
}w��������
��������������� !"#$%&'()+,-./012345<yA| Masaryk University

Faculty of Informatics

Reduction and Abstraction
Techniques for Model Checking

Radek Pelánek

Ph.D. Thesis

2006

Abstract

Model checking is an increasingly popular method for verification of safety-critical
systems. The main obstacle of this verification method is a state space explosion
problem and consequently high computational requirements of model checking al-
gorithms. In order to make the model checking method practically feasible, it is
necessary to develop powerful techniques for fighting state space explosion.

This thesis is focuses on fighting state space explosion in the context of embedded
system verification. Verification of embedded systems is particularly difficult due
to intricate interferences of software and real-time aspects of these systems. In this
setting, the most useful techniques are abstraction and reduction. These represent
the main topics of this thesis.

The thesis contributes in several ways to the development of abstraction and re-
duction techniques, which are both practical and theoretically grounded. Our first
contribution is the systematic presentation of reduction and abstraction techniques
in a single formal setting. This facilitates understanding and application of these
techniques. Our main innovative contribution lies in the novel under-approximation
refinement algorithm for software model checking. Similarly to other automatic
refinement algorithms, our algorithm is based on predicate abstraction. However,
it uses under-approximation refinement instead of the classical over-approximation
refinement. The thesis also contains several important technical results about ab-
straction and reduction techniques. Particularly, we provide two interesting results
for timed automata: a decidability result for a non-emptiness problem of timed au-
tomata with sampled semantics and a new extrapolation technique for zone based
abstractions of timed automata.

Acknowledgements

“You ought to return thanks in a neat speech,” the Red Queen said. [47]

I am afraid that my speech will not be neat. Anyway, I definitely ought to return
thanks to many people.

First of all, I thank to Ivana Černá, my supervisor. She was the right supervisor for
me: giving me the freedom to pursue my ideas, but at the same time gently guiding
my way. She always managed to find time to read my numerous drafts, discuss
proposals, and give valuable feedback. I also appreciated having a supervisor with
very similar values and understanding for my non-PhD activities.

Pavel Krčál was, despite the large physical distance which separated us during
our PhD studies, one of my closest collaborators. To be specific, I thank him for the
cooperation on the FSTTCS paper and for accommodating me during my visit in
Uppsala. But I am even more grateful for a lot of very useful feedback on my ideas,
drafts, and papers during different stages of my PhD studies. His sincere criticism
was a great complement to the polite feedback of my supervisor.

During my PhD, I spent 10 weeks as a NASA intern. I was lucky to be assigned
to work with Willem Visser and Corina Păsăreanu. Doing research with Willem and
Corina was really interesting. Particularly, I enjoyed the research-by-competition,
as we sometimes carried it with Corina (although it was unfair, since Corina has
a magic computer), as well as trying to answer some of Willem’s “million dollar
questions”.

I was also very glad to cooperate with many other bright researchers: Gerd
Behrmann, Kim G. Larsen, Patricia Bouyer, Jan Strejček, Tomáš Hanžl. In all
cases the cooperation was very enjoyable and fruitful.

I thank to all members of the Parallel and distributed systems laboratory (Par-
aDiSe) for making it such a nice environment full of interesting people (not to men-
tion watering of flowers during summer). I am especially thankful to members of the
DiVinE group, particularly Jǐŕı Barnat and Pavel Šimeček. Although, at the end, I
have not used DiVinE very much in my thesis, collaboration on this project was very
useful to me. Luboš Brim, chief of the ParaDiSe laboratory, engaged me, together
with Ivana, in the laboratory in early days of my master studies and supported me
in different ways till the end of my studies.

Life is not just computer science. And even writing computer science PhD thesis
is not just about computer science. I am convinced that I gained very much from
experiences and skill which I acquired as an organizer of summer camps, outward
bound activities, and city games. So I am very indebted to all my friends who

v

cooperated with me on these activities and who helped me to acquire these skills.
It was also fun and it helped me to stay sane.

Ivana Černá, Pavel Krčál, and Pavel Šimeček provided useful feedback about the
final structure of the thesis, Jan Holeček gave me valuable typographical advice, and
Nikola Betlachová pointed out some of my English language mistakes.

Last but not least, I thank to my whole family, for giving me support and firm
background.

Radek Pelánek

vi

Contents

1. Introduction 1
1.1. Motivation . 1

1.1.1. Computers and Bugs . 1
1.1.2. Formal Verification . 2

1.2. Model Checking . 3
1.2.1. Fighting State Space Explosion 5
1.2.2. Other Current Trends . 7

1.3. Main Themes . 8
1.3.1. Behavioral Equivalences . 8
1.3.2. Approximations and Refinement 10
1.3.3. Abstractions . 12

1.4. Contribution and Organization . 13
1.4.1. Thesis Contribution . 13
1.4.2. Other Contributions . 15
1.4.3. Thesis Organization . 16

2. Background 19
2.1. Mathematical Preliminaries . 19
2.2. Labeled Transition Systems . 20
2.3. Specification Languages . 21

2.3.1. Guarded Command Language 21
2.3.2. Timed and Stopwatch Automata 22

2.4. Basic Algorithm . 23
2.5. Behavioral Equivalences . 24
2.6. Sorter Example . 25

2.6.1. Description of the System . 26
2.6.2. Modeling the System . 27
2.6.3. Model Checking . 28

3. On-the-fly Reductions 31
3.1. Introduction . 31
3.2. Reductions Preserving Bisimulation 33

3.2.1. αSearch Algorithm . 33
3.2.2. Exact Abstraction Functions 35
3.2.3. Non-Exact Abstraction Functions 37

vii

Contents

3.3. Reductions Preserving Weak Equivalences 38
3.3.1. Partial Order Reduction . 39
3.3.2. Other Techniques . 40
3.3.3. Approximate Techniques . 41

3.4. Reductions Preserving Reachability and Deadlock 42
3.5. Reductions for Acyclic State Spaces 43

3.5.1. Characterization of Bisimulation Classes 44
3.5.2. On-the-fly Reduction Algorithm 45
3.5.3. Data Structures . 46
3.5.4. Approximate Operations . 47

3.6. Evaluation . 48
3.7. Summary . 52
3.8. Related Work . 54

4. Predicate Abstraction and Refinement 57
4.1. Introduction . 57
4.2. May/Must Abstractions . 60

4.2.1. Classical Definition . 60
4.2.2. Transitions must− . 61

4.3. Predicate Abstraction . 62
4.3.1. Abstract Domains . 62
4.3.2. Relations . 66

4.4. Refinement Schemes . 66
4.4.1. Predicates by Weakest Precondition 68
4.4.2. Refinement Strategies . 69
4.4.3. Completeness . 71

4.5. Related Work . 72

5. Under-Approximation Refinement 75
5.1. Introduction . 75
5.2. The New Algorithm . 77

5.2.1. The Algorithm . 77
5.2.2. Correctness and Termination 79
5.2.3. Properties of the Algorithm 82

5.3. Extensions . 85
5.3.1. Heuristics for Termination . 85
5.3.2. Open Systems . 86
5.3.3. Transition Dependent Predicates 87
5.3.4. Light-weight Approach . 87

5.4. Implementation and Applications . 88
5.4.1. Implementation . 88
5.4.2. Examples . 88
5.4.3. Discussion . 91

5.5. Related Work . 94

viii

Contents

6. Sampled Semantics of Timed Systems 97
6.1. Introduction . 97
6.2. Region Graph . 99
6.3. Dense vs. Sampled Semantics . 101

6.3.1. Real versus Rational . 101
6.3.2. Real versus Sampled . 102

6.4. Reachability Relations . 104
6.5. Non-emptiness Problems . 106

6.5.1. Timed Automata, Infinite Words, Unknown Period 106
6.5.2. Stopwatch Automata, Finite Words, Fixed Period 108
6.5.3. Summary of Results . 109

6.6. Related Work . 109

7. Zone Based Abstractions of Time Systems 111
7.1. Introduction . 111
7.2. Symbolic Semantics . 113

7.2.1. Classical Maximal Bounds . 114
7.2.2. Lower and Upper Bounds . 115

7.3. Extrapolation Using Zones . 116
7.3.1. Zones and Difference Bound Matrices 117
7.3.2. Extrapolation Operations . 117
7.3.3. Correctness . 120

7.4. Experiments . 124
7.5. Related Work . 126

8. Conclusions 129
8.1. Summary . 129
8.2. Contribution and Critique . 130
8.3. Future Work . 132

Bibliography 135

Index 148

A. Notation 153

B. Sorter Example 155
B.1. NQC Source Code . 155
B.2. Guarded Command Language Model 157
B.3. Timed Automata Model . 159

ix

Chapter 1

Introduction

“Found it,” the Mouse replied rather crossly: “of course you know what ‘it’ means.”
“I know what ‘it’ means well enough, when I find a thing,” said the Duck: “it’s

generally a frog or a worm. The question is, what did the archbishop find?” [47]

In this chapter we introduce the context of the thesis and discuss what we found1.
The chapter begins with a brief description of the motivation and the context of the
work. Then it goes on to the description of the model checking method and discusses
current research trends. After this general introduction we discuss the main unifying
themes of the thesis, we give an overview of the thesis and discuss its contributions.

1.1 Motivation

This section describes a a high-level motivation for the research presented in the
thesis. We argue that there is a great need for reliable verification methods and that
formal verification is an important one.

1.1.1 Computers and Bugs

Computers and computer-controlled systems have a direct impact on more and more
aspects of our everyday life. Often they make life easier. Nevertheless, we are all
familiar with all these irritating faults. In most situation, computer bugs lead to rel-
atively small problems. Unfortunately, many examples of very significant computer
bugs can be found. Some of the best known are the following:

Ariane 5 The Ariane 5 rocket exploded on its first flight. It inherited some parts of
a code from its predecessor, Ariane 4, without proper verification [88].

Therac-25 Therac-25 was a radiation therapy machine. Due to a software error, six
people are believed to die because of overdoses [134].

Pentium FDIV bug A design error in a floating point division unit (more specifi-
cally, an FDIV instruction) of a Pentium processor led to wrong results. Intel
was forced to offer replacement of all flawed processors [1].

Some of these bugs are “only” very expensive (e.g., space flight, processor design,
stock exchange, telephone control), but some are safety-critical , i.e., they lead to

1We leave the question “What did the archbishop find?” open.

1

Chapter 1. Introduction

threat to health or even life (e.g., medical systems, embedded controllers in vehicles,
nuclear reactor controllers). It is crucial to verify functionality of these systems
really properly.

Unfortunately, systems that are safety-critical usually have typical characteristics
of systems that are very hard to design correctly:

embedded: a system is not a “stand-alone” computer, but the processor is rather
embedded in a larger physical systems and it also controls mechanical parts of
the system,

reactive: a system does not have an input-output behaviour of a “classical” com-
puter program, but rather runs indefinitely and reacts to events from the external
environment,

concurrent: a system is not a single sequential program, but rather a set of concur-
rently running threads which interleave in unexpected ways,

real-time: a system reacts with its environment in real-time and exact timing is
often critical for correct functionality of the system.

All these characteristics make these systems much harder to design and verify
than “classical” computer systems. Taking into account the safety-critical nature
of these systems and the difficulty of their verification, it is clear that the powerful
and reliable verification methods are very important.

1.1.2 Formal Verification

In verification we face the following problem: for a system and a set of requirements,
there is a need to either to verify that the system satisfies these requirements or to
find an example which demonstrates an incorrect behavior of the system. Several
different verification methods can be employed, e.g., inspections, testing, simulation,
and formal verification.

None of these methods is superior to others, each of them has its advantages,
disadvantages, and domains of application. Here we focus on formal verification. In
comparison to the other verification methods, formal verification can give us much
higher assurance of system correctness. However, it is a very difficult and time-
consuming method. Therefore it is not very convenient for verification of usual soft-
ware applications, but rather for systems which are safety-critical. At the moment,
formal verification is used mainly in the following domains: embedded systems [77],
computer network communication protocols [108], supervision of traffic (airlines,
railways [26]), systems for space flights [136], hardware [85, 19].

There exist two basic approaches to formal verification:

Deductive methods These methods aim at producing mathematical proof of the
satisfaction of the requirements by a system. Although this process can be par-
tially automatized (simple proofs can be constructed algorithmically), deductive
methods have to be performed by experts and are very time-consuming.

2

1.2. Model Checking

pc1 = N 7−→ pc1 := W
pc1 = W ∧ free = 1 7−→ pc1 := C, free = 0
pc1 = C 7−→ pc1 := N, free = 1

pc2 = N 7−→ pc2 := W
pc2 = W ∧ free = 1 7−→ pc2 := C, free = 0
pc2 = C 7−→ pc2 := N, free = 1

C,N,1

N,N,0

W,C,1

N,C,1

W,N,0 N,W,0

W,W,0

C,W,1

Figure 1.1: Example of a model and its state space.

Automatic methods These methods use brute-force and try to test all possible
behaviors of the system and verify that all of them satisfy the requirements.
This approach is fully automatic and in a case that the system does not satisfy
the requirements an automatic method can produce a demonstration of a wrong
behavior (counterexample).

