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A Classification Framework for Practice Exercises
in Adaptive Learning Systems

Radek Pelánek

Abstract—Learning systems can utilize many practice exer-
cises, ranging from simple multiple-choice questions to complex
problem-solving activities. We propose a classification framework
for such exercises. The framework classifies exercises in three
main aspects: the primary type of interaction, the presentation
mode, and the integration in the learning system. For each of
these aspects, we provide a systematic mapping of available
choices and pointers to relevant research. For developers of
learning systems, the framework facilitates the design and imple-
mentation of exercises. For researchers, the framework provides
support for the design, description, and discussion of experiments
dealing with student modeling techniques and algorithms for
adaptive learning. One of the aims of the framework is to
facilitate replicability and portability of research results in
adaptive learning.

Index Terms—Computer-aided instruction, student modeling,
feedback, framework.

I. INTRODUCTION

A key feature of computerized learning systems is the use of
interactive practice exercises. These exercises provide students
immediate feedback and can be used to guide the learning
process adaptively [1]. A wide variety of practice exercises can
be used, often even for a single topic. Consider, for example,
one-digit multiplication. The basic exercise for such a topic is
a simple constructed response exercise (“write an answer”),
without time pressure and with immediate feedback about
correctness. However, there are many other possibilities: a pair
matching exercise (the goal is to match together cards with the
same value); multiple-choice questions embedded in a themed
graphical design, optimized for mobile phones and including
rewards (coins) for fast answers; or a multiplayer game where
students engage in direct competition by quickly and correctly
answering one-digit multiplication questions.

Each type of exercise has its advantages and disadvan-
tages. Exercises differ in their impact on student motivation
and learning and provide different ways of assessing student
knowledge [2], [3]. We cannot choose one of them as the
best one. In a learning system, it is actually useful to have
several types of exercises for the same content since exercises
differ in their suitability for different types of content (learning
facts versus rules) and devices (desktop computers versus
mobile phones). The availability of different forms of practice
also gives students a sense of control and enables them to
tailor the practice to their preferences. Variability of practice
opportunities also supports repetition. Repetition of practice
is a crucial ingredient for long-term learning [4], but it can
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be tedious. Variability of practice can make repetition more
interesting.

Exercises also serve a variety of different purposes. Many
practice exercises (e.g., multiple-choice questions) are inten-
sively used in the context of testing [5]. Even in learning
environments, the assessment role of exercises is essential.
Exercises provide an assessment of the knowledge of a stu-
dent, which can be used by the student to self-regulate the
learning, by teachers, parents, or tutors to guide the teaching
of the student, or by the learning system itself to adapt the
behavior of the system towards the needs of the particular
student [1]. Besides the assessment role, practice exercises
also directly support the learning process, particularly when
they are extended with scaffoldings, explanatory feedback, or
hints [6], [7]. Learning is improved by several processes that
naturally take place during interaction with practice exercises,
for example, the testing effect, induction from presented ex-
amples, strengthening of memory, higher fluency, or correcting
misunderstandings [8]. Specific practice exercises differ in
their suitability for individual purposes; for example, a game
with hints may be more suitable for supporting learning and
less precise as an assessment tool than a basic multiple-choice
quiz.

It is thus both possible and desirable to employ a wide
range of practice exercises in learning systems. This is,
however, challenging both from a practical perspective (de-
signing, implementing, and maintaining exercises) and also
from the research perspective (the generalizability of results
of student modeling research to different types of exercises).
The Knowledge–learning–instruction framework [8] stresses
the point that the suitability of instructional methods depends
on the type of relevant knowledge components and learning
processes; the framework also provides tools for expressing
such dependencies. Similarly, the applicability and usefulness
of student modeling techniques depend on specific aspects of
a particular type of exercise. In the current research, however,
such dependencies are not clearly formulated.

To facilitate both research and development, it is thus useful
to classify exercises. Since a specific realization of each prac-
tice exercise combines many (partially independent) decisions,
it is not possible to provide a simple classification or taxonomy
of exercises. Instead, we propose a classification framework
that is used to classify different aspects of exercises. Such a
type of classification framework has proved useful in several
areas, for example, modeling languages in instructional de-
sign [9], visual languages [10], problem solving [11], model
construction activities [12], software component models [13],
software architecture description languages [14].

The overview of the framework is outlined in Fig. 1. The
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Fig. 1. Overview of the classification framework for practice exercises.

main idea of the proposed classification framework is the
decomposition of three aspects of practice exercises: the basic
type of interaction, the presentation mode, and the integration
within a learning system. Each of these aspects can be realized
in many different ways, which are systematically mapped
within the framework. The three main aspects are mostly
orthogonal (i.e., they can be combined in many ways).

The proposed classification framework is useful for several
purposes. The framework facilitates the design of practice
exercises. For a particular learning system, we can create
novel exercises by appropriately combining elements from the
framework. The framework also facilitates the alignment of ex-
ercises with other aspects of system development. We discuss
connections of the proposed framework to relevant taxonomies
of knowledge components, learning outcomes, motivation,
instructional strategies, and student modeling. Specifically, we
highlight the differences between the usage of exercises in
the context of practice and testing. For example, multiple-
choice questions are often used in both of these contexts.
On a superficial level, the usage may seem very similar, but
the details of the usage can (and probably should) differ
significantly.

The use of the framework can also lead to the improve-
ment of implementations of learning systems. The framework
provides a modular understanding of exercises, which can be
translated into modular code. The framework can also be used
to improve the representation of practice items, which can lead
to better reusability and scalability.

Finally, the framework facilitates the design and evaluation
of techniques used for the personalization of learning, for
example, adaptive practice algorithms, instructional policies,
and student modeling techniques. Specifically, we describe
the connection with adaptive learning algorithms via perfor-
mance scoring and student modeling, and we discuss scoring

methods for different types of exercises. An important aim of
the framework is to make replicability and portability [15]
of research results easier. Research results may depend on
details of data collection [16], including details of the specific
realization of the used exercise. For example, the role of
response time in student modeling may depend on specific
aspects of the exercise presentation mode. Without a clear
framework for describing exercises, it is difficult to specify
all details concisely. Consequently, researchers often omit
such detail from research papers, which makes replication and
portability difficult. The presented framework should facilitate
the description of learning exercises and thus contribute to the
progress of related research.

II. BACKGROUND AND TERMINOLOGY

Before describing details of the proposed classification
framework, we clarify the context of this work and used
terminology.

