern, Central
and South-eastern Europe, and the second concept set is obtained from the
first one by the union of Central, Western and Southern Europe, since coun-
tries from these regions are mostly well-known by our Czech students, and
then the union of South-eastern and Eastern Europe.

The quality of concepts was evaluated using the prediction accuracy of the
hierarchical model using these concepts. Table 2 shows the results expressed
as the RMSE improvement over the basic model. Note that the differences in
RMSE are necessarily small, since the models used are very similar and differ
only in the allocation of items to concepts. For the whole data set (1368 items),
a larger number of concepts improves the performance. The best results are
achieved by manually specified concepts (a combination of location and type
of place), automatic correction does not lead to a significantly different per-
formance. For the smaller data set of European countries (39 items), a larger
number of both manual and automatically determined concepts causes an in-
ferior performance – a model with too small concepts suffers from a loss of
information. In this case the best result is achieved by a correction of manu-
ally specified concepts. The analysis shows that the corrections make intuitive
sense, since most of them are shifts of well-known and easily recognizable coun-
tries such as Russia or Iceland to the block of well-known countries (the union
of Central, Western and Southern Europe).

5 Estimation of Current Knowledge

We now turn to the estimation of a learner’s current knowledge, i.e., knowledge
influenced by repeatedly answering questions about an item. The input data
for this estimation are an estimate of prior knowledge (provided by one of
the models described above) and the history of previous attempts, i.e., the
sequence of previous answers (correctness of answers, question types, timing
information).
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5.1 Basic Approach

Several models can be considered for estimating current knowledge. Bayesian
knowledge tracing (Corbett and Anderson, 1994; van de Sande, 2013), a pop-
ular learner modeling technique, can be used in a straightforward way. In this
context the probability of initial knowledge is given by the previous step. The
probability of learning, guess, and slip are given either by a context (guess
in the case of multiple choice questions) or can be easily estimated using an
exhaustive search. However, in this context the assumptions of Bayesian knowl-
edge tracing are not very plausible, as it assumes a discrete transition from the
unknown to the known state. This may be a reasonable simplification for pro-
cedural skills, but for declarative facts the development of memory activation
is more gradual.

Assumptions of Performance factor analysis (Pavlik et al, 2009) are more
relevant for the learning of facts. Whereas Performance factor analysis (PFA)
was originally formulated in the context of multiple knowledge components,
we are using a simplified one-dimensional variant. In this model, the skill
(memory activation) is given by a linear combination of an initial value and
past successes and failures of a learner: m = β+γs+ δf , where β is the initial
activation, s and f are counts of previous successes and failures of the learner,
γ and δ are parameters that indicate the change of the skill associated with
correct and incorrect answers. The basic disadvantage of this simple approach
is that it does not consider the time between attempts; in fact, it even ignores
the order of answers, as it uses only the summary number of correct and
incorrect answers.

The ACT-R model (Pavlik and Anderson, 2005; Pavlik Jr et al, 2008) of
spacing effects can be considered as an extension of this basic model. In this
model the memory activation is estimated as m = β+log(

∑
bit
−di
i ), where the

sum is over all previous attempts, values ti are the ages of previous attempts,
values bi capture the influence of correctness of answers, and di is the decay rate
computed by recursive equations (Pavlik and Anderson, 2005). The model also
includes additional modifiers for treating time between sessions. The focus of
the model is on modeling the decay rate to capture the spacing effect. Studies
using this model (Pavlik and Anderson, 2005; Pavlik Jr et al, 2008) did not
take into account the probability of guessing and variable initial knowledge
of different items – initial activation was either a global constant or a learner
parameter. Since detailed modeling of spacing effects has not been completely
solved even in the case of simple ‘laboratory’ conditions, we currently omit
modeling of spacing effects and focus on factors that are crucial in the context
of our practical application, namely, guessing and variable initial knowledge.