1.2 Model Checking

Automatic formal verification methods include model checking. The verification by
model checking proceeds in three major phases:

1. modeling,
2. formalization of properties,
3. verification.

Modeling

As the first step, a model of a given system in a suitable mathematical formalism has
to be created. In order to apply automatic methods, we need to close the system,
i.e., we must model also the environment of the system.

The modeling is done in some formal specification language. In the thesis we
consider two specification languages: a guarded command language and timed au-
tomata. These are rather low-level specification languages suitable for theoretical
treatment. For practical purposes it is necessary to use more high-level languages.

3

Chapter 1. Introduction

Semantics of specification languages is defined via labeled transition systems. For
a model M we denote the semantics JMK. The semantics describes a state space of
the model, i.e., all possible behaviours of the model.

Consider an example in Figure 1.1. The example formalizes a very simple mutual
exclusion protocol for two processes. The protocol is formalized in the guarded
command language. The figure also shows the state space of the model — the states
are tuples (pc1, pc2, free), transition leads between two states if it is possible to move
from one state to another according to the rules given by the model (semantics of
the language is formalized in Chapter 2).

Formalization of Properties

To formalize properties of systems, we use formal logics. The thesis is concerned
only with verification of properties expressed in predicate logic. Predicate logic can
be used to express (some) safety properties — properties of the type “nothing bad
happens”. This is practically the most useful type of properties. In order to express
more complex properties of systems, one has to use temporal logics, e.g., linear
temporal logic (LTL) or branching time temporal logics (CTL, CTL∗).

Consider the example in Figure 1.1 again:

1. The mutual exclusion property can be expressed in predicate logic as:

¬(pc1 = C ∧ pc2 = C)

2. Property “if the process reaches a wait section, then it will eventually enter
critical section” can be formalized using LTL as:

G (pc1 = W ⇒ F pc1 = C)

The semantics of these logics is defined with respect to transition systems, i.e.,
we define relation |= between transition systems and formulas such that T |= ϕ iff a
transition system T satisfies ϕ.

Verification

Given a model and a property, we want to check automatically whether the model
satisfies the property. The model checking problem can be formalized as follows:

Input: model M , property ϕ
Question: does JMK |= ϕ?

Moreover, in the case that the answer is “no”, we require the model checking
algorithm to output an counterexample, i.e., a behaviour violating the property.

Model checking algorithms are based on state space exploration — a state space
JMK of the model, as for example illustrated in Figure 1.1, is explicitly constructed
and the property of interest is verified on this state space by suitable graph algo-
rithms.

4

1.2. Model Checking

This is, in fact, a “brute force” approach — in order to verify the property we test
all possible behaviours of the model. This could be contrasted with, for example, the
theorem proving method which tries to (dis)prove a property by reasoning about the
model without an explicit construction of a state space. By taking the “brute force”
approach, model checking gains the advantage of being fully automatic. There
is, of course, a disadvantage that has to be paid — a state space explosion and
consequently high computational requirements of the method.

In the next chapter, we demonstrate the first two steps on a more involved exam-
ple. The focus of the thesis is, however, on the third step of the process — automatic
verification, particularly on fighting the state space explosion problem.

1.2.1 Fighting State Space Explosion

Main disadvantages of model checking are big memory and time requirements. These
are caused by so called state space explosion problem — the number of states in the
state space grows very fast with respect to the size of the model. If we consider the
example in Figure 1.1 parametrized by a number n of processes, we find that the size
of the state space is 2n +n ·2n−1, i.e., the size of the state space grows exponentially
for this example.

Fighting state space explosion is a key research direction in the model checking
research. There are several basic approaches how to fight this problem:

– Reduce the number of states that need to be explored (abstraction, reductions
based on equivalences, compositional methods).

– Reduce the memory requirements needed for storing explored states (storage size
reduction, symbolic representation).

– Increase the amount of available memory (distributed environment, magnetic
disk).

– Give up the requirement on completeness and explore only part of the state space
(heuristics, randomization).

We briefly review main techniques for fighting state space explosion.

Abstraction

Any method which uses models is fundamentally based on abstraction. In model
checking, however, the use of abstraction does not end by modeling. Abstraction is
very useful also in obtaining smaller state spaces by abstracting away some infor-
mation from the model. Since abstraction is one of the main themes of this thesis
it is discussed in more detail in other places.

Reductions Based on Equivalences

Due to state space explosion, even small models have large number of possible be-
haviours. Some of these behaviours are, however, “equivalent” (we discuss later in

5

Chapter 1. Introduction

more detail what equivalent means). It is, therefore, not necessary to explore all
behaviours of the model — it is sufficient to explore at least one from each equiv-
alence class. This goal is pursued by different reductions, e.g., symmetry, partial
order, cone of influence. Reductions are another important theme of the thesis, so
we postpone their discussion as well.

Compositional Methods

It is also possible to exploit the structure of the system. Systems are often specified
as a composition of several components. This structure can be exploited in two
ways:

– Compositional generation of state spaces [120]. State space is not generated di-
rectly, but rather gradually in the following steps:
1. Generate a state space for each component.
2. Reduce each of these state spaces according to a suitable behavioral equivalence

(usually the bisimulation equivalence).
3. Compute the final state space from reduced state spaces for components.

– Assume-guarantee approach [158, 99, 81]. For each component we express in
temporal logic what it assumes about the rest of the system and what it guarantees.
The properties have to be expressed in such a way that the conjunction of all
assumptions and guarantees gives the required property of the system. We use
model checking to verify that individual components behave properly according
to assumptions and guarantees.

Storage Size Reductions

The main source of memory requirements of the exploration algorithm is a data
structure which stores already visited states. The memory consumed by this struc-
ture can be reduced in several ways:

– State compression [111, 169, 84].
– Do not store all states: caching [91, 83, 157], selective storing [23], sweep line

method [54].
– Implicit representation of the data structure [113].

Symbolic Representation

The above discussed techniques for storage size reduction modify the representation
of the data structure States, but the exploration algorithm remains the same. With
symbolic representation, we have to modify the algorithm as well.

The most common type of symbolic representation is based on binary decision
diagrams (BDDs). This data structure can be used to concisely represent sets and
to efficiently perform operations over sets. Algorithms that use this data structure
do not manipulate individual states but rather sets of states [45].

6

1.2. Model Checking

Another approach based on symbolic representation is bounded model checking
with SAT [28]. All behaviours of the system up to some fixed depth are characterized
by formula in a propositional logic. The correctness of the system (up to a given
depth) is expressed as a satisfiability query of this formula. The satisfiability problem
is then solved by SAT solver.

More Brute Force

Another approach how to manage a large number of states is to use more brute
force, particularly more memory. Classical algorithm usually uses only the RAM
memory of a single computer. This can be extended in two ways.

1. Use a magnetic disk. Simple use of magnetic disk leads to an extensive swapping
which slows down the computation extremely. So the magnetic disk have to be
used in a sophisticated way in order to minimize disk operations [165].

2. Use a distributed environment, e.g., networks of workstations. The exploration
algorithm can be easily extended to work in a distributed environment with
message passing [164, 132, 82].

Randomized Techniques and Heuristics

If the state space is too large even after the application of the above given techniques,
we can use randomized techniques and heuristics. These techniques explore only part
of the state space, i.e., under-approximation of the whole state space. Therefore they
can help only in the detection of error states; they cannot assist us in proving absence
of errors. The advantage is that they scale much better.

The main techniques from this category are the following: heuristic search (e.g.,
A* search) [97, 123, 161], partial searches and random walks through the state
space [107, 135, 100, 119, 137], bitstate hashing [109], genetic algorithm [93],
bounded search.

1.2.2 Other Current Trends

Except for fighting state space explosion, which we describe above, there are several
other directions currently pursued by model checking researchers:

1. Extensions of techniques to work with infinite state models (e.g., models with in-
finite data domain variables and unbounded recursion, real-time models, hybrid
models, probabilistic models).

2. Combination of model checking with other verification methodologies, e.g., test-
ing, theorem proving, or static analysis.

3. Applications of model checking to new domains (e.g., scheduling, biology).
4. Improvements of front-ends, such as translations from more high-level model-

ing languages (including programming languages and UML), automatic abstrac-
tions, providing user with more informations, making model checkers look more
’debugger-like’.

7

Chapter 1. Introduction

5. Efficient implementations of model checkers for particular application domains.

Although the thesis is concerned mainly with fighting state space explosion, it also
touches some of these other trends, particularly extensions to infinite state models.

1.3 Main Themes

The thesis describes several different techniques for fighting the state space explosion
problem in model checking. Although individual chapters consider different aspects
of the problem, there are several unifying themes common to all covered topics:
behavioral equivalences, abstraction, approximation, and refinement. Since some of
these notions are bit overloaded — they are used with several different meanings,
even in the computer science community — we discuss them in detail here.

We start the discussion of individual themes by definitions from dictionaries and
then we clarify how we use these notions in the thesis. Only intuitive ideas of
technical notions are provided here; formal treatment is given in following chapters.

We illustrate notions on a simple labeled transition system (LTS). The “full”
system is on Figure 1.2 (a).

1.3.1 Behavioral Equivalences

Equivalent — of the same size, value, importance, or meaning as something else.

(MacMillan English Dictionary)

If we look more closely at state spaces of practical problems, we quickly notice
that there is some redundancy — many states/paths in state spaces are in some
sense ’equivalent’. Thus it seems plausible to identify these equivalent states/paths
and to explore only one from each ’equivalence class’. In order to employ this basic
idea, we have to address several basic questions.

What does it mean that two systems are equivalent? This question is more dif-
ficult to answer than it seems. There exist many different reasonable notions of
equivalence. The basic ones that we are interested in include:

trace equivalence: systems are trace equivalent if they produce the same sets of
traces,

(bi)simulation equivalence: systems are (bi)simulation equivalent if they can simu-
late each others behaviour in a step-wise manner (distinction between simulation
and bisimulation is discussed in Chapter 2),

weak equivalences: there are also weak variants of the above mentioned equiva-
lences which do not take into account invisible (internal) actions of the system.

For our example from Figure 1.2 we get: (a) and (b) are equivalent with respect
to trace equivalence but not with respect to bisimulation, (a) and (c) are weak
bisimulation equivalent.

8

1.3. Main Themes

(a)

move
sensor

sensor

move

move

move

move

move

right

left

kick

(b)

move move move

right

left
sensormove

kick

(c)

right

left

kick

move
sensor

sensor

move

move

(d)

move
sensor

sensor

move

move

move

move

(e)

move

sensor

move

kick

left

right

Figure 1.2: Several labeled transition systems.

From point of view of model checking, it is important to study which logics are
preserved by which equivalences. A logic is preserved by an equivalence if two
equivalent structures satisfy the same formulas in the logic. This problem, as well
as formal definition of equivalences, is discussed in Chapter 2.

How do we recognize whether two structures are equivalent? Once we fix an equiv-
alence, a natural questions arises: how do we to decide whether two given structures
are equivalent with respect to this equivalence. This is the basic stone of an approach
called ’equivalence checking’ — specification is given by the user as a small structure
and the tool checks whether implementation is equivalent to it. This question is not
important to us, since in model checking the specification is given as temporal logic
formula. In model checking, we are rather interested in the following question.

9

Chapter 1. Introduction

How do we construct a smaller equivalent structure? There exist two possible
approaches to this question:

– We generate the full state space and then reduce it with respect to a given equiva-
lence. Since this approach does not reduce peak memory requirements, it is useful
only for model checking expressive logics for which model checking algorithms
have high time complexity (like µ-calcul) or for compositional generation of state
spaces.

– We produce a smaller equivalent structure during the exploration of the full state
space (on-the-fly). With this approach we trade some reduction (in the on-the-fly
manner we cannot identify all equivalent states/paths), but we reduce the peak
memory requirements.

In the thesis we are concerned only with the second approach — on-the-fly reduc-
tions.

Which equivalences are preserved by a given reduction? This question is related
to on-the-fly reductions. Given some reduction we want to know which equivalences
are preserved by this reduction. We encounter this question several times in the
thesis.

It is useful to consider not only equivalences, but also preorders (it makes sense
to consider preorders with respect to trace and simulation, but not with respect to
bisimulation). Preorders are useful for formalizing approximations, which are one of
the other main themes of the thesis.

1.3.2 Approximations and Refinement

Approximation — a result that is not necessarily exact, but is within the limits of
accuracy required for a given purpose

(Webster’s Encyclopedic Unabridged Dictionary)

Refinements are small alterations or additions that you make to something in order
to improve it.

(Cobuild Learner’s Dictionary)

We use approximation in the following meaning: instead of the full state space
(e.g., structure (a) in Figure 1.2) we use some approximate structure which is smaller,
but in some sense similar (e.g., structures (b), (c), (d), (e) in Figure 1.2). This
approximate structure is then used as usual, i.e., model checking over this structure
is performed by classical algorithms.

Since approximation has many meanings in computer science, it may be useful to
specifically say, what meanings are not used here: approximate answer with some
probability; approximate solution (not optimal but still good).