A. Learning and Testing Settings

Through the paper, we repeatedly contrast the use of ex-
ercises in different contexts; specifically, we highlight the
difference between testing (assessment) and learning. The
same type of exercise can often be used in both settings;
a typical example is a multiple-choice question. The basic
usage is superficially similar, which can be misleading. These
settings significantly differ in their goals and requirements. In
the context of testing, the goal is to evaluate students’ skills.
The precision of skill estimates is of paramount importance,
whereas motivation is typically extrinsic (e.g., “passing an
exam”) and does not need to be taken into account. In learning
systems, the main goal is student learning. The estimation of
students’ skills is useful, but precision is of lesser importance
since skill estimation is not the primary goal. In the learning
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setting, it is essential to employ elements that support student
learning (e.g., explanations, hints, scaffoldings) and intrinsic
motivation. Such elements do not make sense in the pure
testing setting.

In this work, we focus on the learning context. The test-
ing context is repeatedly mentioned during the discussion
to highlight the specific needs and differences in learning
environments.

B. Terminology: Exercises, Items, Knowledge Components

The terminology used to discuss notions covered in this
paper differs among authors and research communities. There-
fore, we explicitly clarify the terminology used in this paper.
We use the term exercise with the meaning “a computer-
ized learning task that students interact with and that has
a solution.” Moreover, we focus mainly on exercises where
the solution can be checked algorithmically. The presented
classification framework is concerned with different types
of exercises, not with their specific content. To make this
distinction clear, we use the term item to denote a specific
content of the exercise. We assume that items are organized in
knowledge components (alternatively called skills or concepts)
[8]. Examples of these notions are given in Table I.

The used meaning of the term exercise corresponds very
closely to “practice objects” in the classification of learning
objects by Churchill [17]; however, the term “practice object”
is not commonly used. Specific forms of exercises are de-
noted by keywords like questions, problems, quizzes, drilling
activities, or practice activities. In the context of assessment,
exercises are called item types or assessment events.

C. Adaptation and Student Modeling

Learning systems can be adaptive in many ways. Aleven
et al. [1] provide an overview of approaches to adaptivity,
systematically organized in an Adaptivity Grid (what aspect
of behavior is adapted based on what aspects of student
characteristics). The adaptive behavior is typically based on
student modeling (i.e., a technique that estimates the state of
students’ knowledge) [18], [19].

Fig. 2 provides a high-level view of exercises, student mod-
eling, and adaptivity. The design of the exercise determines
data that can be collected about student interaction with the
system. These interaction data are then used to score student
performance on a specific item. In the simplest case, the data
and the score consist of simple binary information about the
correctness of an answer. The interaction data can, however,
contain much more detail (e.g., response times, a sequence of
specific steps, information about the usage of hints). In such
cases, performance scoring can take the form of partial credit
[20], [21]. This step depends on the specific exercise and may
be influenced by details of its realization. Therefore, students’
performance evaluation is one of the aspects that we discuss
in the presented framework.

Once we have the performance score, we use it for tracking
the temporal dynamics of knowledge across many items. This
is done with the use of student modeling techniques and
is mostly independent of the details of exercise realization;

the appropriate choice of student modeling approach depends
rather on the type of knowledge component [19]. For fine-
grained rules, we may use a Bayesian knowledge tracing
model [22]. For facts or coarse-grained rules, we may use
a student model from the family of logistic models [19], for
example, some variation on item response theory models [23].
A specific versatile approach to student modeling is the Elo
rating system, which has been originally designed for rating
chess players. The system can be directly utilized to rating
student skills in student-student interactions in competitive
games, and it can be easily modified to model student skills
in individual exercises [24].

The modeling techniques provide estimates of student skills
and item difficulties. These estimates can then be used in many
ways to personalize learning, for example, to implement mas-
tery learning principles [25] (adaptively stopping the practice
of a knowledge component once a sufficiently large skill is
reached) or to provide personalized sequencing of items or
recommendations of content [26]. An extensive overview of
such applications is provided by [1].

Exercise design
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Fig. 2. Exercises, student modeling, and adaptivity.

D. Related Classifications and Taxonomies

The proposed classification framework is connected to
several other classifications and taxonomies related to the
development of learning systems. Practice exercises are a
specific type of learning object; other types of learning objects
are texts, videos, or simulations. Learning objects have been
classified before [17], [27].

Researchers have described several related educational tax-
onomies and classifications: Bloom taxonomy of learning
objectives [28], [29]; Knowledge–learning–instruction frame-
work, which describes types of knowledge components and
learning processes [8]; taxonomy of intrinsic motivations for
learning [2]; taxonomies of instructional strategies [30], [31].
These taxonomies interact with the presented classification
and determine a suitable choice of exercise. This aspect is
discussed in more detail in Section VII.
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TABLE I
EXAMPLES OF THE USED NOTIONS

type of exercise item knowledge component

multiple-choice question [a/an] hour English articles
fluency game with written answers 3× 5 =? one-digit multiplication
interactive programming write a factorial function for loops

Similar taxonomies and classifications have also been de-
scribed in related settings. Parshall et al. [3] describe a
taxonomy of (innovative) items in the context of adaptive
testing, where the focus is on assessment, not on learning.
Several authors have proposed taxonomies of games, including
serious games with educational aims [32], [33]. VanLehn [12]
proposed a classification framework (called “design space”)
for model construction activities.

III. FRAMEWORK OVERVIEW

In this section, we discuss the overall design of the frame-
work, as outlined in Fig. 1. Here, we discuss the meaning
and rationale for the main dimensions of the framework and
illustrate the main aspects addressed by each dimension on an
example. In the following sections, we discuss each dimension
in detail.

We discuss the dimension both from a conceptual point
of view (what questions it addresses) and the implementation
point of view (what data are relevant to this dimension).

A. Basic Type of Interaction

The first dimension of the framework is concerned with the
basic principle of interaction that students use to answer a
question. What kind of information is presented to students?
What kind of information do students provide as an answer?

The basic type of item is, to a large degree, independent of a
specific medium, presentation form, or context. The same type
of item can be easily used both in a computerized learning
system as a part of a longer, adaptive sequence of similar
items, or in a paper-and-pencil test, where each item tests
different skill. Consequently, this dimension is not specific
to the learning setting, and the used classification is closely
related to the classification of item types used in the testing
setting (e.g., [3]).