A disadvantage of PFA is that it does not consider the order of answers
and neither does it take into account the probability of guessing. Guessing is
important particularly in our setting, where the system uses multiple choice
questions with a variable number of options. To address these issues we propose
combining PFA with some aspects of the Elo rating system, which in the
following text we denote as PFAE – PFA Elo/Extended:



Elo-based Learner Modeling for the Adaptive Practice of Facts 17

• θli is the estimated knowledge of a learner l of an item i.
• The initial value of θli is provided by the estimation of prior knowledge,

e.g., for the basic model it is θli = θl − di.
• The probability of a correct answer to a question with n options is given

by the shifted logistic function: P (correct |θli, n) = 1
n + (1− 1

n )σ(θli).
• After an answer to a question with n options, the estimated knowledge is

updated as follows:

θli := θli + γ · (1− P (correct |θli, n)), if the answer was correct,
θlj := θli + δ · P (correct |θli, n), if the answer was incorrect.

5.2 Timing Information

To include timing information in this model, we increase the memory activation
locally for the purpose of prediction, i.e., instead of P (θli) we use P (θli+f(t)),
where t is the time (in seconds) from the last attempt and f is the time effect
function.

It is natural to use as a time effect function some simple analytic func-
tion, but the analysis of our data suggests that this approach does not work
well. We experimented with two types of analytic functions: f(t) = w

t and
f(t) = 1.6 − 0.1 log(t). The first function was used in the initial proposal of
the system (Papoušek et al, 2014); the second function is based on previous
research (Pavlik and Anderson, 2005), with parameters fitted to our data. Our
analysis of these predictions shows that neither of these functions leads to well
calibrated predictions (details are reported in Pelánek (2015)).

Since we were not able to find a simple time effect function that would
provide a good fit, we derive the time effect function automatically from the
data. To represent the function f(t) we use a generic staircase function with
fixed bounds b and values v which we learn from data:

f(t) =

{
vi if bi ≤ t < bi+1,

0 otherwise.

Another type of timing information that could be potentially used to im-
prove knowledge estimation is response time. The analysis of data from the
system (Papoušek et al, 2015) shows that there is a relation between response
time and correctness of the next answer for a question about the same item.
Curiously, the effect of response time differs depending on whether the current
answer is correct or incorrect. If the current answer is correct, then the prob-
ability of the next answer being correct is linearly dependent on the response
time – it goes from 95% for very fast answers to nearly 80% for slow answers.
If the current answer is incorrect, then the dependence on response time is
weaker, but an approximately linear trend remains. Interestingly, in this case
the trend is in the other direction (going from 60% to 65%). Response times
have been studied extensively in psychology, for example in the context of per-
ceptual learning. Specifically, previous work (Mettler et al, 2011) used response
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Fig. 4 Time effect function – average from 10 independent data sets, error bars show
standard deviations of parameter estimates.

time for adaptive scheduling of practice, but without considering prior knowl-
edge. Incorporating response times into our modeling framework is beyond the
scope of this paper, and offers an interesting direction for future work.

5.3 Evaluation

For this evaluation we consider only sequences where a learner answered at
least 3 questions about an item. As an initial estimate of learner knowledge,
we use outputs of the basic Elo model of prior skill. As the fixed bounds used
in the staircase representation of the time effect function, we have chosen the
following values (in seconds): 0, 60, 90, 150, 300, 600, 1800, 10800, 86400,
259200, 2592000. These values were chosen to be easily interpretable (e.g., 30
minutes, 1 day) and at the same time to have a reasonably even distribution
of data into individual bins.

The model has the following parameters that have to be estimated from
the data: update constants γ, δ and the vector v representing the time effect
function. To estimate these parameters we use a greedy descent. To check the
stability of the parameter estimation procedure we computed parameter values
for 10 independent data sets. The results show that these parameters are very
stable: γ = 2.23± 0.05, δ = −0.89± 0.04; values v representing the time effect
function are depicted in Fig. 4.

Since our data set is large and parameter estimates are stable, we can afford
to do a more detailed analysis. Fig. 5 shows fitted time effect functions and γ, δ
values when the parameters are fitted only for specific types of places. These
parameters contain useful information about learners’ learning in particular
parts of the domain. Similar analyses show that there is quite a large difference
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= 2.12 = - 0.92

= 1.86 = - 0.71

= 2.7 = - 0.63

= 2.09 = - 0.84

Fig. 5 Time effect function and γ, δ parameters for different types of places.

between parameter values for cases with high and low prior knowledge. This
suggests a possible improvement to the PFAE model – not just by including
more parameters, but also by changing its functional form.