The notion of approximation (i.e., what it means similar structure) is in our
setting formalized by some preorder. Depending on whether the approximate struc-
ture is larger or smaller with respect to the preorder, we talk either about over-
approximation or under-approximation. The used preorder is usually either trace

10

1.3. Main Themes

The system

Under−approximations Over−approximations

Refinement steps

Figure 1.3: Illustration of refinements.

preorder or reachability preorder, in the thesis we implicitly consider approximations
with respect to reachability preorder.

Over-approximations contain more behaviours than the full system. Thus if there
is no error in an over-approximation then there is no error in the full system. There-
fore, over-approximations are suitable for verification. On the other hand, errors
found in an over-approximation can be spurious — they need not correspond to
any real error in the full system. Thus over-approximations are not very good for
detection of errors. Typical way to obtain an over-approximation is abstraction
(Figure 1.2 (e)).

Under-approximations contain less behaviours than the full system. Thus if there
is an error in an under-approximation then this error is a real error in the full system.
This makes under-approximations suitable for falsification (error detection). On the
other hand, absence of errors in an under-approximation does not imply absence
of errors in the full systems. Therefore, under-approximations are not very good
for verification. Typical way to obtain an under-approximation is a bounded search
(Figure 1.2 (d)).

Approximations are often used together with some kind of refinement that is
used to produce a sequence of approximations of increasing exactness. Figure 1.3
illustrates the classical setting. We start with either a coarse under-approximation
or a coarse over-approximation and by successive refinements we get closer and closer
to the full system until we get an approximation which is good enough to answer
the question at hand (or until we run out of resources).

Figure 1.4 gives a basic pseudocode for this approach. The meaning of
‘(in)conclusive answer’ depends on what type of approximation we use: if we use
under-approximations than error detection is a conclusive answer and no-error re-
sult is inconclusive; whereas if we use over-approximations then no-error result is
conclusive and error detection is inconclusive.

11

Chapter 1. Introduction

Compute
initial

approximation

Model check

Done

Conclusive
answer

Inconclusive
answer

Refine
approximation

Figure 1.4: Basic refinement loop.

The refinement step often makes use of the result of model-checking step, the
most well known instance of this approach is a ‘counterexample guided abstraction
refinement’ (CEGAR). With this approach, we use spurious counterexamples to
refine approximations which are obtained by predicate abstraction.

The approximation refinement approach usually leads to semi-algorithms: nothing
prevents us from falling into the refinement loop forever. In this thesis, we are bit
sloppy about this issue and we often call ‘algorithm’ what should be more correctly
called ‘semi-algorithm’.

1.3.3 Abstractions

Abstraction — the act of considering something as a general quality or characteristic,
apart from concrete realities, specific objects, or actual instances.

(Webster’s Encyclopedic Unabridged Dictionary)

Abstraction is the thought process wherein ideas are distanced from objects.

(Wikipedia)

Abstraction is a key ingredient of any approach that uses models. The model
building process is inherently based on abstraction and the success or failure of the
model checking activity often depends on the modeler’s ability to choose the right
level of abstraction. Although this aspect of abstraction is very important, in this
thesis we are not concerned with this type of abstraction.

In model checking, the role of abstraction does not end at the modeling process.
Different types of abstractions can be used to cope with the state space explosion
problem. Here we use abstraction mainly in the following way: we take a model
produced by the user (called concrete model) and produce an abstract model which
is smaller, i.e., it has smaller state space. The abstract model is used for model
checking instead of the concrete one. Optimally, the abstract model is equivalent to
the concrete one, but more often it is only approximation of it. In such a case it
may be necessary to perform refinement of the abstraction.

12

1.4. Contribution and Organization

Since the notions of abstraction and approximation are often used in confusing
ways, we clarify the relation of these two in our setting:

– abstraction often leads to approximation (usually over-approximation), but it can
also be exact, i.e., abstract structure can be equivalent to full system with respect
to some equivalence,

– not all approximations are obtained by abstraction.

Some authors use the terminology of sound and complete abstractions. Here we
prefer to use the terminology of over-approximations and under-approximations,
which have the same meaning.

Let us briefly discuss an abstraction on the example from Figure 1.2. Let’s imagine
that individual states are labeled by position of a brick on the belt and that we use
abstraction which distinguishes only two predicates: position < 2, position > 4.
Then we obtain a system on Figure 1.2 E.

1.4 Contribution and Organization

Having discussed the context of the work, we can state the contribution of the thesis
and outline the organization of the rest of the work.

The author has worked on several aspects of model checking, most of them related
to fighting state space explosion. He is an author or a co-author of 1 journal paper,
10 conference papers, 4 workshop papers, and 7 technical reports. The thesis is
concerned only with abstraction and reduction techniques. We discuss separately
contributions contained in the thesis and other author’s contributions.

1.4.1 Thesis Contribution

Contributions of the thesis can be divided into three types: technical, innovative,
and methodological.

Technical Contribution

The thesis presents several important technical contributions which improve the
state-of-the-art of reduction and abstraction techniques. The main technical contri-
butions are the following:

– a decidability result for a non-emptiness problem of timed automata in sampled se-
mantics with an unknown period (Chapter 6); this problem was previously wrongly
labeled as undecidable in [5],

– a new extrapolation technique for zone based abstractions of timed automata and
a proof of its correctness (Chapter 7); this techniques improves performance of
state of the art model checkers,

– a description of an under-approximation refinement algorithm and proofs of its
correctness and termination properties (Chapter 5),

13

Chapter 1. Introduction

– experimental evaluation of on-the-fly reductions which provides a realistic assess-
ment of their usefulness (Chapter 3),

– several novel reduction techniques, particularly a dynamic reduction technique for
acyclic systems (Chapter 3),

– demonstration of an error in [142] (Chapter 4).

Innovative Contribution

In Chapter 5 we present a novel under-approximation refinement algorithm for soft-
ware model checking. This approach provides a novel approach to application of
predicate abstraction. Moreover, it shows that there is a viable alternative to the
prevailing use of refinement for over-approximations. Therefore, the importance of
this contribution is not only in its technical aspects (correctness of the algorithm)
but also as an innovative way to the software model checking which can, hopefully,
inspire other research in this direction.

Methodological Contribution

Finally, the thesis present systematic overviews of several areas:

– on-the-fly reductions (Chapter 3),
– predicate abstractions techniques (Chapter 4),
– behavioral equivalences between dense and sampled semantics of timed systems

(Chapter 6),
– non-emptiness problems for timed systems (Chapter 6).

These overviews present mainly known results, although we also fill some missing
pieces. Results, often collected from different notations by different authors, are
presented here in a single framework. The presentation provides novel insight into
these areas.

Insight obtained from the overview and evaluation of on-the-fly reductions is sum-
marized into an advice for developers of model checking tools.

Related Publications

Some of the results presented in the thesis were published in the following papers:

1. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata. Gerd
Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. International
Journal on Software Tools for Technology Transfer (STTT), Springer, 2005.

2. Concrete Search with Abstract Matching and Refinement. C. Păsăreanu, R.
Pelánek, and W. Visser. Computer Aided Verification (CAV 2005), LNCS 3576,
pages 52-66, Springer, 2005.

3. On Sampled Semantics of Timed Systems. P. Krčál and R. Pelánek. Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS
2005), LNCS 3821, pages 310-321, Springer, 2005.

14

1.4. Contribution and Organization

4. Evaluation of On-the-fly State Space Reductions. R. Pelánek. Mathematical and
Engineering Methods in Computer Science (MEMICS’05), pages 121-127, 2005.

1.4.2 Other Contributions

Now we briefly review contributions to other areas on which the author worked and
which are not part of the thesis.

Structural Properties of State Spaces

State spaces explored by model checking algorithms are directed graphs with some
additional information (atomic propositions, labels). Since huge state spaces are
generated from rather small descriptions, these graphs are not arbitrary. Using six
model checking tools, the author gathered a large set of state spaces, studied their
typical properties, and discussed possible applications of these properties in model
checking (a SPIN 2004 paper [150]).

Selective Storing and Random Walk

With K. G. Larsen and G. Behrmann we proposed a reachability algorithm which
stores only some states during the exploration. We discussed several strategies for
selection of states that are stored during the exploration. We also proposed a new
strategy based on static analysis of the model (a CAV 2003 paper [23]).

With L. Brim, I. Černá, and T. Hanžl we studied the behavior of random walks
on state space. We also studied different enhancements of random walks — tech-
niques which use the available memory to store some information (an FMICS 2005
paper [152]).

Distributed Cycle Detection

This research, conducted with L. Brim, I. Černá, and P. Krčál, focused on detection
of cycles in distributed environment with an application to LTL model checking. Re-
sults were published on FST-TCS 2001 [40], SOFSEM 2001 [41], and SPIN 2003 [50].

Study of LTL Fragments

This research focused on study of fragments of LTL, hierarchies of these fragments,
relations between fragments of LTL and automata on ω-words, and connections to
model checking. Results were published on MFCS 2003 [51] (a paper with I. Černá)
and CIAA 2005 [153] (a paper with J. Strejček).

Test Case Generation

With C. Păsăreanu and W. Visser we studied application of state space exploration
techniques to test case generation for Java units, particularly for container-like
classes (an ASE 2005 [148] paper).

15

Chapter 1. Introduction

1. Introduction

²²
2. Background

vvllllllllllllll

²²))TTTTTTTTTTTTTTT

3. On-the-fly
reductions

((QQQQQQQQQQQQQ
4. Predicate
abstraction

²²

6. Sampled Semantics
of Timed Systems

²²
5. Under-approximation

refinement

55

²²

7. Zone Abstractions
of Timed Automata

ttjjjjjjjjjjjjjjjj

8. Conclusions

Figure 1.5: Chapter dependencies.

1.4.3 Thesis Organization

The thesis is self-contained — all used notions are formally introduced. We try to
illustrate all new notions and techniques on examples. However, several nontrivial
(but classical) notions are introduced only formally and not illustrated by example
(e.g., bisimulation or region graph). Therefore, a reader who is not familiar with
model checking research may have some difficulty reading the text; it could be useful
to consult some introductory text, e.g., [56].

Main chapters of the thesis (Chapters 3-7) have the following structure. At the
beginning, we give a specific introduction to the content of the chapter and we discuss
relation to our main themes. Then we discuss the main content of the chapter and
in most cases we also provide some evaluation. Each chapter ends with a separate
discussion of related work.

Figure 1.5 gives an overview of relations among chapters. Chapters 3, 4, and 5 are
guided mainly towards applications in software model checking, whereas Chapters 6
and 7 are concerned with real-time aspects of model checking.

Chapter 2 gives background. It introduces the mathematical preliminaries neces-
sary for reading the thesis and then it formally defines notions discussed in intro-
duction. It also describes a Sorter example which is used thorough the thesis as a
running example.

Chapter 3 deals with on-the-fly reductions of state spaces. This chapter contains
mainly an overview and evaluation of different techniques; we also discuss some novel
techniques. We concentrate on which equivalences are preserved by which reduction
techniques and we reformulate some known techniques in terms of abstraction (this
is useful for next chapters). We also briefly mention approximation and refinement,

16

1.4. Contribution and Organization

although these are not usually used in this context.

Chapter 4 overviews techniques for predicate abstraction and its refinement. Predi-
cate abstraction is used to construct approximations of the system. Using refinement
loop we obtain semi-algorithms for deciding verification problems. Since we cannot
guarantee termination, we study different termination properties.

Chapter 5 presents a novel under-approximation refinement approach. It combines
the idea of concrete search with abstract matching (introduced and discussed in
Chapter 3) and predicate abstraction with refinement (introduced in Chapter 4).

Chapter 6 is concerned with sampled semantics of timed systems. Sampled seman-
tics can be viewed as approximation of the classical dense time semantics. We discuss
theoretical results concerning behavioral equivalences between dense and sampled
semantics. Motivated by under-approximation refinement, we also study certain
non-emptiness problem of timed automata with sampled semantics and show decid-
ability of this problem.

Chapter 7 deals with zone based abstractions of timed automata. We introduce
a novel abstraction technique which takes into account more information from the
model. This technique preserves less equivalences than previously known technique,
but leads to coarser abstractions and thus improves significantly the performance of
a model checker.

Chapter 8 provides summary of the work, critique, and directions for future work.

17

Chapter 2

Background

“Well,” said Owl, “the customary procedure in such cases is as follows.”
“What does Crustimoney Proseedcake mean?” said Pooh. “For I am a Bear of

Very Little Brain, and long words Bother me.” [139]

In this chapter we formally define some long words, so that they do not bother
us (so much). We also illustrate the model checking technique on the Lego c© Sorter
example, which is used thorough the thesis as a running example.

2.1 Mathematical Preliminaries

Here we discuss some basic mathematical notions. The purpose of this section is to
fix the notation — we suppose that the reader is acquainted with these notions.

A relation R on sets S1, S2 is defined as a set of pairs (R ⊆ S1 × S2). We use
either set notation ((s1, s2) ∈ R) or infix notation (s1Rs2). Infix notation is used
particularly in the case of a transition relation (s1 −→ s2).