The data related to this dimension is the core information
for an item to make sense, specified, for example, as a JSON
record. As an illustration, consider the following examples:

• For solving equations, natural type of interaction is “con-
structed response” (students write a number), an item may
be specified as
{"equation": "3x+1=15", "solution": 4}.

• For learning capitals of countries, we may use some type
of “selected response” interaction, for example “pair
matching” (from a selected list, students should pick
corresponding pairs), an item may be specified as
[["France", "Paris"], ["Germany",
"Berlin"], ["Spain", "Madrid"]]

B. Presentation Mode

The second dimension is concerned with the presentation
of the core of the item to students: how exactly is the item
presented and what are the interaction details. The aim of the
discussed presentation aspects is to support learning, either
directly or indirectly (e.g., through engagement and motiva-
tion). This dimension is thus specific to the learning setting;
many aspects do not make sense in the testing context. The
classification builds upon research on learning and instruction
[1].

For an illustration of aspects covered by this dimension,
consider the item discussed above—an equation 3x+1 = 15.
To use the item in a computerized learning system, we need
to answer questions as:

• What happens after a wrong answer? Does a student get
another attempt? Does the system show a hint?

• Does the system provide an explanation or a sample
solution? How are they presented?

• Is the problem presented in such a way that students are
motivated to solve it quickly (e.g., by a strict time limit
or by a reward that is dependent on speed)?

• Is there any interaction with other students? Do students
cooperate or compete in solving the equation?

The data related to this dimension concern the expansion of
the core item data (e.g., the text of a hint or an explanation)
and configuration data (e.g., parameters specifying time limit,
number of attempts, or technical details of presentation like
the size of images).

C. System Integration and Adaptivity

The final dimension is concerned with the behavior of the
exercise beyond a single item. It determines how individual
items are used and what is the context of practice. This
dimension is concerned with aspects relevant to adaptivity and
student modeling [1], [19].

For illustration, let us continue with the example of the
equation 3x + 1 = 15. This dimension is concerned with
issues concerning the context of this equation within the
practice. What other equations are solved before and after
this one? Does the student solve only other linear equations,
or does the system present interleaved practice of different
types of equations? Are individual equations presented in
random order, or is there a predefined sequence of increasing
difficulty? Is the selection of items adaptive? How long does
the student practice equations before continuing with another
topic?

The main data related to this dimension are the content
meta-data, for example, the definition of knowledge compo-
nents, mapping of items to knowledge components (also called
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Q-matrix), prerequisite relations, or specification of an item
ordering. Additional relevant data concern parameters of used
algorithms, for example, a mastery threshold for a mastery
learning algorithm.

IV. BASIC TYPE OF INTERACTION

The first dimension of the classification framework is con-
cerned with the basic type of interaction between students and
the exercise. We distinguish three basic types:

• Selected response. Students answer by selecting an an-
swer from a provided choice. From an interface design
perspective, this typically corresponds to “clicking” or
“dragging.”

• Constructed response. Students construct answers, typ-
ically by writing a number or a short text. Alternative
methods are speaking or drawing.

• Interactive problem solving. Students solve a problem in
an interactive manner; the solution consists of a sequence
of steps.

For each of these types, we provide a discussion of specific
subtypes, with a focus on typical instances. We then present
an alternative view of interactions—a continuous space of
different types of interaction—and discuss extensions and
combinations of basic types.

A. Selected Response

In a selected response exercise, students select their re-
sponse (answer) from a provided list of choices. A typical
example is a multiple-choice question, which uses just a few
choices. This is one of the most widely used types of exercises
for both assessment and learning. There are, however, other
variants of selected response exercises, which provide students
with a broader set of choices.

The basic advantage of selected response exercises is that
the user interaction interface is simple, and thus exercises can
be readily used also on mobile devices. Answers can also
be very easily automatically evaluated. A disadvantage is that
students can answer correctly by guessing. This adds noise into
the assessment of student knowledge and presents dangers for
student learning—it may lead some students to behavior that
can be described as “random clicking without any learning.”
These issues, however, can be addressed by suitable use of
student modeling and motivation support, which we discuss
in the following sections.

We divide selected response exercises into two basic sub-
types: multiple-choice questions and their variants, for which
the user interface corresponds to “clicking,” and pairing and
categorization exercises, for which the user interface typically
corresponds to “dragging.”

1) Multiple-Choice Questions: In the standard multiple-
choice question, a student is given a stem and a set of options
and chooses a correct option belonging to the stem. This
format has a long history and usage in the context of testing,
with extensive research analyzing different aspects of MCQ
use. Haladyna et al. [5] provide a review of MCQ item-writing
guidelines.

The good practices for the use of MCQs are mostly the same
in assessment and learning applications [34]. Nevertheless,
the use of MCQs in the learning context leads to slightly
different priorities. In testing, MCQs are commonly used with
3-5 options. In the context of learning, it is worth consider-
ing alternate choice questions (ACQ), which have only two
options, for example, true/false questions, or stem with the
correct answer and a single distractor. With ACQ, students
have a high chance of guessing the answer, but otherwise,
these questions have several advantages:

• Preparing functioning distractors is hard. Moreover, many
MCQ have only one competitive distractor and thus
practically behave as ACQ.

• Answering ACQs is faster since students have to process
fewer options. Consequently, more questions can be an-
swered in the same amount of time.

• ACQs lead to especially simple user interaction that
can be realized intuitively using different devices, for
example, by the left and right arrows on a keyboard or
swiping on the phone. The reduced number of options
also takes less space on a screen. These features make
ACQ suitable for incorporation into games.

On the other hand, in some domains, it is meaningful to
provide a structured choice with many options, for example, in
the practice of European states, the periodic table, number line,
or an anatomy image with highlighted organs. In these cases,
a student is given a notion (“Portugal,” “carbon,” “number
15”), and the goal is to locate it on a corresponding “map.”
The number of options is large, which reduces the change
of guessing, and yet the user interface is intuitive and the
processing of options is fast since they are structured and
different items use the same “map” of options.

More complex variants of MCQs exists [5], for example,
“select all that apply” questions where the correct answer can
consist of multiple options. However, the use of more complex
MCQs is not recommended [34].

The scoring of student performance on basic MCQs is
simple: a binary value (correct/incorrect answer). If we allow
students to skip a question, we need to differentiate between
a “missing answer” and a “wrong answer.” In some cases, it
may be useful to take into account students’ response times.
However, previous research suggests that the information in
response times is limited, being useful mainly for marking
correct answers obtained by a quick guess [21].