Our comparison of predictive accuracy of models (reported in detail in Pa-
poušek et al (2014); Pelánek (2015)) shows that the PFAE model brings quite
a large improvement over the basic Bayesian knowledge tracing and Perfor-
mance factor analysis models. Differences between variants of the PFAE model
show that the model with the fitted staircase function is better than models
with prespecified analytic functions. These differences are statistically signif-
icant, but otherwise rather small. Individual predictions are actually highly
correlated (correlation coefficient around 0.97).

6 Question Construction

Finally, based on the estimated knowledge of a learner we want to construct
a suitable next question. In the context of our geography application the con-
struction of a question consists of several partial decisions: what should be the
target place (the correct answer); what question type to use (“Where is X?”
versus “What is the name of this place?”); how many distractors to use; and
what should these distractors be.

The question construction process should satisfy several criteria, which
partly conflict with each other. The criteria and their weight may depend on
a particular application, a target learner population, and the learners’ goals.
It is therefore not feasible to formulate a universal algorithm for question
construction, which led us to devise the following approach. The first step is
to propose general criteria that the question construction should satisfy. We
then discuss a flexible approach for achieving specified criteria. Finally, we
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present our evaluation of the final algorithm, illustrating how the parameters
of the algorithm can be optimized.

6.1 Criteria

We propose the following main criteria. The selection of a question should
depend on the estimated difficulty of a question (for a particular learner).
From the testing perspective, it is optimal to use questions with expected
probability of a correct answer close to 50%, because such questions provide
the most information about a learners’ knowledge. However, a 50% success
rate is rather low and for many learners it could decrease their motivation. In
our setting (adaptive practice), it therefore seemed better to aim for a higher
success rate. In our experiments we evaluate different target success rates.

Another important issue is the repetition of questions. This aspect should
ideally be governed by the research about spacing effects (Delaney et al, 2010;
Pavlik and Anderson, 2005). It is rather complex to fully model the spacing
effect, but a little consideration of spacing intervals is necessary; repeating the
same question too soon is certainly not recommended.

What is recommended, however, is a variety of question types. Different
question types are useful mainly as a tool for fine-tuning the difficulty of
questions, but even if this is not necessary, the variability of question types
may be meaningful criteria in itself, since it improves user experience, if used
correctly.

6.2 Selecting a Target Item

We start by choosing a target item, which is the correct answer to a constructed
question. As a general approach we have settled on a linear scoring approach.
For each relevant attribute we consider a scoring function that expresses the
desirability of a given item with respect to this attribute. These scoring func-
tions are combined using a weighted sum; the item with the highest total score
is selected as a target.

This approach is flexible and thanks to the choice of attributes and their
weights it can be adjusted for a particular application. We take the following
attributes into consideration:

1. the probability that the learner knows the item,
2. the time period since the last question about the same item,
3. the number of questions already answered by the learner about the item.

Fig. 6 illustrates the general shapes resulting from our choice of scoring func-
tions for these attributes. Further we specify formulas that approximate these
shapes using simple mathematical functions.

The first function takes into account the relation between the estimated
probability of a correct answer (Pest) and the target success rate (Ptarget).
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Fig. 6 Desired contribution of different criteria to the selection of a target item.

Assume that our goal is to ask a question where the learner has 75% chance
of a correct answer. The distance from the probability for the difficult items
(nearly 0% chance of the correct answer) is higher than for easy ones (almost
100%), so it is necessary to normalize it:

Sprob(Pest , Ptarget) =

{
Pest

Ptarget
if Ptarget ≥ Pest ,

1−Pest

1−Ptarget
if Ptarget < Pest .