Let S be a set and R a relation over S × S. The relation R is a preorder if it is
reflexive and transitive. It is a partial order if it is reflexive, transitive, and anti-
symmetric. For partial order, the pair (S, R) is called a partially ordered set (shortly
a poset). The relation R is an an equivalence relation if it is reflexive, transitive,
and symmetric. An equivalence class of s is [s]R = {s′ | (s, s′) ∈ R}.

A core of a function f : A → B is a relation ≡f⊆ A × A defined as follows:
a ≡f b ⇔ f(a) = f(b). We also say that f induces a relation ≡f . Note that a core
is an equivalence. Function f between two posets (P,≤P) and (Q,≤Q) is monotone
iff ∀p, q ∈ S, p ≤P q ⇒ f(p) ≤Q f(q).

A Galois connection between two posets P, Q is a tuple of function (α, γ), where
α : P → Q (an abstraction function), γ : Q → P (a concretization function)
satisfy: x ≤P γ(y) ⇔ α(x) ≤Q y (or equivalently α, γ are monotone and satisfy
x ≤P γ(α(x)), α(γ(x)) ≤Q x). Given the function α, the function γ is uniquely
determined (and vice versa). Therefore, we sometimes specify a Galois connection
only by α (resp. γ).

19

Chapter 2. Background

2.2 Labeled Transition Systems

As a semantics of a model, we use labeled transition systems (LTS). Another way to
define semantics of models is to use Kripke structures (KS). A Kripke structure does
not have action names on transition, but has labels on states. For results presented
in this thesis this distinction is purely technical and the choice (LTS versus KS) is
rather arbitrary. It would be possible to formulate all the results in terms of Kripke
structures1.

An LTS is a tuple T = (S,Act ,−→, s0) where S is a (possibly infinite) set of states,
Act is a finite set of actions containing a special invisible action τ , −→⊆ S×Act×S
is a transition relation, and s0 ∈ S is an initial state.

At first, we introduce some notation:

– s −→ s′ iff ∃a ∈ Act : s
a−→ s′,

– s −→∗ s′ iff there exists sequence of states s1, s2, . . . , sn such that s = s1, sn = s′

and for each 1 ≤ i < n : si −→ si+1,
– s

a=⇒ s′ iff ∃s1, s
′
1 such that s

τ−→∗
s1

a−→ s′1
τ−→∗

s′.

State s is deadlocked if there is no outgoing transition from s. A set of reachable
actions RA(T) is a set {ai ∈ Act | s0 −→∗ sn

ai−→ sn+1}. A set of reachable states
is a set {s | s0 −→∗ s}. We say that LTS is finite if the set of reachable states is
finite2.

A run of T over a trace w ∈ Act∗ ∪Actω is a sequence of states s0, s1, . . . starting

in the initial state such that si
w(i)−→ si+1. A weak run of T over a weak trace

w ∈ {Act r τ}∗ ∪ {Act r τ}ω is a sequence of states s0, s1, . . . starting in the initial

state such that si
w(i)
=⇒ si+1.

A language (resp. an ω-language) of the transition system T is a set of finite
(resp. infinite) traces:

L(T) = {w ∈ Act∗ | there exists a run of T over w}
Lω(T) = {w ∈ Actω | there exists a run of T over w}

A weak language (resp. an weak ω-language) of the transition system T is a set
of finite (resp. infinite) weak traces:

WL(T) = {w ∈ {Act r τ}∗ | there exists a weak run of T over w}
WLω(T) = {w ∈ {Act r τ}ω | there exists a weak run of T over w}

Let X ⊆ S be a set of states. The weakest precondition of the set X with respect
to an action ai is a set pre(ai, X) = {s | ∀s ai−→ s′ : s′ ∈ X}. The strongest

1Note, for example, that the paper [151], which is the base of Chapter 3, uses Kripke structures to
formalize results. Also note that in the case of Kripke structures it is customary to talk about
stutter equivalences rather than weak equivalences.

2Note that this terminology is a bit nonstandard, but it is useful in our setting, where we use
the same specification language (guarded command language) to specify both finite and infinite
state systems.

20

2.3. Specification Languages

postcondition of the set X with respect to an action ai is a set post(ai, X) = {s |
∃s′ ∈ X : s′ ai−→ s}.

One focus of this thesis is an abstraction. In general, we consider abstraction to
be an operator on LTSs. An abstraction operator (usually denoted A) takes a LTS
T and produces another LTS T ′. In some cases T ′ is over the same set of states (i.e.,
abstraction only changes the transition relation). We usually apply abstraction to
an LTS obtained as a semantics of some model (JMK). We call abstraction effectively
computable if it can be computed directly from the model M without going through
JMK (this can be impossible, since JMK is sometimes infinite).

2.3 Specification Languages

To make the presentation readable, we use very simple specification languages. To
model software (respectively software aspects of systems) we use a guarded com-
mands language over integer variables. To model real-time systems we use basic
timed and stopwatch automata.

Techniques discussed in the thesis carry to more sophisticated specification lan-
guages (e.g., with data types, synchronization, communication, invariants, pointers)
which are necessary for practical applications. But the simple specification languages
that we use are more suitable to explain the essence of presented techniques.

2.3.1 Guarded Command Language

Syntax

Let V be a finite set of integer variables. Expressions over V are defined using
standard boolean (=, <, >) and binary (+,−, ·, ...) operations. Act is a set of action
names. A model is a tuple M = (V, E); E = {t1, . . . , tn} is a finite set of transitions,
where ti = (ai, gi, ui) with ai ∈ Act , predicate gi (a boolean expression over V), and
update ui(~x) (a sequence of assignments over V).

Semantics

The semantics of a model is an LTS. States are variable valuation V → Z. The
semantics of a predicate φ (a relation s |= φ) and the the semantics of an update ui

(a function JuiK : ~x 7→ ui(~x)) are defined as usual. The semantics of model M is an
LTS JMK = (S,Act ,→, s0) where

– S = 2V→Z,
– s

ai−→ s′ iff there exists (ai, gi, ui) ∈ T such that s ∈ JgiK, s′ = ui(s),
– s0 is the zero valuation (∀v ∈ V : s0(v) = 0).

We also use the following notation:

– JφK is a set {s ∈ 2V→Z | s |= φ}

21

Chapter 2. Background

– s(x) is a value of variable x in state s,
– s[x := a] is a state s′ such that s′(x) = a and ∀y ∈ V, y 6= x : s′(y) = s(y).

2.3.2 Timed and Stopwatch Automata

Syntax

Let C be a set of non-negative real-valued variables called clocks. The set of guards
G(C) is defined by the grammar g ::= x ./ c | x− y ./ c | g∧ g where x, y ∈ C, c ∈ N0

and ./∈ {<,≤,≥, >}. A stopwatch automaton is a tuple A = (L,Act , C, q0, E, stop),
where:

– L is a finite set of locations,
– C is a finite set of clocks,
– l0 ∈ L is an initial location,
– E ⊆ L×Act ×G(C)× 2C ×L is a set of edges labeled by an action name, a guard,

and a set of clocks to be reseted,
– stop : L → 2C assigns to each location a set of clocks that are stopped at this

location.

A clock x ∈ C is called a stopwatch clock if ∃q ∈ L : x ∈ stop(q). We use the
following special types of stopwatch automata:

– a timed automaton is a stopwatch automaton such that there are no stopwatch
clocks (i.e., ∀l ∈ L : stop(l) = ∅),

– a closed automaton uses only guards with {≤,≥},
– a diagonal-free automaton uses only guards defined by g := x ./ c | g ∧ g.

We also consider combinations of these types, e.g., closed timed automaton.

Semantics

Semantics is defined with respect to a given time domain D. We suppose that time
domain is a subset of real numbers which contains 0 and is closed under addition.
A clock valuation is a function ν : C → D. If δ ∈ D then a valuation ν + δ is such
that for each clock x ∈ C, (ν + δ)(x) = ν(x)+ δ. If Y ⊆ C then a valuation ν[Y := 0]
is such that for each clock x ∈ CrY , ν[Y := 0](x) = ν(x) and for each clock x ∈ Y ,
ν[Y := 0](x) = 0. The satisfaction relation ν |= g for g ∈ G(C) is defined in the
natural way.

The semantics of a stopwatch automaton A = (L,Act , C, l0, E, stop) with respect
to the time domain D is an LTS JAKD = (S,Act ,→, s0) where S = L × DC is the
set of states, s0 = (l0, ν0) is the initial state, ν0(x) = 0 for all x ∈ C. Transitions are
defined with the use of two types of basic steps:

– time step: (l, ν)
delay(δ)−−−−−−→ (l, ν ′) if δ ∈ D, ∀x ∈ stop(l) : ν ′(x) = ν(x), ∀x ∈

C r stop(l) : ν ′(x) = ν(x) + δ,

22

2.4. Basic Algorithm

– action step: (l, ν)
action(a)−−−−−−−→ (l′, ν′) if there exists (l, a, g, Y, l′) ∈ E such that

ν |= g, ν ′ = ν[Y := 0].

The transition relation of JAKD is defined by concatenating these two types

of steps: (l, ν) a−→ (l′, ν ′) iff there exists (l′′, ν ′′) such that (l, ν)
delay(δ)−−−−−−→

(l′′, ν ′′)
action(a)−−−−−−−→ (l′, ν ′).

We consider the following time domains: R+
0 ,Q+

0 , {k · ε | k ∈ Z+
0 }. The se-

mantics with respect to the last domain is denoted JAKε (also called sampled se-
mantics). We use the following shortcut notation: L(A) = L(JAKR+

0
), Lω(A) =

Lω(JAKR+
0
), Lε(A) = L(JAKε), Lε

ω(A) = Lω(JAKε).

2.4 Basic Algorithm

Model checking algorithms are based on exhaustive search, i.e., on construction of the
full state space of the model. Figure 2.1 gives the basic algorithm for construction
of the state space. The algorithm takes as an input a model M and constructs
reachable part3 of JMK.

The algorithm is a classical graph traversal algorithm. It starts in the initial
state and then generates all reachable states using transitions according to the given
model. We give the algorithm explicitly, because later in the thesis we present
several modifications and improvements of this algorithm. The algorithm uses the
following data structures (we stick to this notation for the rest of the thesis):

– States is a set of states that were visited during the exploration. Since we need to
perform a test of membership in this data structure, the set is usually represented
by hash table.

– Transitions is a set of transition that were traversed during the exploration.
– Wait is a set of states that need to be explored. The implementation of this data

structure (queue/stack) determines the search order of the algorithm.

Once we have generated JMK, we can directly use it to verify simple safety prop-
erties. For this purpose it is sufficient to use a simple reachability analysis in JMK.
In this thesis we consider mainly this type of properties — they are, anyway, the
practically most useful ones. Therefore, we are concerned mainly with generation
and exploration of JMK.

Model checking problems for more complex properties are usually reduced to some
non-emptiness problem and this problem is in turn solved by some graph algorithm.
For example, model checking of LTL logic can be reduced to Buchi automata non-
emptiness which can be solved by cycle detection. We do not discuss these algorithms
in more detail; an interested reader is referred to [56].

3In this thesis, we are bit sloppy about the distinction between JMK and reachable part of JMK.
It is clear that with respect to all verification problem, only reachable part of the state space is
important.

23

Chapter 2. Background

proc GenerateLTS(M)
add s0 to Wait
add s0 to States
while Wait 6= ∅ do

remove s from Wait

foreach s
ai−→ s′ do

add (s, ai, s
′) to Transitions

if s′ 6∈ States then
add s′ to Wait
add s′ to States

fi od
od
return (States,Transitions, s0)

end

Figure 2.1: The basic algorithm for generating JMK.

2.5 Behavioral Equivalences

Definitions

Let T1 = (S1,Act ,→1, s
1
0), T2 = (S2,Act ,→2, s

2
0) be two labeled transitions systems.

A relation R ⊆ S1×S2 is a simulation relation iff for all (s1, s2) ∈ R and s1
a−→1 s′1

there is s2 such that s2
a−→2 s′2 and (s′1, s

′
2) ∈ R. System T1 is simulated by T2 if

there exists a simulation R such that (s1
0, s

2
0) ∈ R. A relation R is a bisimulation

relation iff R is a symmetric simulation relation. A bisimulation ∼ is the largest
bisimulation relation.

– reachability equivalent iff RA(T1) = RA(T2),
– deadlock equivalent iff T1 contains reachable deadlocked state only if T2 contains

reachable deadlocked state,
– trace equivalent iff L(T1) = L(T2),
– infinite trace equivalent iff Lω(T1) = Lω(T2),
– simulation equivalent iff T1 simulates T2 and vice versa,
– bisimulation equivalent (bisimilar) iff s1

0 ∼ s2
0.

By using weak language WL instead of language L we define, weak (infinite) trace
equivalence. Using =⇒ instead of −→ we define weak (bi)simulation equivalence.

For some results we need a technical notion of a k-bisimulation. Any relation
R ⊆ S1 × S2 is a 0-bisimulation relation. A relation R ⊆ S1 × S2 is a (k + 1)-
bisimulation relation (k ≥ 0) if there exists a k-bisimulation relation R′ such that
for all (s1, s2) ∈ R:

– if s1
ai−→1 s′1 then there is s′2 such that s2

ai−→2 s′2 and (s′1, s
′
2) ∈ R′

– if s2
ai−→2 s′2 then there is s′1 such that s1

ai−→1 s′1 and (s′1, s
′
2) ∈ R′

A k-bisimulation is the largest k-bisimulation relation, denoted ∼k. Note that
bisimulation is a k-bisimulation relation for each k.