2) Pairing and Categorization: More complex selected
response questions require students to take several steps to
make their choice, with individual steps involving dragging
or clicking. These exercises typically lead to a wider choice
of possible actions and, thus, a lower chance of guessing.
Particularly versatile and attractive exercises are pairing and
categorization.

In a pairing exercise, students are given a set of cards and
the goal is to assign together tuples of matching cards. Ex-
amples of such pairs are a word and its translation (in second
language vocabulary), expression and its resulting value (in
mathematics), or a country and its capital (in geography). Such
exercises are less common than multiple-choice questions. [5]
mentions this type of exercise, but their use in the context
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of assessment is limited. However, they are quite attractive
for practice since they can be naturally presented in a game-
like form. Note that the matching pairs exercise is sometimes
presented as a memory game. From a learning perspective,
this is unfortunate, since such presentation increases cognitive
load [35]—it places high demands on working memory to re-
member locations of cards, and students spend time searching
for cards. This wasted capacity and time could be used for
learning.

In a categorization exercise, students are given a set of
tokens and a set of categories and the goal is to assign each
token into one of the categories. Examples of natural use of
such exercise are part of speech classification, classification of
countries by continents, capital letters, assignment of fractions
to categories described by percentages, assignment of animals
to taxons.

Categorization exercises can be realized in different forms,
depending on specific content. In the basic realization, tokens
are words on cards, categories are given as areas and the
categorization is realized by dragging cards to areas. The
user interface can, however, look completely different. For
example, consider a punctuation exercise where the goal is
to determine the correct placement of commas in a sentence
by clicking on spaces between words. This can be viewed as
a categorization exercise—tokens are spaces between words
and categories are “with a comma,” “without a comma.”

The scoring of pairing and categorization questions offers
more possibilities than the basic multiple-choice questions.
The basic scoring is to consider the answer as correct only
if it is completely correct. It is, however, natural to consider
in this case also partial correctness (e.g., how many pairs were
correctly matched, how many tokens were correctly classified).

B. Constructed Response

With the constructed response format, students have to
construct a response on their own. Compared to the selected
response exercise, this leads to a significantly lower chance of
guessing. On the other hand, the interaction is typically slower.

Constructed response exercises enable practice and as-
sessment of more complex cognitive skills; specifically, for
selected response exercises, it is mostly sufficient to use
recognition, whereas constructed response exercises require
recall. In many cases, both constructed and selected response
exercises are applicable, and each of them has its advantages
and disadvantages. Particularly, there is a trade-off between
speed and easiness of answering and depth of processing. This
issue has been studied in the context of testing, without a
clear conclusion [36], [37]. For some topics, selected response
exercises do not make sense, for example, solving equations,
the practice of pronunciation. For these, it is definitely useful
to employ constructed response exercises.

1) Textual Response: The most common constructed re-
sponse format is a written text. Students are presented with
a question and provide an answer. In language exercises, the
response often takes the form of “fill-in-the-blank” form.

In a simple case, an answer is a number or a single word and
the solution is unique. In this case, checking the correctness of

the answer is trivial. Checking the solution is also easy if there
is a small set of potentially acceptable answers where all of
them can be explicitly specified (e.g., alternative translations
in vocabulary practice) or described by few fixed rules (e.g.,
different ways to write decimal numbers and fractions). For
student modeling, it is useful to utilize not just the binary
correctness of answers but to assign partial credit to wrong
answers (e.g., based on how common they are [21]).

When the answer is more complex than a single word or
number, evaluation becomes more difficult. Even when the
expected answer is short, students may use several possible
formulations of a correct answer, which are hard to anticipate
in advance. Such exercises can be typically evaluated only
heuristically—this is the topic of research on “automatic short
answer grading” [38]. In this case, it is natural to use partial
credit scoring of answers. Since the evaluation is heuristic,
it may be useful to explicitly quantify the uncertainty in the
evaluation and use it in student modeling, for example, by
using Bayesian methods [39].

For longer texts (e.g., essays), it is feasible to provide stu-
dents formative feedback based on natural language processing
techniques [40]. However, for such answers, it is not possible
to algorithmically determine correctness, and thus they lie out
of the scope of the current framework.

2) Multimedia Response: We can also go beyond the
common textual response and consider richer multimedia re-
sponses. The response can be in the audio format, specifically
as voice input. This type of interaction is naturally used in the
practice of reading (a specific example is the Listen project
described by [41]) or in the practice of pronunciation in second
language learning. Another type of multimedia response is
an image. This can be used in a tutoring system to process
inputs like hand-written equations [42], [43] or in domains
like learning of Chinese characters.

For these responses, the evaluation of answers is necessarily
only approximate. The response needs to be processed by
voice or image recognition techniques. The problem is an in-
teresting variation on commonly solved problems in voice and
image recognition. In this setting, we are not concerned with
a general recognition problem, but rather with a “verification”
problem. We know what a student should have said (drawn);
we just need to verify that he did it correctly. Even with the
verification setting, it is a significant challenge to achieve
sufficient accuracy for practical application. This direction
needs further research.

C. Interactive Problem Solving

Problem solving encompasses a wide range of activities that
can be categorized into many classes itself [11]. The basic divi-
sion is into well-structured and ill-structured problem solving.
Well-structured problems have clear rules and unambiguous
correct answers, whereas ill-structured problems are open-
ended, without clear boundaries, rules, or correct solutions
(e.g., design problems or social problems). Here we restrict our
attention only to well-structured problems for which we can
provide automated support for students, specifically automated
checking of answer correctness.
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From the perspective of classification of practice exercises,
we highlight as a distinguishing feature of problem-solving
exercises their interactivity. The basic forms of selected re-
sponse and constructed response exercises consist of a single
step: students choose their response and get feedback on the
correctness. Interactive problem-solving exercises involve a
series of steps; in each step, students get a reaction from the
computer. Note that there is a difference between “interactive
problem solving” as an exercise type and “problem solving” as
a mental process. For example, solving a mathematics word
problem can lead to problem-solving mental processes even
though the answer is submitted as a simple selected response.

We distinguish two subtypes of problem-solving exercises
based on the nature of student steps and system reactions.

1) Continuous Interaction: The first type of interaction is
continuous. A student continuously interacts with the problem-
solving environment. A typical example of such an envi-
ronment is a sliding block logic puzzle, in which a solver
moves blocks and tries to reach a final configuration. A
step corresponds to a move of a block. The reaction of the
environment consists of the update of the puzzle state. Note
that the reaction is not feedback about the correctness of
the step; it just enables the student to continue the solution
process. More directly educationally relevant exercises of this
type are geometry constructions in systems like GeoGebra,
construction of logic proofs [44], or carrying a task within a
simulator (e.g., driving a vehicle).