The second scoring function penalizes items according to the time elapsed since
the last question about the same item – we do not want to repeat it when it is
still in the short term memory. We use the function Stime(t) = −1/t, where t is
time in seconds. Using only the above mentioned attributes, the system would
ask questions for only a limited pool of items. To induce the system to ask
questions about new items we introduce the third scoring function that uses
the total number n of questions answered by the learner for the given item:
Scount(n) = 1/

√
1 + n. The total score is given as a weighted sum of individual

scores, with the weights being set manually based on our experiences with the
prototype version of the system: Wprob = 10, Wcount = 10, Wtime = 120. Ide-
ally, values of these parameters should be optimized using experiments with
the system, potentially using automatic experimentation techniques like multi-
armed bandit algorithms (Lomas et al, 2016) or Bayesian optimization (Kha-
jah et al, 2016). In Section 6.4 we report experiments analyzing the role of the
target difficulty parameter.

6.3 Choosing Options

Once the question’s target item is selected, the question difficulty can be ad-
justed by using a multiple choice question with a suitable number of options.
For a multiple choice question the probability of a correct answer is the com-
bination of the probability of guessing the answer (Pguess) and knowing the
target item (Pest): Psuccess = Pguess + (1 − Pguess) · Pest . This is inevitably a
simplification since a multiple choice question can also be answered by ruling
out distractor options. But if the distractors are well chosen, this simplification
is reasonable.
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As our goal is to get Psuccess close to Ptarget , we would like to make Pguess

close to

G =
Ptarget − Pest

1− Pest
.

For G ≤ 0, we use open question (no options), otherwise we use n closest to 1
G

as a number of options. For principled reasons the minimal possible value of
n is 2, and for practical reasons there is also an upper limit for n: presence of
more than 6 options could make the user interface cluttered. The type of the
question – “Where is X?” or “What is the name of this place?” is currently
selected randomly. In the case of the second question type, open questions are
transformed into questions with 6 options.

When using multiple choice questions, we also need to choose the distrac-
tor options. Unlike other systems for practice dealing with text (Mitkov et al,
2006; Mostow et al, 2002), we work with well-structured data, so the selection
of distractors is easier. The choice of distractors can be based on domain in-
formation, e.g., geographically close countries or countries with similar names.
However, the easiest way to choose good distractors is to simply base the choice
on past answers. We can take items most commonly mistaken with the target
item in open questions, and select from them randomly. The random choice is
weighted by the frequency of mistakes with the given item – the distribution
of wrong answers is typically highly skewed. For example, Kenya is most often
confused with Tanzania (24%), Ethiopia (21%), South Sudan (9%), Uganda
(5%), and Congo (3%).

6.4 Evaluation

Compared to the estimation of knowledge, question construction is much more
difficult to evaluate since we do not have a single, clear, easily measurable goal.
The overall goal of constructing questions is quite clear – it is the maximization
of learning. But it is not easy to measure the fulfillment of this general goal,
since it depends also on the context of the learning. An experiment with pre-
test, post-test and fixed time in the system may provide a setting for an
accurate evaluation of the different question construction strategies. Results
of such experiments would, however, lack ecological validity, as many of the
users of the system use it on their own without any time limits. The issue
of engagement, for example, is much more important than in a controlled
experiment.

To perform the evaluation we use randomized trials where learners are
randomly assigned to one of several experimental conditions, which correspond
to different variants of the question construction algorithm. We compare the
experimental conditions by analyzing both learners’ engagement and learning.

To measure engagement we consider both learners’ objective behavior and
subjective evaluation of the practice provided. To quantify the behavior we
measure the total number of answered questions. The distribution of the num-
ber of answers across learners is highly skewed and is therefore not suitable to
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comparing conditions using averages, or even other measures of central ten-
dency like the median. An analysis of the data (Papoušek et al, 2016b) shows
that the length of stay within the system fits the Weibull distribution, which
is a standard distribution in survival analysis: previous research has shown
that this distribution also fits dwell time on web pages (Liu et al, 2010) well.
Another approach to measure survival is to use survival rates, which express
the proportion of learners that answer more than k questions. These rates are
both easier to interpret and provide similar insight as the parameters of the
fitted Weibull distribution. The survival rates allow us to differentiate between
short term and long term engagement. To measure long term engagement we
also analyze the probability of returning to the system after more than 10
hours has elapsed, although the specific duration of the delay is not important
for our results.