24

2.6. Sorter Example

bisimulation
CTL∗

wwnnnnnnnnnnnn

''PPPPPPPPPPPP

weak bisimulation
CTL∗−X

''OOOOOOOOOOO

²²

simulation
ACTL∗

&&NNNNNNNNNNNN

wwoooooooooooo

weak simulation
ACTL∗−X

''OOOOOOOOOOOO

trace equiv.
LTL

xxppppppppppp

weak tr. equiv.
LTL−X

²²
deadlock equiv. reachability equiv.

Figure 2.2: Relations among equivalences and temporal logics. For each equivalence
we give temporal logic which is preserved by the equivalence. Proofs of
can be found in [43, 99, 156].

Relations

Figure 2.2 shows relations among different equivalences. It also gives for each behav-
ioral equivalence a temporal logic which is preserved by the equivalence (temporal
logic is preserved by an equivalence if two equivalent structures satisfy the same set
of formulas).

Bisimulation Quotient

A bisimulation quotient T∼ is an LTS (S∼,Act ,→∼, [s0]∼), where S∼ is the set of
equivalence classes of ∼, [s0]∼ is the equivalence class containing s0, and →∼ is
defined as C1

ai−→ C2 ⇔ ∃s1 ∈ C1, s2 ∈ C2, s1
ai−→ s2. Bisimulation quotient T∼ is,

trivially, bisimilar to T .

2.6 Sorter Example

Finally, we describe a Lego c© Sorter example. This example is used throughout the
thesis to illustrate different notions and techniques. This example is not a classical
case study — it was consciously constructed in order to be illustrative, so it is in
some sense artificial. Nevertheless it still illustrates nicely many aspects of a typical
application of the model checking method.

25

Chapter 2. Background

Figure 2.3: The Lego c© Sorter system.

2.6.1 Description of the System

The example is a sorter of bricks built using a Lego c© Mindstorms systems. The
system is depicted on Figure 2.3. Lego c© Mindstorms is an expansion of a popular
Lego c© system: it contains sensors, motors, and a RCX brick with a small processor.
The RCX brick has six communication ports: three sensor inputs and three actuator
outputs. Control programs for the RCX brick can be written in several languages,
one of them an NQC (Not Quite C) language which is similar to the language
C. Example of an NQC code is given in Figure 2.4. Lego c© Mindstorms systems
have been used in several verification case studies [117, 130, 46], our example is
significantly influenced by Iversen et al. [117] (our sorter is slightly more complex
than theirs).

The Sorter consists of the following parts:

– 2 belts which are used to transport bricks,
– a light sensor which can detect passing bricks,
– an arm which can kick bricks from the belt4,
– a button which is used to “order” bricks for processing.

The intended behaviour of the system is the following. Bricks are placed by the

4The system also contains rotation sensor which is used to stop rotation of the arm. For the sake
of simplicity, we ignore this sensor in our discussion.

26

2.6. Sorter Example

task light_sensor_control() {
int x=0;
while (true) {

if (LIGHT > LIGHT_TRESHOLD) {
PlaySound(SOUND_CLICK);
Wait(30);
x = x + 1;

} else {
if (x>2) {

PlaySound(SOUND_UP);
ClearTimer(0);
brick = LONG;

} else if (x>0) {
PlaySound(SOUND_DOUBLE_BEEP);
ClearTimer(0);
brick = SHORT;

}
x = 0;

}
}

}

Figure 2.4: An example of an NQC code.

user on the first belt. Bricks which are too long (length is detected with the use of
light sensor) are kicked out from the belt by the arm. Short bricks are transported
to the second belt. The second belt transports them either to a “processing” side
or to a “not-processing” side depending on whether a brick has been ordered by
pressing the button.

Although the system is rather simple and artificial, it has several features typical
for embedded systems:

– the system runs on a dedicated, small processor,
– the system interacts with non-trivial environment,
– the system runs parallel software (RCX brick support up to 10 parallel tasks, our

implementation contains 5 tasks),
– the system contains many real-time aspects and its behaviour is very sensitive to

timing.

All these features make it very difficult to debug the system using standard test-
ing approaches5 and thus a reasonable candidate for the use of formal verification
methods.

2.6.2 Modeling the System

In order to use the model checking method, we have to model the system in a formal
modeling formalism. The modeling process is not a routine work — it requires a
certain degree of craftsmanship. It is necessary to use a right degree of abstraction,

5In this case, author really talks from his own experience.

27

Chapter 2. Background

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

Arm

Selected

Not Selected

Kicked

Controller

Belt1
Sensor

Button
Belt2

Figure 2.5: A schematic diagram of the Sorter system. Black circles denote inputs
from sensors, white circles denote outputs to actuators.

particularly when modeling the environment. We have to include in a model all the
relevant information and at the same time keep the model as simple as possible.

The basic structure of a possible model6 is shown in Figure 2.5. The diagram
shows schematically main parts of the system and connections among them. The
most significant abstraction in our model is the discretization of space: we have
divided the belt into fixed, finite number of positions and we consider bricks only in
these positions.

Now we need to choose a suitable modeling language and express the environment
and the control programs in this formalisms. We use the guarded command language
and timed automata. These specification languages are defined in Chapter 2, full
models are given in Appendix B. To give the reader a basic impression of the
formalisms used, we present here just fragments of models corresponding to the
light controller, see Figure 2.6.

2.6.3 Model Checking

As a next step we need to express and formalize properties that the system should
satisfy. For our system, properties of interest include:

1. On/off commands to motors alternate.
2. Long bricks are always kicked out of the belt.
3. Short bricks are never kicked out of the belt.
6Since the main goal of this example is to be illustrative, the provided model is rather simple.

For more realistic verification, we would need to use a bit more detailed model, particularly of
brick’s positions on the belt.

28

2.6. Sorter Example

4. The arm never kicks without hitting a brick.
5. Every brick inserted on the belt eventually leaves the sorter.
6. If the button is pressed then the next short brick is delivered to the “processing”

site.
7. The number of bricks delivered to the “processing” site is never larger then the

number of times the button was pressed.

The first four properties are typical safety properties (nothing bad happens).
These properties can be checked by simple reachability analysis. In this thesis we
are concerned mainly with this type of properties.

Once we have a formal model of the system and a formal formulation of the
problem, we can use a model checker to automatically check whether the system
satisfies the property. In our case, the systems works correctly only if bricks are
placed on the belt with an sufficient interval. If two bricks are placed on the belt
in a short succession then the system invalidates several of the properties — these
behaviours can be found and explored with the use of the model checker.

This example also illustrates the weakness of model checking: state space explo-
sion. Table 2.1 shows the increase in number of states with respect to number (and
type) of bricks in the model.

29

Chapter 2. Background

Guarded Command Language

LC = 0 ∧ token = 3 ∧ LightSensorLevel = 0 7−→ token := 4
LC = 0 ∧ token = 3 ∧ LightSensorLevel = 1 7−→ LC := 1, x := 1, token := 4
LC = 1 ∧ token = 3 ∧ LightSensorLevel = 1 7−→ x := x + 1, token := 4
LC = 1 ∧ token = 3 ∧ LightSensorLevel = 0 7−→ LC := 2, timer := 0
LC = 2 ∧ x ≤ 2 7−→ LC := 0, brick := 3, token := 4
LC = 2 ∧ x > 2 7−→ LC := 0, brick := 4, token := 4

Timed Automata

Wait
t <= 10

x >0 && x <2
timer := 0,
brick := 1,
x := 0

x >= 2
timer := 0,
brick := 2,
x := 0

sensor == 1
x := x + 1, t := 0

sensor == 0

t :=0

t == 10

x == 0

Figure 2.6: Snapshots of formal models of the light controller task from Figure 2.4.

1 long brick 7,592
1 short brick 20,544
2 long bricks 296,148
2 short bricks 1,288,478
1 short and 1 long brick > 4,000,000

Table 2.1: Size of the state space of the Sorter example.

30

Chapter 3

On-the-fly Reductions

“In that direction,” the Cat said, waving its right paw round, ”lives a Hatter: and
in that direction,” waving the other paw, “lives a March Hare. Visit either you like:
they’re both mad.”

In many cases, there is some redundancy in the state space. For example, we can
sometimes visit either branch we like: they’re both equivalent. This chapter is con-
cerned with techniques based on such observations — reduction techniques which
reduce the size of the state space during the exploration. The focus is on techniques
which perform the reduction by matching on abstract states. We pay special at-
tention to acyclic systems. We also briefly mention reductions which preserve weak
equivalences (partial order reduction and similar techniques). The chapter contains
extensive evaluation of several reduction techniques on realistic model checking case
studies and challenges the common beliefs in their usefulness.

3.1 Introduction

As we discuss in Chapter 1, state spaces contain many redundancies — there are
many equivalent states/paths (with respect to some suitable behavioral equivalence).
For example, there is some kind of symmetry in our sorter example: if we have two
bricks of the same type on the belt, it is not necessary to distinguish whether the
first brick is on position 1 and the second brick on position 8 or vice versa.

As another example, let us consider an example in Figure 3.1. The full state
space of the model has 10 states, whereas the shown reduced structure has only 2
states. The reduced structure is weakly bisimilar to the full state space and hence
it is sufficient for most verification purposes.

To generalize this observation, we can say that instead of checking the specifica-
tion over the (very big) state space we can check it over some (smaller) equivalent
structure. One possibility is to generate the whole state space, reduce it by suitable
equivalence, and finally check the specification over the reduced structure. This
approach, however, does not reduce peak memory requirements which are the main
practical limitation of model checking.

Another possibility is to employ static analysis and use specific information about
the model to compute a reduced structure on-the-fly. There are many techniques for

31

Chapter 3. On-the-fly Reductions

(a, x = 0 7−→ x := 1)
(b, x = 1 ∧ y ≥ 1 7−→ x := 0, z := 1)
(τ, y < 2 7−→ y := y + 1)

Full state space Weak bisimulation quotient

τ

010

a

a

b

a

ττ

τ

τ

τ

b

b

a

a

b

000

110

021

020

120

121

011

011

100

ba

Figure 3.1: A simple program, the corresponding full state space (states are given as
vectors (x, y, z)), and a reduced structure.

such on-the-fly reduction. In this chapter we provide an overview of these techniques,
propose some novel ones, and give an experimental evaluation.

The stress is on the approach which we call concrete search with abstract matching
(αSearch algorithm). We formulate some well-know techniques in this setting
(symmetry reduction, dead variable reduction) and propose some novel ones (based
on identification of equivalent values, equivalent states, and on linear transformations
of variables). This part also serves as a background for Chapter 5 in which we extend
the approach to an under-approximation refinement scheme.

The concrete search with abstract matching approach uses statical abstraction
function which is determined prior to the search. The abstraction function is cho-
sen in such a way, that it preserves bisimulation classes. Another option is to ap-
proximate bisimulation classes during the search. This approach can lead to more
significant reduction, but it introduces additional overhead during the generation
which can outweigh benefits of the reduction. We study this approach for a special
case of acyclic state spaces. Acyclicity can be exploited to make the technique more
efficient.

We also discuss reductions preserving weak equivalences, particularly the partial
order reduction, and we present some novel techniques preserving reachability and
deadlock equivalence.

As can be seen from the above given discussion, there are many different reduction
techniques. However, it is not clear what are the practical merits of these reductions.

32

3.2. Reductions Preserving Bisimulation

Researchers usually demonstrate the effectiveness of proposed reduction on just one
or two (well selected) examples. Often we can find claims about exponential or at
least “drastic” reduction. Are these claims appropriate?

We give a realistic evaluation of merits of discussed reductions. For the evaluation
we use three model checking tools and many case studies previously studied in the
literature. The results show that the effect of reductions can be significant but it is
not so drastic as often claimed in the literature.

Relationship to Main Themes

– Equivalences. For each reduction technique, it is important to determine which
equivalences are preserved by this reduction. The chapter is organized according
to equivalences preserved by reductions.

– Abstractions. Some reduction techniques can be formulated in terms of abstrac-
tion function and matching on abstract states. We pay special attention to this
class of reductions.

– Approximations and refinement. Most of the reductions that we study in this
chapter are exact (with respect to some equivalence). But we also briefly mention
some approximate techniques and possibilities for their refinement.

3.2 Reductions Preserving Bisimulation

At first, we study reductions that try to reduce the number of explored equivalent
states — the equivalence of choice here is bisimulation. The basic idea is simple:
when we reach a new state, we check whether we have already seen some bisimilar
state during the exploration. It is, however, not so easy to implement this idea.

We introduce a general algorithm, called αSearch, which is based on exploring
concrete state space while matching on abstract states. This general algorithm is
used to formulate several classical reduction techniques. In Chapter 5 we extend
this algorithm into a novel, more involved technique.