For this kind of exercise, it is natural to score performance
not just based on the final answer but to take into account also
problem-solving time. A specific approach to student modeling
in this context is described by [45].

2) Repeated Invocation: The second type of interaction
consists of repeated invocation of the environment. A student
constructs an attempt at a solution and then activates the
exercise environment to get a response. Based on the response,
the student improves the solution attempt. Typically, several
iterations are expected. Once students believe that the solution
is correct, they can submit it for a final evaluation.

A typical application of this type of exercise is in pro-
gramming. The goal is to write a program for a particular
problem. A student writes an attempt, runs it on testing data,
and uses the response to improve the program. This type of
exercise is used both for learning standard programming lan-
guages (e.g., Python, Java) and in introductory programming
exercises with block-based programming. Such exercises can
be implemented, for example, using the Blockly environment
[46], which is used in many popular Hour of Code activities
[47].

The repeated invocation interaction can also be used in
other domains, for example, in mathematics for the practice of
graphs and functions. Students are given a graph of a function
and the goal is to write a formula for the function. Students
write an attempt, the environments plots the graph of the
attempt, and students can iteratively improve the attempt until
they find the correct solution.

Evaluation of student performance for this kind of exercise
is more complex. We can take into account not just whether the

problem has been solved, but also time to solve the problem
or the number of steps taken.

D. Combinations and Extensions

The above-given description of types of interactions is
not exhaustive. The goal is not to provide a complete list,
but rather typical exemplars. Practically used exercises often
cannot be unambiguously classified into one of a few discrete
categories as there are rather continuous transitions between
different types. Another way to organize types of interaction is
thus to use continuous features. Fig. 3 provides an illustration
of such an organization in a diagram with two dimensions: the
first dimension is the freedom of students’ actions; the second
dimension is the interactivity of the environment.

In this diagram, the selected response exercises are in the
lower-left part (limited choice of actions and low interactivity),
the constructed response exercises in the lower-right part (high
freedom of actions with low interactivity), and interactive
problem-solving exercises on the top (high interactivity, vari-
able freedom of actions). This diagram has a direct relation
to the complexity of evaluating student performance: for exer-
cises in the lower-left corner, the evaluation is straightforward,
for exercises in the upper-right corner, it can be quite complex.

Besides the basic types of interactions, which have been
discussed above, many other combinations and variations fall
between the basic classes. For examples:

• WordBytes exercise [48]: students construct a short an-
swer (sentence) from a given set of blocks. This is a
hybrid format between selected response and constructed
response,

• Visual programming (e.g., using Blockly) using a very
limited set of available blocks, for example, a turtle
graphics exercise with few commands for drawing. This
can be seen as a hybrid between interactive problem
solving and selected response.

• Ordering exercise: students are given a set of cards and
the goal is to sort them in the correct order. Examples
of specific tasks are sorting words by alphabetical order-
ing, historical events by dates, or placing fractions and
decimals into the correct order.

• Constructed answer with suggestions: as students start to
write, they receive a suggestion list of words that match
their input. This can be used, for example, in an animal
recognition exercise.

• Selection from a very large set of options, for example,
a proofreading exercise, where students should mark
wrongly spelled words in a long text.

The basic forms of selected and constructed response ex-
ercises consist of a single step. We can also consider their
multistep variations:

• Parallel multistep combination. An item consists of sev-
eral subitems, which are closely related, but independent
of each other (they can be presented in arbitrary order).
A typical example is a reading comprehension exercise,
where students are given a short text and a series of
independent multiple-choice questions about the text.
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Fig. 3. Classification of types of interaction using 2D diagram with continuous transitions between the basic types.

• Sequential multistep combination. An item consists of
several subitems, which are presented in a fixed order;
subitems may be dependent on previously presented
subitems. An example is a derivation of an equation so-
lution, where students answer multiple-choice questions
about each step in the derivation.

These multistep variations slightly blur the line between se-
lected/constructed response exercises and interactive problem-
solving exercises. However, there is still an important differ-
ence with respect to the provision of feedback. In multistep
exercises, it is possible (and natural) to provide feedback about
the correctness of answers after each subitem. In interactive
problem solving, the feedback is only provided after the mul-
tistep process has been finished; in many interactive problem-
solving exercises, it does not even make sense to talk about
the correctness of individual steps.

V. PRESENTATION MODE

An exercise with the same basic type of interaction can be
presented to students in many different forms. We can vary the
graphical design of the exercise, but also more fundamental
aspects like presence and form of time pressure, feedback, or
learning support in the form of hints or scaffoldings. These
choices have a substantial impact on student engagement and
motivation [2]. They also influence the behavior of students
(e.g., the degree of guessing, response times) and thus need
to be taken into account for student modeling.

A. Time Pressure

One important leverage point in the design of learning exer-
cises is the treatment of time pressure. The addition or removal
of a time pressure mechanism is easy to implement, and it can
significantly influence student experience and behavior. The
basic approaches to the use of time are the following.

No time pressure. There is no time constraint and no indica-
tion that time is measured. This is typically the basic mode of
practice exercises. Even in this setting, we can still collect data
on response times and try to apply them for student modeling.
This approach has been systematically explored in the context
of testing [49]—in the testing context, there is typically no
time limit for individual items, but a limit on the test as
a whole, which creates implicit time pressure for individual
items. In the learning context, for selected and constructed
response exercises, the information present in response times
seems to be limited [21].

Unrestricted, but measured time. There is no strict limit to
finish the exercise, but time is measured, the measurement is
in some form shown to students or taken into account in the
evaluation of performance. This approach is used, for example,
in the Math Garden software, which uses a scoring rule based
on response time for evaluating constructed response answers
[50]. In the case of interactive problem solving, the timing
information may be the main focus of student modeling [45].

Restricted time. There is a strict deadline for answers,
either for each item separately or for a collection of items.
This approach is typically used in game-like presentations of
exercises, for example, in fluency games [43]. The time limit
is often implicit in the mechanism of the game (“you must
answer before the zombie kills you”).