To measure the subjective perception of questions we ask learners to eval-
uate the difficulty of questions. After 30 answers the system shows the dialog
“How difficult are the questions?” and learners choose one of the following
ratings: “Too Easy”, “Appropriate”, “Too Difficult”.

The evaluation of learning cannot be simply based on the success rate that
the learners achieved, since the experimental conditions also influenced it. To
measure learning we collect “reference questions” – every 10th question is an
open questions about a randomly chosen item from the context being prac-
ticed, i.e., these questions are not influenced in any way by the experimental
conditions. Based on these answers we construct learning curves which we use
to compare learning in individual experimental conditions; see Papoušek et al
(2016b) for more details.

6.4.1 Impact of the Question Construction Algorithm

In the first experiment we compare the adaptive algorithm to a random con-
struction of questions. The proposed adaptive algorithm for question construc-
tion consists of two main parts. Firstly, the algorithm selects the target item of
the question (the correct answer). Secondly, it chooses the number of options
for a multiple choice question and particular distractors. In our experiments
we evaluate four versions of the question construction algorithm; for both
construction steps we consider an adaptive condition and a random condi-
tion: adaptive-adaptive (A-A), adaptive-random (A-R), random-adaptive (R-
A), random-random (R-R).

The experiment ran from August to October 2015, during which time we
collected more than 1,300,000 answers from roughly 20,000 learners. The data
set is available1 (together with a brief description and terms of use).

Fig. 7 (top) gives an overview of different measures of engagement. The
figure shows that adaptivity in the first question construction step is related to
short term engagement (survival rates after 10 questions), whereas adaptivity
in the second step is related to long term engagement (survival rates after 150

1 www.fi.muni.cz/adaptivelearning/data/slepemapy/2015-ab-random-parts.zip

www.fi.muni.cz/adaptivelearning/data/slepemapy/2015-ab-random-parts.zip
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Fig. 7 Summary of different engagement measures for the two performed experiments.
Error bars show 95% confidence intervals.

questions, the probability of return). Note that with respect to the probability
of return, the relative difference between A-A and R-R conditions is 15%,
i.e., adaptability has a great impact on a learners’ decision to use the system
repeatedly.

Finally, Fig. 7 (top) also shows the results of learners’ ratings of question
difficulty – the most appropriately difficult questions among the experimental
conditions are asked under the A-A condition. More detailed analysis shows
that the other three conditions exhibit an increased number of “Too Easy”
evaluations. In particular, both *-R conditions have an increased number of
“Too Easy” compared to their *-A counterparts. The subjective evaluation
reflects data on the success rate of learners in individual conditions. The ran-
dom choice of options leads to a higher success rate with both A-R and R-R
having an average success rate of 82% (excluding reference answers). In these
cases learners can probably often guess the correct answer even when they are
not sure. In the case of adaptive constructions of options, the success rate of
most learners is close to the target success rate (75%) – both A-A and R-A
have an average success rate of 78% (excluding reference answers).

The evaluation of learning using learning curves (illustrated in Fig. 8) is
not straightforward due to attrition bias; see Papoušek et al (2016b) for more
detailed discussion. The overall results, however, consistently show that the
conditions with adaptive construction of options (A-A, R-A) surpass the con-
ditions with random options (A-R, R-R). Item selection does not seem to have
a great impact on learning. When we see differences between the A-A and R-A
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Fig. 8 Learning curves. Left: Coarse data with 95% confidence intervals (indicated by filled
areas). Right: Fitted power law curves.

conditions, the R-A condition is slightly better, i.e., it seems that with respect
to learning, the adaptive choice of target item could be improved.

6.4.2 Impact of Difficulty

In the second experiment we analyze the role of a key parameter in the ques-
tion construction algorithm – the target success rate. The Inverted-U Hypoth-
esis (Lomas et al, 2013) suggests that really easy and really hard questions
should have negative impact on learners’ engagement. In this experiment we
compare several variants of the adaptive algorithm differing only in the target
success rate: 50%, 65%, 80%, 95%. In the following text we denote the condi-
tions as C50, C65, C80, C95. The experiment was performed between Novem-
ber 2015 and January 2016, during which time we collected almost 3,300,000
answers from roughly 37,000 learners. The data set is available2 (together with
a brief description and terms of use).