3.2.1 αSearch Algorithm

Figure 3.2 shows the reachability procedure that performs model checking with ab-
stract matching. It is basically a concrete state space exploration with matching on
abstract states; the main modification with respect to classical state space explo-
ration is that we store α(s) instead of s. At the moment, let abstraction function α
be an arbitrary function.

The following lemma states that αSearch explores under-approximation of the
state space.

Lemma 3.1 RA(αSearch(M, α)) ⊆ RA(JMK).
Proof: Since the algorithm explores only concrete transitions, all states/transitions
in the generated state space are reachable in the concrete one. It is easy to verify

33

Chapter 3. On-the-fly Reductions

proc αSearch(M, α)
add s0 to Wait
add α(s0) to States
while Wait 6= ∅ do

remove s from Wait

foreach s
ai−→ s′ do

add (α(s), ai, α(s′)) to Transitions
if α(s′) 6∈ States then

add s′ to Wait
add α(s′) to States

fi od
od
return (States,Transitions, s0)

end

Figure 3.2: The αSearch algorithm.

that the following is an invariant of the algorithm: Wait is a subset of reachable
states. ¤

The structure computed by αSearch depends on the search order. This is illus-
trated by the following example.

Example 3.1 Let us consider the example from Figure 3.1 and an abstraction function
α([x, y, z]) = [x = 0, y = 0, x + y > 1] (this is an example of a predicate abstrac-
tion function; we use this type of abstraction functions intensively in the following
chapters).

Algorithm αSearch with the breadth-first search order explores the following
states: 000 (stores 110), 010 (stores 100), 100 (stores 010), 020 (stores 101), 110
(stores 001), 120 (matched on 001), 011 (matched on 100).

With depth-first search order the following states are explored: 000 (stores 110),
010 (stores 100), 020 (stores 101), 120 (stores 001), 021 (matched on 101), 100
(stores 010), 110 (matched on 001).

We say that abstraction function α is exact if the core ≡α of the function α is a
bisimulation on JMK. The following lemma justifies this terminology.

Lemma 3.2 If an abstraction function α is exact then αSearch(M,α) is bisimilar
to JMK.
Proof: Let us consider the following relation R: (s, s′) ∈ R iff s ∼ s′ and s′ is the
first state from [s]∼ which was visited during αSearch(M, α). It is easy to verify
that R is a bisimulation relation between JMK and αSearch(M,α). ¤

Example 3.2 Figure 3.3 gives an example of reduction according to an exact abstrac-
tion function α([x, y, z]) = [x, y] (this is in fact dead variable reduction that we
discuss below).

34

3.2. Reductions Preserving Bisimulation

τ

010

a

a

b

a

ττ

τ b

000

110020

120

100

τ
011

b

a
021

121

τ
011

a

b

Figure 3.3: Example: exact abstraction function (dead variable reduction).

In this setting, we often use formulation via ‘canonization’ rather than ‘abstrac-
tion’. The reason is rather technical: if we work with abstract states, we need
to implement representation of two types of entities (concrete states and abstract
states). It is more convenient to work just with concrete states and to represent
abstract states α(s) via some representant of respective equivalence class [s]≡α . A
function, which for a given state produces some corresponding representant, is called
a canonization function (denoted canonize).

3.2.2 Exact Abstraction Functions

We start with the study of abstraction functions which are exact.

Dead Variables

A variable x ∈ V is dead in a state s ∈ S iff the value of the variable is not used
in any computation starting in the state s, i.e., the state s is bisimilar to all states
obtained by changing value of x (for all a ∈ Z : s ∼ s[x := a]). Dead variables can be
computed (respectively safely approximated) by standard static analysis algorithms.
We can get better results by incorporating a dependency analysis: variables which
cannot influence neither the control flow nor the value of variables which occur in
atomic propositions are dead — this idea is also called faith variable analysis or cone
of influence reduction. The definition of dead variables lends itself to the following
canonization function: canonize(s) = s′ where s′(x) = 0 if x is a dead variable and
s′(x) = s(x) otherwise.

For more sophisticated specification languages the idea of dead variables can be
extended:

– For models with arrays it is useful to consider that each individual position in array
can be dead. The static analysis is more complicated — it is useful to perform

35

Chapter 3. On-the-fly Reductions

“constant propagation” (in order to find constant array indexes) and “live range
analysis”.

– For models with message queues it is possible to generalize the notion of deadness
to the content of a queue [79].

– For timed automata it is customary to talk about “active clock reduction” [68].

Equivalent Values

Values a, b ∈ Z are equivalent for a state s ∈ S and a variable x ∈ V iff s[x :=
a] ∼ s[x := b]. This is an extension of the idea of dead variables. Note that the
region constructions for timed automata (discussed in Chapter 6) is in fact based on
equivalent values. In the case of timed automata, a special symbolic representation
is used for the whole set of equivalent values.

Static detection of equivalent values is more complicated than dead variables de-
tection. It is possible, for example, in the following cases:

– Variable x is (locally) used only in expression x = k and for several values the
same action is performed, e.g., process is waiting for an reset signal, all other
signals are discarded.

– Monotonically increasing variable x is used only in guards x ≤ k, e.g., in (discrete)
time models and scheduling problems. In this case all values larger than the
maximal constant to which x is compared are equivalent.

We can use the following canonization function: canonize(s) = s′ where s′(x) =
min{a | values a and s(x) are equivalent values for s and x}.

Symmetry

Another way to identify bisimilar states is to exploit symmetries in the model.
Symmetries are formalized by the notion of an automorphism. An automorphism is
a bijection h : S → S such that s

a−→ s′ ⇔ h(s) a−→ h(s′). If h is an automorphism
then ∀s ∈ S : s ∼ h(s). Automorphisms can be detected by static analysis if the
model exhibit some kind of symmetry. A typical example is the use of permutation
for specification languages based on networks of machines. If the model contains
several identical machines then any permutation of these identical machines is an
automorphism. In this case, we can use as a canonization function a permutation
which sorts first n locations in a state vector. This basic idea can be extended to a
more general class of models with the use of special data type scalarset [116] (only
’symmetrical operations’ are allowed over scalarset).

We propose another approach for detecting automorphisms. It is based on linear
transformations. For the moment, let us suppose that the data domain can be also
Zn. We say that a set of variables V ′ ⊆ V is linearly transformable iff all uses of these
variables are either in guards x ./ y + k or in effects x := y + k (x, y ∈ V ′, k ∈ N).
A typical example of model with linearly transformable variables is an “alternating

36

3.2. Reductions Preserving Bisimulation

bit protocol” (where the data domain is Z2). Many other protocols use modular
arithmetic as well.

Lemma 3.3 Let V ′ ⊆ V be a set of linearly transformable variables. Then the func-
tion hk(s) = s[V ′ := V ′ + k] is an automorphism for each k ∈ Z.

We can use following canonization function: we select one fixed variable v ∈ V ′

and then use canonize(s) = h−s(v)(s), i.e., the canonization function always sets
value of v to zero.

3.2.3 Non-Exact Abstraction Functions

Now we consider functions which are not necessary exact. In this case, the αSearch
leads to an under-approximation of the state space. We briefly discuss three tech-
niques. The first two of them are usually not considered as abstractions, but in our
setting it is possible to consider them in this way. For each technique we briefly
mention possibilities of refinement.

Bitstate Hashing

This technique is usually treated as a probabilistic storage reduction technique and
not as an abstraction function. So let us start with a usual, ’implementation view’
description of bitstate hashing [109].

The usual way to implement the data structure States is a hash table. For each
state we compute a hash value, which gives us address of a row in the hash table.
Since the hash function can give the same value for two different states, we need to
resolve collisions: this is usually done by keeping a linked list of states for each row
in the hash table. Bitstate hashing does not resolve collisions. For each row in the
hash table, we store just 1 or 0 depending on whether we have already seen some
state with this hash value during the exploration. Since we do not resolve collisions,
it may happen that we treat new state as a visited state and thus we obtain only
under-approximation.

If we consider this technique in our setting, the hash function is just a special case
of an abstraction function α where the image of α are natural numbers (rows in the
hash table). This abstraction function, of course, in most cases does not satisfy the
exactness requirement of inducing bisimulation.

This technique is very good for error detection, but from theoretical point it is not
very plausible. There is no way to recognize whether the result is exact or whether
it is only under-approximation. Moreover, there is no way to guide the refinement
of this approximation: the only way to do the refinement is to increase the image of
an abstraction function (i.e., the number of rows in the hash table).

Lossy Compression

Similarly to bitstate hashing, this technique is also usually treated as probabilistic
storage reduction technique. We start again by description of the ’implementation

37

Chapter 3. On-the-fly Reductions

view’.
In model checker implementations, states are represented as vectors. These vec-

tors are rather long (in order of 100 bytes). In many cases, these long vectors contain
lot of redundancy and can be substantially compressed. The usual compression is
reversible: for a compressed representation we can construct the original state. But
we may also consider more aggressive, irreversible, lossy compression. This leads
to more significant memory savings, but we lose some information during the com-
pression and it may happen that two different states map to the same compressed
representation. Since the compression usually does not satisfy exactness require-
ment, we obtain under-approximation.

Again, we may view lossy compression as an abstraction function. In this case,
this formulation is rather natural — lossy compression actually does abstract some
part of the state. Otherwise, however, this technique is similar to bitstate hashing
— we are not able to recognize whether the result is exact and there is no reasonable
way to guide the refinement.

Predicate Abstraction

Another way to obtain inexact abstraction is to use predicate abstraction: we fix a set
of predicates and the abstraction function is given by evaluating these predicates. In
this case, it is possible to do the refinement in guided way and to recognize, whether
the abstraction is exact. This technique is more involved and we devote to it whole
Chapter 5.

3.3 Reductions Preserving Weak Equivalences

Secondly, we consider reductions that try to reduce the number of explored equiva-
lent paths — equivalence of choice here is some weak equivalence. The basic idea is
the following: paths that differ only by the order of invisible action (i.e., τ action)
are equivalent.

This type of reduction techniques is based on changing order and execution of
invisible actions. In order to maintain correctness, we usually further need the
notion of independence. Two actions a, b ∈ Act are independent iff they satisfy the
following commutativity requirement:

s
a−→ s1, s

b−→ s2 =⇒ ∃s′ : s1
b−→ s′, s2

a−→ s′

In this section, we give some details about partial order reduction. It is the most
often used reduction and we also use it to nicely illustrate the relation between
conditions on the reduction and the preserved equivalence. Then we briefly mention
several other techniques based on similar ideas. Finally, we discuss how to use these
techniques to compute approximations.

38

3.3. Reductions Preserving Weak Equivalences

3.3.1 Partial Order Reduction

The basic idea of partial order reduction is the following: visit only some paths
through the state space, in such a way that from each equivalence class at least one
path is visited. This idea is implemented in a simple way: during the state space
exploration we traverse only subset ample(s) of all actions enabled in the given state.
We use the basic exploration algorithm (Figure 2.1) with one modification, the line

foreach s
ai−→ s′ do

is changed into:

foreach s
ai−→ s′ such that ai ∈ ample(s) do

The relation between the generated reduced transition system and the full state
space one depends on conditions satisfied by the function ample. Let us consider
the following conditions:

PC (Persistence condition) On all paths in JMK (the full state space) starting at s
the following condition holds: an action that is dependent on action in ample(s)
cannot occur before the first action from ample(s). Moreover ample(s) is empty
only if enabled(s) is empty.

CC (Cycle condition) On every cycle in the reduced transition system there is at
least one state s such that ample(s) = enabled(s).

IC (Invisibility condition) If ample(s) 6= enabled(s) then all actions in ample(s) are
invisible.

SC (Singleton condition) If ample(s) 6= enabled(s) then |ample(s)| = 1.

How do we ensure these conditions during the on-the-fly exploration of a state
space? Conditions IC and SC are easy to check locally. Conditions PC and CC,
however, state properties of the full (resp. reduced) state space and cannot be
checked locally (by considering the current state and its immediate neighborhood).
Therefore, these conditions are usually ensured by some weaker, heuristically check-
able conditions (see, e.g., [56]).

The full state space JMK and the structure T computed by the modified algorithm
using function ample are related as follows:

– If ample satisfies PC then JMK and T are deadlock equivalent [89].
– If ample satisfies PC and CC then JMK and T are reachability equivalent for local

properties [18, 89] (for definition of local properties see [18]).
– If ample satisfies PC, CC, and IC then models JMK and T are weak trace equiv-

alent [154, 56].
– If ample satisfies PC, CC, IC, and SC then models JMK and T are weak bisim-

ulation equivalent [86].
– It is possible to formulate conditions under which JMK and T are weak simulation

equivalent [155]. These conditions are, however, bit more technically complicated
and we do not present them here.

39

Chapter 3. On-the-fly Reductions

τ

010

a

b

τ

a

000

021

020

120

121

b

b

011
τ

τ
011

b
110

τ

a τ
100

a

a

Figure 3.4: Example: partial order reduction.

Example 3.3 Figure 3.4 illustrates the effect of partial order reduction on the example
from Figure 3.1.

There are many variations of this basic idea. These variations differ mainly in the
way they ensure persistence condition. Moreover, the basic idea can be extended
by using sleep sets [89], which improve the reduction by taking into account the
history of the search.