B. Feedback and Explanations

Feedback is a key element in learning; see [6] for an
overview of research on feedback in learning. The presence of
feedback is one of the distinguishing features that differentiate
the practice setting from the testing setting. Feedback, in
some form, is always useful in learning exercises. Non-trivial
design questions are concerned with the specific realization of
feedback.
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One question concerns the timing of feedback, where the
basic choices can be characterized as immediate feedback and
delayed feedback. As a simple example, consider a practice
consisting of a series of MCQs. The feedback about the
correctness of answers can be provided immediately after
each question, or it can be delayed and provided only once
all questions are answered (potentially with some further
delay). Delayed feedback is standard in the testing context.
In the context of practice, immediate feedback is usually
preferable [51], although the issue is not completely clear-
cut. For example, Butler et al. [52] report better learning
results for delayed than immediate feedback. However, they
performed the evaluation in a lab experiment that did not take
into account student engagement, which is also influenced by
the form of feedback. Moreover, research was done mostly
on simple types of exercises, particularly the basic MCQs.
The timing of feedback becomes more complex for multistep
variants. For example, in the pair matching exercise, we can
either let students assign all pairs and then provide feedback,
or provide feedback after each assignment. It is not clear which
of these variants is better.

In the case of immediate feedback, another question con-
cerns the behavior of the exercise after an incorrect answer.
Should the student be directly provided with the correct
answer, or should he be given another chance to answer
correctly? [52] studied this question for an MCQ exercise and
they did not observe any differences in learning between the
standard realization (providing the answer immediately) and
the answer-until-correct mode.

Another complex issue is the question of the exact content
of the feedback. Should feedback focus only on the cognitive
dimension (information about the correct answer), or also ad-
dress the affective and motivational aspects of practice? Hattie
and Gan [6] discuss four levels of feedback: task, process,
self-regulation, and self-level. A specific example of a learning
system that incorporates affective and meta-cognitive feedback
is MathSpring [53]. Affective and motivational aspects of the
feedback are related to the use of gamification principles like
points, badges, goals, or missions. These aspects are dependent
on the integration of the exercise within the learning system,
which is a topic that we discuss in more detail in Section VI.

A useful part of feedback is an explanation of the correct
answer. Such an explanation can take many forms (e.g.,
specific text for a particular item, video lecture for the whole
topic, or a link to a similar worked-out example). Preparation
of good explanations is difficult since it is time-consuming and
it is hard to specify and evaluate what is a “good” explanation.
Inventado et al. [54] proposed several design patterns for facil-
itating the preparation of explanations. A potentially effective
learning strategy can be to prompt students to generate self-
explanations [4], [55].

C. Hints and Scaffoldings

In addition to feedback, we can extend basic exercises with
other forms of learning support like hints and scaffoldings.
Hints provide dynamic support while solving an item. They
are useful mainly for interactive problem-solving exercises but

can also be useful for difficult items of other types. Hints can
be delivered on demand (students explicitly ask for hints) or
automatically (after a wrong answer or as decided by a student
model).

The specific realization of hints is non-trivial and has
received significant attention in research. One question is how
to construct hints. The basic approach is manual construction
by domain experts. Similarly to explanations, this is time-
consuming and expensive, and effort has been made to enable
more efficient creation of hints by the use of design patterns
[54]. Hints can also be generated automatically using data-
driven approaches based on student data [56]; this approach
has been used specifically for programming [57].

The presence of hints in an exercise influences the behavior
of students. Hints can be beneficial for learning, but their
presence can also lead to “gaming the system” behavior, where
students abuse hints to proceed through the learning system
without actually learning [58]. Researchers have, therefore, ex-
plored students’ control and help-seeking behaviors in practice
[59], [60] and the utility of hints in various contexts [61]. The
presence of hints also needs to be taken into account in student
modeling (e.g., by using partial credit based on hints [20]).

Another form of support is scaffolding [7]. Instructional
scaffolding is the support provided to a student, particularly
when novel concepts are introduced. This support is then
gradually removed to promote the growth of students’ skills.
A theoretical basis for the use of scaffoldings is the cognitive
load theory [35], which relates the difficulties in learning to
the limited capacity of working memory.

A specific example of scaffolding (also called a fading
procedure in this context) is the transition from worked-
out examples, where students fill in just a few details, to
independent problem solving [62]. A typical application of this
approach is in mathematics (e.g., for solving word problems
or equations). Another application is in programming—we can
provide beginners with a skeleton of code, where they are
required to fill in or modify just a few parameters, and then
gradually reduce the extent of the provided code. A less typical
application of scaffolding is in vocabulary learning, where
a practice exercise can provide dynamic suggestions once
students type the first few letters, which requires a student to
recall just the basic form of a word. The exercise can gradually
increase the threshold for suggestions and thus naturally move
the student towards the practice of the complete spelling of
words.

D. Design and Story

So far, we considered presentation aspects directly relevant
to learning processes. In addition to these, there are many
presentational possibilities that do not change the fundamental
principles of exercises but can significantly influence the en-
gagement of students. The importance of student engagement
is one of the key differences between learning and testing
contexts. Design decisions of this type can be informed by
the taxonomy of intrinsic motivation [2].

The most noticeable aspect of presentation concerns the
user interface design of an exercise, for example, the use
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of pictures, illustrations, sound effects, and the choice of
specific textual formulations. This aspect is hard to cover with
universal guidelines. A proper choice depends on a particular
type and content of an exercise. It also depends on the target
audience and is at least partially culturally dependent. For
example, learning systems developed in the US often include
“awesome” feedback (textual or graphical) after even minor
student achievements. Such feedback may be perceived as
inappropriate (or even ironic) in other cultures [63].

The graphical design and the specific content of items can
be influenced by a story or fantasy. The fantasy should be
preferably endogenous rather than exogenous to the content
of the exercise [2]. An example of exogenous fantasy is the
use of points obtained by solving multiplication exercise to
buy equipment for a warrior—the fantasy provides motivation,
but is not directly related to the practiced skill. In endogenous
fantasy, the skill and fantasy are linked, for example, when
students estimate numbers on a number line to shoot at a
battleship [64]. Here the fantasy provides a useful metaphor
and intuitive feedback for students. The used story can also
be personalized to fit students’ interests; for example, in math-
ematics, we can use word problems automatically generated
from patterns [65].

E. Social Dimension

So far, we only considered individual solving of exercises
with no interaction with other learners. However, competition
and cooperation are important motivational factors [2]. Com-
petition can be incorporated into learning exercises in several
ways with different importance placed on comparison with
others:

• Concealed indirect comparison. A gentle approach to
competition is when a comparison with others is avail-
able, but the comparison is not stressed; for example,
students have to explicitly go to the statistics page to see
a list of classmates ordered by performance.