With respect to learning there is again an issue with attrition bias. Never-
theless the results suggest that more difficult practice leads to better learning,
the difference being mainly between C95 and other conditions – see Papoušek
et al (2016c) for a more detailed analysis of learning within individual contexts
(maps).

For engagement the results are visualized in Fig. 7 (bottom) in the same
way as for the previous experiment. The main observation is that there are
opposing tendencies with respect to short term and long term engagement.
Conditions with easier questions enhance engagement at the beginning, while
more difficult conditions engage more learners later on. The survival rate af-
ter 10 answers is sorted according to question difficulty. The differences are
decreasing with the number of answers, survival rates after 150 answers are
similar in all conditions with slightly better results for more difficult questions.
The return rate increases with the difficulty of questions, the largest difference
being between C95 and other conditions. The subjective rating by learners is

2 http://www.fi.muni.cz/adaptivelearning/data/slepemapy/

2016-ab-target-difficulty.zip

http://www.fi.muni.cz/adaptivelearning/data/slepemapy/2016-ab-target-difficulty.zip
http://www.fi.muni.cz/adaptivelearning/data/slepemapy/2016-ab-target-difficulty.zip
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Fig. 9 Ratings of question difficulty given by learners according to their achieved success
rate, separately for out-of-school and in-school usage of the system.

best for the C65 conditions. The main difference is again between C95 and
other conditions.

With respect to target success rates (as varied in experimental conditions),
we do not have strong support for the Inverted U-hypothesis. One reason may
be that we do not have sufficiently difficult questions. The success rate is
influenced not only by the target rate, but also by other factors like learners
choice of maps. Although the target probability is from the interval [50%, 95%],
the average real success rate varies only from 65% to 90%. On several maps,
such as countries in Europe (for which we have the most data), there are not
enough difficult items to achieve a 50% success rate for most of our users.
See Papoušek et al (2016c) for more detailed discussion.

However, the relation the between achieved success rate and the perceived
difficulty of questions shows a clear U-shaped pattern (Fig. 9 left). For each
learner we compute their success rate before they give us a rating, and we
divide users into the buckets based on their success rate and then for each
bucket we look at the percentage of “Too Easy”, “Appropriate” and “Too
Difficult” records. The filled areas around curves represent confidence intervals.
The curve does not have a sharp peak, but there are clear dynamics between
the classes. With the decreasing difficulty the growth of the number of “Too
Easy” votes is compensated for by the drop of “Too Difficult” votes. The peak
of the “Appropriate” answers as well as the equal votes for “Too Easy” and
“Too Difficult” occur between 60% and 70% success rates. This experiment
therefore suggests that values around 65% may be a suitable target rate for
this kind of application.

Previous research (Abuhamdeh and Csikszentmihalyi, 2012) suggests that
the optimal difficulty may differ depending on the type of motivation (intrinsic,
extrinsic), particularly in school-related activities as learners prefer lower levels
of challenge. To examine this hypothesis we compared results for out-of-school
usage of the system with in-school usage. To detect the ‘in-school usage’ we
currently use only a coarse method based on IP address (as in-school usage
we consider groups of at least 5 learners who started using the system from
the same IP address). This in-school usage represents about 20% of the data.
Fig. 9 shows that there is a substantial difference. The in-school group prefers
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easier questions with the optimal difficulty being around 75%, and they are
also generally less satisfied with the practice in the system: the “Appropriate”
ratings in Fig. 9 are generally lower for the in-school group than for the out-of-
school group. Given that our approach to identifying in-school/out-of-school
usage is quite simple, it is likely that the real difference is even higher.

7 Discussion

We present an integrated approach to building systems for the adaptive prac-
tice of facts, particularly for domains in which learners have varied prior knowl-
edge. The proposed approach is based on “learning from data” and requires
limited input from domain experts. This makes it a very cost-effective way
to develop of adaptive educational systems. We illustrate and evaluate the
approach on a specific case study from the field of geography. This approach
can be directly applied to other domains, e.g., anatomy, biology, or vocabulary
learning. Our group has already built several other systems that are based on
the same principles as those described in the geography application, e.g., a
system for adaptive practice of anatomy (practiceanatomy.com).