3.3.2 Other Techniques

There are several other techniques based on similar idea as partial order reduction.
We just briefly review them.

Slicing

Slicing identifies parts of the model that are relevant to the verified property [101].
Actions which cannot influence visible actions are removed by a static transformation
of the model prior to the state space exploration. The resulting model is weak trace
equivalent to the original model.

Transition Merging

If there are two consecutive local invisible actions in the model then we can stat-
ically merge them into one atomic action. This basic idea have been formalized
in different ways and under different names. Each formalization preserves some
weak equivalence: transition merging, transition compression (weak trace equiva-
lence) [125, 74, 110], “next” heuristics (weak simulation) [6], path reduction (weak
bisimulation) [173].

A special case of transition merging is loop acceleration. Loop acceleration aims
at reducing the ‘fragmentation’ of state space caused by repeated execution of some

40

3.3. Reductions Preserving Weak Equivalences

simple cycle. The cycle is statically substituted by meta-transition, which captures
repeated executions of the cycle. This techniques is usually used with some kind of
symbolic representation [31, 140, 102, 30].

Confluence

Similar technique as partial order reduction is based on the identification of τ -
confluent actions [29, 145] — invisible actions satisfying some additional confluence
requirements which are similar to the independence requirements of partial order
reduction. A on-the-fly reduction algorithm works either in the same way as the
modified algorithm for partial order reduction, i.e., by choosing only subset of en-
abled actions (τ -prioritization [145]) or by using τ -confluent actions to compute
canonization function [29]. In both cases the reduced structure is weakly bisimilar
to the full state space.

Simultaneous Reachability Analysis

When faced with several possible interleavings of independent and invisible actions,
partial order reduction tries to traverse only one of these interleavings. Simultaneous
reachability analysis rather tries to perform all these actions at once [144, 168], i.e.,
instead of executing individual actions it executes combined actions. To preserve
correctness, it is necessary to ensure that there is no dependence among combined
actions and that there is at most one visible action among combined actions.

3.3.3 Approximate Techniques

All of the above discussed techniques have the following form: if a certain condition
is satisfied then omit some part of the state space during the exploration. So far we
considered only exact techniques of this type — the condition was always safe, i.e.,
we were able to guarantee that the reduced state space is equivalent (up to some
weak equivalence).

What if we consider more aggressive approach? If we consider conditions which
are not necessary safe (i.e., we cannot guarantee that the reduced structure is equiv-
alent), we obtain an under-approximation and we can use the approximation re-
finement scheme discussed in Chapter 1. If we do not find an error in the under-
approximation, we refine. The refinement is done by using more precise condition
for the reduction. We refine until an error is found or until the condition is safe. Let
us discuss simple example of this approach.

Let us suppose that we have a model of system with several parallel processes and
that for each process we have a program counter pci, which identifies the current
location in a modeled program (this is a usual feature of most models).

We divide program locations (program counter values) into two sets: interleaving
and non-interleaving. Generation of state space works as follows: if the current
state s has at least one process i in a non-interleaving location, then we considered

41

Chapter 3. On-the-fly Reductions

as successors of s only successors via actions of the process i. If all processes are in
interleaving locations then we compute all successors as usual.

This approach leads to weakly equivalent structure only if the division into inter-
leaving and non-interleaving location satisfy certain correctness conditions. These
correctness conditions are similar to classical partial order reduction conditions and
we do not state them explicitly. They are, however, rather restrictive, so the ‘safe’
approach would not lead to any significant reduction.

The under-approximation refinement works as usual:

1. Start with all location marked as non-interleaving.
2. Generate the state space.
3. If an error is found or if the correctness condition is satisfied then terminate.
4. Mark some non-interleaving location as interleaving. Go to step 2.

This is just a rough sketch which need to be further elaborated, particularly it is
necessary to address the issue of guiding the refinement (step 4). We leave this as a
future work (see Chapter 8 for reasons and discussion).

3.4 Reductions Preserving Reachability and Deadlock

At third, we discuss reductions which preserve reachability and deadlock equivalence.
These reduction try to foresee the future: they stop the exploration in same state
when they can guarantee the results of exploring successors of the given state. We
discuss several ways to detect appropriate states.

In general, these techniques employ the following trade-off: prior to the explo-
ration, they precompute some information about the model (this takes some time),
during the exploration this information is used to omit searching some parts of the
state space (this saves some time).

Doomed States

We say that a state s is a-doomed (deadlock-doomed) if we can guarantee that an
action a (deadlock) is reachable from s.

De Alfaro et al. [70] detect doomed states using the notion of uncontrollability.
Their specification language is given as a network of machines. A location of a
machine is uncontrollable if no environment can prevent the machine from reaching
an action a. With our specification language, we can detect a-doomed states simply
by computing several iterations of weakest precondition of the action a.

For an analysis of deadlock-doomed states we can employ an analysis of local
cycles. A covering set [124, 23] is a set of actions such that each cycle in the structure
JMK contains at least one of these actions. A covering set can be computed by static
analysis of local cycles in the model and it is often very small [23]. Detection of
deadlock-doomed states can be based on the following observation: if no action
from a covering set is reachable from a state s then this state is deadlock-doomed.

42

3.5. Reductions for Acyclic State Spaces

Boring States

We say that a state s is a-boring (deadlock-boring) if we can guarantee that action a
(deadlock) is not reachable from s.

For the detection of boring states we can employ the notion of progress func-
tion which was proposed for the sweep line method of state space exploration [54].
Function f is a progress function if s → s′ ⇒ f(s) ≤ f(s′). If we can show that
f(s1) ≤ k for all states s1 for which there is a-transition from s1 and f(s) > k, then
s is a-boring. The progress function usually needs to be provided by the user.

Boring states can also be detected by an analysis of abstract models. Let A be
an over-approximating abstraction function, i.e., M ¹ A(M). If no state satisfying
a is reachable from α(s) in an abstract structure A(M) then the state s is boring in
the structure JMK.

Dominating Values

If s º s′ then it is sufficient to visit successors of the state s in the reachability
analysis. Thus we can modify the basic algorithm by changing the line

if s′ 6∈ States then

into a line

if not(∃s′′ : s′′ ∈ States ∧ s′ ¹ s′′) then

In this case, the number of visited states during the search depends on the order
in which states are visited. We demonstrate in Section 3.6 that in practice there
are quite significant differences between breadth-first and depth-first search order.
Nevertheless, the correctness is ensured for each order of visits.

In order to apply this technique, we need to be able to safely approximate the
simulation relation s º s′. This can be done, for example, by an analysis of dom-
inating values. Let s ∈ S and x ∈ V . We say that value a ∈ Z dominates b ∈ Z
for s and x if s[x := a] º s[x := b]. This is an extension of the notion of equivalent
values. The fact that one value dominates another can be detected by analyzing
monotone variables. If x is a monotone increasing variable which is used only in
guards x ≤ k then smaller values of x dominate larger values. This situation oc-
curs in models with discrete time (for dense time we use this idea in Chapter 7),
in scheduling problems, in models with restricted number of occurrences of certain
event (e.g., bounded retransmission protocol), or in cryptographic protocols (the
intruder knowledge represented by boolean variables is monotone). Similar reason-
ing works for other combinations of increasing/decreasing variables and lower/upper
bounds.

3.5 Reductions for Acyclic State Spaces

In this section we return to the approach based on concrete search and abstract
matching and consider a dynamic approach to reduction from Section 3.2. Now

43

Chapter 3. On-the-fly Reductions

we restrict our attention to acyclic systems — instead of choosing an abstraction
function statically prior to the exploration, we compute it dynamically during the
exploration.

For acyclic systems we can compute bisimulation classes inductively during the
depth-first search traversal of the state space — if we know bisimulation classes of
all successors of a state s, then we can easily compute the bisimulation class of the
state s.

In the usual model checking application domain (i.e., reactive systems), acyclicity
is a rather restrictive condition. Nevertheless, many practically important systems
satisfy this condition, e.g., leader election protocols and scheduling problems. More-
over, bounded model checking leads to exploration of acyclic state spaces. This
approach is useful particularly in software verification where the verification of the
full program is often infeasible (the approach is also called systematic testing). Uti-
lization of acyclicity was recently advocated by Flanagan and Godefroid [80]; they
exploit acyclicity to perform dynamic partial order reduction.

We propose a novel algorithm for on-the-fly reduction of acyclic state spaces.
The algorithm is based on dynamically computing sets of bisimilar states. The
complexity of our algorithm is better than the complexity of a dynamic reduction
algorithm for general state spaces which was proposed by Lee and Yannakakis [131].
We also briefly discuss implementation issues: how to to represent sets during the
algorithm and how to approximate operations and perform them more efficiently.
This section presents the basic idea of the approach. The approach needs to be
further elaborated.

In this section we consider only acyclic systems.

3.5.1 Characterization of Bisimulation Classes

Our algorithm computes bisimulation classes inductively with the use of the following
characterization.

Lemma 3.4 Let s be a state in JMK and Xs =
⋂n

i=1 Zi, where

Zi =

{
JgiK ∩ pre(ui, [si]∼) if s

ai−→ si

J¬giK otherwise

Then Xs = [s]∼.

Proof: “Xs ⊆ [s]∼”: Let s′ ∈ Xs. We show that s ∼ s′:

1. If s
ai−→ si then Zi = JgiK ∩ pre(ui, [si]∼) and therefore s′ |= gi and s′ ∈

pre(ui, [si]∼). Hence there exists s′i such that s′ ai−→ s′i and s′i ∼ si.
2. If s′ ai−→ s′i then s′ |= gi. From the construction of X follows that s′ ∈ JgiK ∩

pre(ui, [si]∼) and s
ai−→ si where si ∼ s′i.

“[s]∼ ⊆ Xs”: Suppose s′ ∼ s. It is easy to verify that ∀1 ≤ i ≤ n : s′ ∈ Zi and
therefore s′ ∈ Xs. ¤

44

3.5. Reductions for Acyclic State Spaces

proc ReducedSearch(s)
explore s
X := S
foreach (gi, ui) ∈ E do

if s |= gi then
s′ := ui(s)
Yi := FindSet(Visited , s′)
if Yi = ∅ then Yi = ReducedSearch(s′) fi
X := X ∩ JgiK ∩ pre(ui, Yi)

else
X := X ∩ J¬giK fi

od
AddSet(Visited , X)
return X

end

Figure 3.5: Algorithm for on-the-fly reduction of acyclic state spaces.

3.5.2 On-the-fly Reduction Algorithm

Now we present an algorithm which performs a dynamical reduction according to
bisimulation. The algorithm inductively computes bisimulation classes with the use
of Lemma 3.4.

Figure 3.5 gives the algorithm which explores the reduced transition system and
computes bisimulation classes. It performs depth-first search traversal of the acyclic
transition system and during backtracking it updates the information about visited
states. This information is kept in a global data structure Visited , which is a set of
disjoint sets and supports the following operations:

– FindSet(Visited , s) returns a set containing s; if such a set does not exists it
returns ∅,

– AddSet(Visited , X) adds a set X to Visited .

Lemma 3.5 The algorithm ReducedSearch satisfies the following:

1. ReducedSearch(s) = [s]∼,
2. at any time during the algorithm FindSet(Visited , s) returns either ∅ or [s]∼.

Proof: A rank of a state s in acyclic transition systems is defined inductively as
follows:

– if s has no successor then rank(s) = 0,
– otherwise rank(s) = max{rank(s′) | ∃ai : s

ai−→ s′}+ 1.

We prove the lemma by induction with respect to the rank of s:

– if rank(s) = 0 then s has no successors and ReducedSearch(s) =
⋂n

i=1J¬giK =
[s]∼,

– if rank(s) = k then the result follows from the induction premise, the invariant
about FindSet, and Lemma 3.4.

45

Chapter 3. On-the-fly Reductions

In both cases it is easy to verify that the invariant (second property) stays valid.
¤

Lemma 3.6 The complexity of ReducedSearch(s0) is O(n∼ · ka + m∼ · kf), where
n∼ (m∼) is the number of states (transitions) of bisimulation quotient of JMK, ka

is the complexity of the AddSet operation, and kf is the complexity of FindSet
operation.

Proof: For each bisimulation class C reachable in the bisimulation quotient there
exists exactly one state s ∈ C which is explored during ReducedSearch(s0). This
follows from the Lemma 3.5 and from the fact that ReducedSearch(s′) is called
only if FindSet(Visited , s′) returns ∅. The lemma follows. ¤

The algorithm can be directly used for verification of reachability properties. The
algorithm can be also easily modified to generate the bisimulation quotient of JMK.

The algorithm can be used for verification of programs with input values from an
infinite domain (i.e., with an infinite number of initial states), if a finite bisimulation
quotient exists. We just need to be able to repeatedly pick initial state which does
not belong to any set in Visited .

3.5.3 Data Structures

How do we represent the data structure Visited and necessary operations over this
structure? If we represent sets explicitly (by enumeration) then the complexity of
the algorithm is worse than the full traversal. So the whole approach makes sense
only if we can represent sets in some symbolic way.