• Salient indirect competition. Students do not influence
one another during solving, but the comparison with
other students is salient; for example, in the form of
leaderboards displayed after each practice session.

• Direct competition. Students directly influence one an-
other during solving; for example, they are presented with
the same questions and only the first correct answer is
counted.

Cooperation can be either again exogenous or endoge-
nous [2]. In exogenous cooperation, students solve exercises
independently and their performance is in some way combined
with the performance of other students. Exogenous coopera-
tion can be easily realized on top of any type of exercise, but
it has only limited added value. In endogenous cooperation,
students directly cooperate in solving a problem—this type of
interaction falls under collaborative learning [66]. Endogenous
cooperation is more powerful since it can have an impact not
just on engagement, but also on learning processes. However,
it is much more difficult to realize, as it cannot be done by a
simple modification of exercises designed for individual use.
Consequently, endogenous cooperation is not very common,

at least for exercises with an automatic evaluation that we
consider here.

VI. SYSTEM INTEGRATION AND ADAPTIVITY

Finally, we consider the integration of an exercise into the
learning system. We outline different approaches to the group-
ing of items, and then we discuss basic adaptation approaches.
We divide the discussion of adaptivity into two parts: methods
that are realized within an exercise, and methods that work
beyond a specific exercise.

A. Grouping of Items

One important issue concerning the integration of an exer-
cise in a system is the grouping of items. Are items presented
to students individually or as groups?

Presentation of individual items makes sense particularly
for “large” (time-consuming), heterogeneous items, typically
in interactive problem-solving exercises (e.g., programming
problems). For these cases, ordering of items is typically
important as there may be prerequisites among items and non-
trivial differences in difficulty. For such items, it is useful to
allow students to access a specific item and to provide an
overview of practice results “per item” (potentially with some
summary for the whole knowledge component).

With short, homogeneous items, it is natural to base the
presentation on groups of items (knowledge components). In
cases like constructed response exercise for one-digit multi-
plication or MCQs about English articles, it is not useful to
provide navigation or overview of performance for individual
items (5×3, “[a/an] bus”). For these items, it is natural to pro-
vide navigation on the level of whole knowledge components,
potentially with division into subgroups by difficulty.

Another design decision concerning groups of items is
whether to allow the mixing of exercise types, that is, whether
within the used groups of items all items use the same exercise
type or whether exercise types can vary. Consider, for example,
the practice of foreign language vocabulary, which can be
practiced using MCQs, writing of words, or pronunciation
exercise. The mixing of exercise types makes the practice more
variable and interesting, but it also has disadvantages. Mixing
of exercise types leads to more complex realization, particu-
larly of the student modeling and personalization approaches.
Users also may want to have control over exercise type. For
example, while using a mobile device in a noisy environment,
audio input is not viable, and a selected response exercise may
be strongly preferred to writing.

B. Adaptation within an Exercise

Concerning adaptation, we start by the adaptation that
happens within an exercise. This can be further divided into
the adaptation that happens while solving a single item and
beyond one item.

Adaptation while solving a single item is also called
“inner-loop” in intelligent tutoring systems terminology [67].
This type of adaptivity is relevant particularly for multistep
problem-solving exercises. It involves the provision of hints
or feedback during the process of item solving.
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With adaptation beyond a single item, one important aspect
is the choice and sequencing of specific items. Suppose that
a student wants to practice a particular knowledge component
(e.g., African states, the addition of fractions, English articles)
and we have a large number of items. How do we choose
and order these items? Previous work explored many possible
criteria that can be taken into account, for example, the choice
of items of suitable difficulty [68], blocked versus interleaved
practice [4], [69], spaced repetition [70], and taking into
account the restricted time available for practice [71].

During the practice, it is beneficial to visualize students their
progress and to provide them with a specific goal. This can be
done using a progress bar (skillometer) and mastery learning
criteria [25].

Alternatively, the practice can be organized in sequential
levels of increasing difficulty, as is typically done in computer
games. Levels can consist of groups of items as well as
individual items. This approach is natural particularly for
interactive problem-solving exercises, but it can also be used
for the practice of facts, where a continuous increase of
difficulty can be realized by increasing time pressure in fluency
games.

C. Adaptation and Navigation beyond an Exercise
Adaptive learning systems can also offer adaptation outside

of an exercise. The goal of this personalization is to help
students with the choice of a specific exercise and knowledge
component to practice. A difficult issue is an appropriate level
and type of student control. Student control has advantages
(e.g., a positive impact on motivation), but also disadvantages
(e.g., poor choice of practice due to student overconfidence),
and there is no universal approach [72], [73].

How do students find and choose their practice? There are
many ways and typically it is meaningful to combine support
for several of them. Exercises can have a rigid structure
provided by the content authors; for example, they can be
incorporated as a part of other learning materials (chapters
involving texts and videos) or organized in a fixed sequence
(“courses,” or “missions” in gamified environments). Another
approach is to make exercises easily navigable and searchable
so that students can easily access them on demand. The
basic navigation typically takes the form of a tree (taxonomy)
of knowledge components. A search function may utilize
collaborative tagging of exercises [74].

Students can also be provided with personalized recommen-
dations for exercises. These can be based on topics manually
selected by a teacher or a parent (“homework”), or they can be
computed algorithmically based on past activity [26]. These
recommendations can be based on several different instruc-
tional strategies; the choice of a suitable strategy depends on
the type of knowledge component [8]. For rules in mathemat-
ics, it is useful to take into account prerequisite relations. For
factual knowledge, the spaced repetition (distributed practice)
principle is relevant not just on the level of individual facts, but
also on the level of knowledge component (is it more useful
today to rehearse vegetable vocabulary or irregular verbs?).
For problem-solving exercises, the fading procedure can be
useful [35], [62].
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Fig. 4. Context of practice exercises.

VII. CHOOSING THE DESIGN OF AN EXERCISE

The presented classification framework makes it clear that
there are many choices in the design of learning exercises.
Moreover, many of the presented aspects are orthogonal and
can be combined in an exponential number of fashions. An
appropriate design of a learning exercise depends on the
particular context and aims of a learning system. To make
good decisions, we need to take this context into account. To
do so, we can use taxonomies and classifications that can help
us to grasp this context.