The adaptive behavior is fundamentally based on learner modeling. For
learner modeling we use the Elo rating system. This model was originally
developed for rating chess players (Elo, 1978), and only recently has it been
used in educational systems. The Elo rating systems combines good predictive
accuracy with simplicity and efficient of implementation. These aspects are
often neglected in research papers, but are important for realistic applications
of learner modeling.

We apply the Elo rating system for prior knowledge estimation and in
combination with aspects of Performance factor analysis for current knowledge
estimation. Our exploration of more complex models shows that they improve
predictive accuracy, but only slightly. In an online educational system, the
basic variants of the learner models we studied are preferable since they provide
predictions of sufficient quality and are simple to implement and apply. More
complex models are, however, still useful as they can provide additional insight
into learner behavior and domain structure.

In this work we focus only on learning facts – the simplest type of knowl-
edge component (Koedinger et al, 2012). For more complex knowledge compo-
nents (e.g., rules) and domains with more involved structure (e.g, prerequisites
among knowledge components), the basic Elo rating system is probably not
sufficient. An interesting direction for future work is to explore possible ex-
tensions of the Elo rating system for more complex learning domains. On the
other hand, it may be interesting to apply techniques developed in the context
of complex learning domains to practice of facts. For example, recent methods
for affective computing and open learner modeling (Grawemeyer et al, 2017;
Long and Aleven, 2017) were evaluated in the context of learning mathemat-
ics (equations, fractions). It may be interesting to apply these methods for
adaptive practice of factual knowledge.
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We use predictions of a learner model to automatically construct questions
of a suitable difficulty. For the evaluation of the whole question construction
algorithm we performed two randomized trial experiments. The first experi-
ment compares adaptive and random construction of questions. The results
show that the adaptive behavior is beneficial (both for engagement and learn-
ing) and indicate which aspects of adaptivity are important – adaptive choice
of the number of distractors rather than the choice of the target item. The
second experiment studies the impact of the target difficulty of questions. The
results of our experiments suggest that a suitable success rate is around 65
%. This is in contrast to previous similar research (Lomas et al, 2013; Jansen
et al, 2013) that concluded that easier questions were preferable. This differ-
ence may have been due to different types of knowledge components. We have
also detected differences between in-school and out-of-school usage: students
using the system in schools prefer easier questions, which accords with previous
literature (Abuhamdeh and Csikszentmihalyi, 2012). Nevertheless, this aspect
is usually not studied or taken into account in the development of systems.
Generally, the question of optimal difficulty requires further research.

Our evaluation also highlights several other issues deserving more atten-
tion. Our results show that learning, short term engagement, and long term
engagement may not be aligned. Since all these aspects are important, eval-
uations should use a multi-criteria approach and study trade-offs between in-
dividual aspects of system performance. The evaluation of learning is compli-
cated by attrition bias and the aggregation of results over different contexts
of practice (Papoušek et al, 2016b,c). These issues should be studied in more
detail not just for this system, but in the evaluation of educational systems in
general.
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Millán E, Loboda T, Pérez-de-la Cruz JL (2010) Bayesian networks for student
model engineering. Computers & Education 55(4):1663–1683

Minka TP (2001) A family of algorithms for approximate bayesian inference.
PhD thesis, Massachusetts Institute of Technology

Mitkov R, Ha LA, Karamanis N (2006) A computer-aided environment for gen-
erating multiple-choice test items. Natural Language Engineering 12(2):177–
194

Mostow J, Tobin B, Cuneo A (2002) Automated comprehension assessment in
a reading tutor. In: Proc. of ITS 2002 Workshop on Creating Valid Diag-
nostic Assessments, pp 52–63
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Juraj Nižnan received his master’s degree in Computer Science from Masaryk
University, where he participated in the research of the Adaptive Learning
group.


	Introduction
	Related Work
	System Description
	Estimation of Prior Knowledge
	Estimation of Current Knowledge
	Question Construction
	Discussion