A. Context of an Exercise

Fig. 4 illustrates the context of a learning exercise. A
learning system has some target audience and a target domain
of content that it aims to teach. Based on the audience and
domain, we need to specify the aims of the system: types
of knowledge components (rules, facts), learning outcomes
(remembering, understanding, applying), and motivation that
should be supported. This specification should be used to
design the exercise.

Another aspect of the context is the way in which data from
exercise are used. The basic usage of the data is to score the
performance of students. The score is then used by a student
model to estimate the knowledge of students and to guide
the adaptive behavior of the system. The intended adaptive
behavior of the system may lead to specific requirements on
the scoring of performance and indirectly on the design of an
exercise.

As Fig. 4 shows, there is actually two-way influence: the
design of an exercise has to take into account the overall
context of the system, but also the behavior of the system
has to take into account specific aspects of each exercise.

B. Content Type and Learning Objectives

For specifying and clarifying the type of content and learn-
ing objectives, it is useful to employ the Knowledge–learning–
instruction framework [8], Bloom taxonomy [28], the SOLO
taxonomy [75], or related classification.

Specifically, the Knowledge–learning–instruction frame-
work [8] makes an important point that for instructional
decisions, the type of content (knowledge component) is more
important than the domain; that is, for the design of practice



12

exercise, it is more important whether we want to target the
learning of facts or rules, rather than whether the topic is
mathematics or English learning. The Knowledge–learning–
instruction framework proposes interlinked taxonomies of
knowledge component types (e.g., facts, categories, rules)
and learning process (e.g., memory processes, inductions,
understanding), and these taxonomies provide useful guidance
in the exercise design decisions.

The clarification of learning objectives, types of knowledge
components, and learning processes has a direct impact on
many decisions in the design of exercise. For example, the
basic type of interaction depends on the expected learning
outcomes. For recognition of factual knowledge, a selected
response exercise is a natural choice, whereas if the objective
is applying procedural knowledge, interactive problem-solving
exercises are the first choice. The proper choice along the
“time pressure” dimension depends on the importance of
fluency processes in a particular setting. The choice of instruc-
tional strategies to be implemented in the “system integration”
part depends on the type of knowledge components, for
example, the use of spaced repetition for facts and interleaving
procedures for rules.

C. Examples

To illustrate the outlined general principles, we discuss
several specific examples. The goal is to illustrate that different
settings require different focus and choices, and yet there are
significant overlaps and similarities even among very different
educational domains.

Vocabulary: Vocabulary learning (in second language learn-
ing) is a typical example of fact learning with a focus
on memory processes. A typical type of interaction is the
basic selected response (multiple-choice questions, pairing) or
simple constructed response (writing a word, pronunciation by
voice). From the presentation mode part of the classification,
an essential aspect is time pressure (for building fluency). The
practice is typically organized in groups (related vocabulary).
As for support for adaptivity, the most important aspect is
spaced repetition.

Grammar: In learning of grammar rules (both in the native
and second language), the basic type of interaction remains
similar as for vocabulary, that is, mostly the basic selected
and constructed response exercises. In the presentation mode,
it is now meaningful to focus on explanations to help students
understand the details of grammar rules. The organization is
again in groups of items (many simple items for a single topic).
Useful forms of adaptation are mastery learning and the use of
the interleaved practice (i.e., interleaving practice of different
grammar rules to practice their applicability conditions).

Word Problems: Word problems in mathematics are a
typical example of the practice of rules. The basic type of
interaction is the elementary constructed response exercise,
where students write an answer and it is evaluated using an
exact match with an expected answer. For the presentation
mode, learning support becomes very relevant: hints, scaffold-
ings, and explanations are all useful. For motivation support,
it is possible to utilize personalization by generating word

problems from templates based on the interests of a student.
For adaptation beyond a single item, it is again useful to
utilize mastery learning and interleaved practice. Prerequisite
relations are important.

Introductory Programming: In learning introductory pro-
gramming, the most important form of exercise is interactive
problem solving, where students learn to produce a code either
using a visual programming environment or writing code in
a standard programming language. However, other types of
interaction are also useful, for example, ordering problems
called Parson’s puzzles [76], where the goal is to find the
correct ordering of lines of code of a given program. Even the
basic multiple-choice questions can be used to improve the
understanding of code. From the presentation mode, hints and
scaffoldings are very useful. In adaptivity, it is important to
consider prerequisite relations and also the difficulty of items.
In programming, even problems practicing the same concepts
can widely differ in difficulty.

VIII. CONCLUSIONS

We propose a classification framework for practice exercises
in adaptive learning systems. This classification can be useful
in both research and development.

In the practical development of learning systems, the frame-
work can be used particularly as a design tool. The framework
makes explicit the many choices that need to be made when
implementing an exercise in a learning system and facilitates
a suitable choice for a particular application. It can also serve
as an implementation aid—a modular implementation that
corresponds to the classification can simplify the deployment
of new exercises.

The framework also highlights the role of performance scor-
ing as an interface between the specifics of the exercise and
adaptation algorithms (as illustrated in Fig. 2). This approach
significantly simplifies the development of adaptive learning
systems—it allows us to develop adaptation algorithms that
can be used with a wide variety of exercises. We have used
this approach successfully in the development of the Umı́me
adaptive learning system (umimeto.org), which contains over
30 types of exercises.

The framework also suggests novel research questions. The
framework highlights the fact that the same type of knowledge
can be practiced using widely different exercises (as illustrated
by examples in Section VII-C). How do we efficiently utilize
data coming from different exercises for estimating student
knowledge? Current research in student modeling does not
provide a satisfactory answer to this question—most research
in student modeling (implicitly) assumes homogeneous data
about student performance.

The framework is particularly useful for the clarification of
“what works when.” Research papers in adaptive learning and
student modeling often describe novel techniques, models, and
algorithms and experimentally demonstrate the improvement
they bring. The applicability of these techniques and models is
often limited only to a specific type of exercise. Without proper
terminology and classification framework, it is hard to describe
these contextual limitations. Consequently, they are often left

umimeto.org
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unspecified and implicit. As a specific example, consider the
use of response times for modeling student knowledge. Many
different models have been proposed for this purpose, for
example, by [45], [49], [50]. It is impossible to pick one
of the approaches as the correct one. The proper utilization
of response times depends on the type of interaction and
the presentation mode, specifically on the realization of the
time pressure aspect. The presented classification framework
should make such contextualization of research results easier.
In this way, it should also facilitate the replicability and
reproducibility of research.
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