In practice it is always useful to separate a control and a data part of models
and to keep the control part concrete. In the following we suppose that the control
part of a model is kept concrete and stored in some standard way (e.g., by hashing
which gives us pointer to representation of data part). We discuss possible ways for
representing the data part of states.

For the representation of sets we need the following operations: representation
of sets JgK, intersection, and weakest precondition. We also need to represent the
structure Visited : a set of disjoint sets which supports operations FindSet and
AddSet. The basic options are the following:

– Symbolic expressions (formulas over predicates, boolean or higher order). This
representation can trivially represent sets JgK and intersection. Computation of
weakest precondition can be performed easily by syntactic manipulation. This
representation is, however, not very succinct and the set Visited can be represented
easily only as a list which requires linear traversal.

– Decision diagrams or minimized deterministic automata. Representation of guards
and intersection can be performed using standard operations. The computation of
weakest precondition involves intersection with decision diagram representation of
transition relation and quantification over variables — in symbolic model checking
this is a standard step and is usually called ’preimage computation’. This step is,

46

3.5. Reductions for Acyclic State Spaces

however, rather expensive (from practical point of view). The structure Visited
can be represented by multi-terminal binary decision diagrams and the FindSet
operation can be performed efficiently.

For specialized types of models we can use other representation like difference
bound matrices (for timed automata), regular expressions (for FIFO automata),
covering sharing trees, octagons, or intervals. In general, there is a trade-off between
efficiency of set operations (particularly weakest precondition), succinctness of the
representation, efficiency of set manipulation operations (particularly FindSet),
and expressivity of a specification language.

3.5.4 Approximate Operations

As we have mentioned above, each representation have its disadvantage. However,
we do not need to compute sets of bisimilar states exactly but we can only under-
approximate them1. In such a case, the algorithm does not visit exactly one state
from each bisimulation class, but it visits at least one state from each bisimulation
class, i.e., it may visit some states unnecessary, but it remains correct.

We can view the algorithm as making trade-off between effort invested into com-
putation of sets of bisimilar states and effort invested into exploring states. It makes
sense to compute sets of bisimilar states only if the time that we save by not explor-
ing these states and their successors is longer then the time needed to compute sets
of bisimilar states. So in practice, it may be more useful to compute quickly some
coarse under-approximation of the set of bisimilar states.

Dead Variables

One possibility is to distinguish only live/dead variables (static application of dead
variables is discussed on page 35). Dead variables can be partially detected by
standard static analysis techniques, but the dynamic approach can be more exact.

In this case, sets of states are represented by vectors over Z ∪ {∗} where ∗ means
any value (i.e., given variable is dead). These sets can be represented, for example,
by decision diagrams. The computation of weakest precondition can be significantly
simplified: we do not need to perform conjunction with a transition relation and
quantification, we just insert ∗ values according to which variables are used/set in
guards and updates.

Predicate Abstraction

Let Φ = {φ1, . . . , φn} be a fixed set of predicates over program variables. We can
represent sets of states by monomials over Φ, these monomials can be easily repre-
sented by decision diagrams. Since this representation is not closed on all necessary
operations (particularly weakest precondition), we need to approximate them. The

1Note that although we use approximate operation during the algorithm, the result of the algorithm
is always correct.

47

Chapter 3. On-the-fly Reductions

computation of weakest precondition can be done with the use of predicate-cartesian
abstraction [15] — we study the effect of the update on each predicate in isolation; in
this way the weakest precondition operator can be precomputed and the operation
can be performed efficiently (for more detailed discussion of this issue see Chapter 4).

It may happen that we obtain an empty set as an under-approximation and thus
we even revisit the same state twice. Nevertheless, this approach can still be useful
in cases where concrete states are two complex to be stored and the stateless search
is a default option (e.g., C++ verification in VeriSoft [90]).

3.6 Evaluation

Now we provide an experimental evaluation of techniques discussed in this chap-
ter. For most of the discussed techniques it is easy to come up with an (artificial)
example on which the reduction gives an exponential, or at least very significant,
improvement. Unfortunately, many authors evaluate their techniques on such exam-
ples. Moreover, reduction techniques are often evaluated on toy models with high
values of parameters — this makes state spaces regular and reductions seem signifi-
cant. However, in real usage of model checkers, models are complex and parameter
values are low. It happens very rarely that a model is correct for low values of pa-
rameters and erroneous for high values. In our previous experimental work [150], we
argue that experiments on such toy models can lead to misleading conclusions. In
this section we provide an evaluation of merits of individual reductions on realistic
models. It turns out that the reduction is more temperate than often claimed.

Most of the models that we use for the evaluation are well-known model checking
case studies: alternating bit protocol, Peterson’s mutual exclusion protocol, bounded
retransmission protocol, I-protocol, firewire link protocol, leader election protocol,
real-time Ethernet protocol, cache coherence protocol, firewire tree identification
protocol, file transfer protocol, X.509 authentication protocol, Needham-Schroeder
protocol, production cell case study, etc.

The evaluation was done with three explicit model checkers: Spin2 (version 4.0.6),
Murphi3 (version 3.1), and DiVinE4 (a prototype version).

For each of the evaluated techniques, we discuss its applicability, we summarize
experimental results in other papers, and report about the effect of the reduction
on our models. We also discuss the run-time overhead of the reduction and the
‘complexity’ of its implementation. In tables, we give results only on those models
on which the particular technique has some effect. We present only the number
of states in full and reduced structures. The reduction factor with respect to the
number of transitions is usually very similar.

2http://spinroot.com
3http://verify.stanford.edu/dill/murphi.html
4http://anna.fi.muni.cz/divine/

48

3.6. Evaluation

Model Full Reduced
rether 10,462 1,192 11.3%
synapse 13,973 1,981 14.1%
peterson 12,498 2,376 19.0%
brp 4,792 1,571 32.7%
production cell 77,416 32,854 42.4%
iprotocol good 29,994 12,770 42.5%
firewire 55,887 24,323 43.5%
abp 11,286 5,652 50.0%
bridge 3,186 1,676 52.6%
tip 86,556 49,082 56.7%
elevator 1,139 723 63.4%
bakery 109,144 84,517 77.4%
cambridge 8,592 6,962 81.0%
resistance 151,587 129,177 85.2%

Table 3.1: Results for dead variables reduction (DiVinE).

Dead Variables

Dead variable reduction can reduce the size of the state space up to 10% of the
size of the full state space (see Table 3.1). Yorav [173] gives similar results on four
software models. Bozga et al. [79] report more impressive reduction but only on one
parametric model. This reduction technique is applicable to a wide class of models
and it brings nearly no run-time overhead. For local variables, which are responsible
for most of the reduction, we can perform the canonization by static transformation
of the model. Global variables need to be canonized in run-time. Dead variables
are easy to detect statically; it becomes more challenging only for arrays and more
complex data types.

We have not implemented the equivalent values reduction. The manual inspection
of models suggests that this technique improves over dead variable reduction only
in few cases and that the improvement is not very significant. Moreover, the static
analysis needed for this reduction is more complicated.

Partial Order Reduction

Notwithstanding the large body of theoretical work about partial order reduction
techniques, the number of studies concerning practical results of partial order reduc-
tion is rather small. Godefroid [89] gives evaluation on four realistic models. The
sizes of reduced structures are between 3% and 55% of the size of original structure.
Clarke at el. [58] reports similar results on three realistic models. Table 3.2 presents
results of our experiments. The size of reduced structure is between 4% and 99%.
Partial order reduction is applicable mainly to models with loosely coupled pro-
cesses. Many of our models use either lot of rendezvous communication or shared
variables. The technique is not applicable to these models.

The run-time overhead and the complexity of static analysis depends on the qual-
ity of reduction which we want to achieve. In our experiments, we use the tool Spin.
Spin uses a rather conservative approach which sacrifices some possible reduction

49

Chapter 3. On-the-fly Reductions

Model Full Reduced
cambridge 146,471 6,298 4.2%
erathostenes 25,295 2,093 8.2%
snoopy 61,619 9,707 15.7%
smcs 4,634 1,196 25.8%
mobile 30,652 9,971 32.5%
pftp 144,813 47,356 32.7%
i-protocol 2,207,190 919,978 41.7%
relay 876 442 50.4%
peterson 30,432 16,720 54.9%
brp 290,174 169,208 58.3%
X.509 9,028 6,094 67.5%
sgc 299,270 293,126 97.9%
sliding 16,441 14,645 89.0%
giop 638,525 638,520 99.9%

Table 3.2: Results for partial order reduction (Spin).

for low overhead [112].
Confluence and simultaneous reachability analysis, other two techniques based on

similar ideas as partial order reduction, have comparable results and domains of
applicability [145, 29, 144].

Symmetry Reduction

Symmetry reduction techniques based on permutations can, in theory, achieve re-
duction up to n! where n is the number of symmetrical entities. Table 3.3 presents
practical results. Experiments were done in the tool Murphi on the same set of
models as used by Dill and Ip [116]. We have just parametrized protocols by smaller
values to obtain more realistic evaluation — the size of reduced structure is between
8% and 50%. Similar results were reported by Bosnacki et al. [33] in Symmetric
Spin and by Iosif [115] for object oriented programs.

Symmetry reduction techniques are, of course, applicable only to models with sym-
metrical entities. Typical applications are cache coherence protocols, protocols over
bus with several symmetrical parties, models with several symmetrical agents. The
run-time overhead is non-trivial due to the computation of canonization function.
Some reduction can be sacrificed for lower overhead. The detection of symmetries
can be done fully automatically only in special cases. For practical purposes it is
necessary to extend the modeling language with special ’symmetric constructs’ (e.g.,
scalarset [116]).

Linear Transformations

This reduction is usable only for a restricted set of models. The effect of the tech-
nique is proportional to the size of a domain of linearly transformable variables.
Table 3.3 presents results for three protocols. The run-time overhead is negligible,
but the static detection of a set of linearly transformable variables is not easy. It is
profitable to introduce to the modeling language a new data type for domain Zn.

50

3.6. Evaluation

Symmetry reduction (Murphi) Linear transformations (DiVinE)

Model Full Reduced Model Full Reduced
cache 67,418 5,629 8.3% cambridge 827 222 26.8%
list4 8,893 1,489 16.7% abp 11,286 5,958 55.1%
peterson3 882 172 19.5% brp 14,720 8,121 55.2%
eadash 1,694 425 25.0%
sci 18,059 4,525 25.0%
ldash 740 372 50.2%

Table 3.3: Results for symmetry reduction and linear transformations.

Transition merging (Spin) Transition merging (DiVinE)

Model Full Reduced Model Full Reduced
sgc 607,750 299,270 49.2% iprot. 29,994 6,445 21.5%
erath. 47,669 25,295 53.0% rether 10,462 6,970 66.6%
pftp 207,481 144,813 69.7% resist. 151,587 108,095 71.3%
cambridge 166,510 146,471 87.9% krebs 7,869 6,027 76.6%
snoopy 67,656 61,619 91.0% firewire 55,887 45,155 80.8%
peterson 33,434 30,432 91.0%
smcs 5,066 4,634 91.4%
X.509 9,760 9,028 92.5%
brp 309,676 290,174 93.7%
mobile 32,668 30,652 93.8%

Table 3.4: Results for transition merging.

Static Transformations

Our experience suggests that the effect of static transformations (merging of equiv-
alent states, slicing, transition merging, loop acceleration) is not very dependent on
the type of an application, but rather on the experience and the modeling style of a
user and on possibilities of a modeling language. An experienced user, particularly
an user who is acquainted with model checking algorithms, performs many static
transformations manually (even unconsciously). Most of our models were crafted by
experienced users in rather low-level modeling formalisms and therefore these reduc-
tions are not very efficient for them. Table 3.4. presents results for models on which
the transition merging technique was applicable. Dong and Ramakrishnan [74] re-
port much better effect of these reduction. We suspect that this is because their
modeling language does not contain atomic constructs (as opposed to Spin and Di-
VinE). Kurshan et al. [125], Yorav [173], and Holzmann [110] report reduction effects
slightly better than what we have obtained. Holzmann [110] supports our claims
about the dependence on modeling style of the user as he shows that by manual
re-modeling he can achieve very significant reduction.

We suppose that static transformations will be very important for models auto-
matically generated from high level description languages and models created by
naive users who are not familiar with the underlying model checking algorithms.
This type of application is becoming more and more important. In order to con-

51

Chapter 3. On-the-fly Reductions

Model Full Reduced (BFS) Reduced (DFS)

jobshop 322,330 13,802 4.2% 116,769 36.2%
naive protocol 3,726 648 17.3% 923 24.7%
bridge 3,186 707 22.2% 1579 49.6%
fischer 1,670 704 42.1% 867 51.9%
abp 65,358 27,792 42.6% 30,647 47.0%
logistics 330,636 149,969 45.3% 306,776 92.7%

Table 3.5: Results for reduction based on dominating values (DiVinE).

vincingly evaluate static transformation techniques, it is necessary to perform ex-
periments on a large set of models created by non-expert users. At this moment, it
is still difficult to obtain such a set.

Static transformations do not bring any run-time overhead nor any changes to the
model checker itself. This makes them very plausible.

Dominating Values

Table 3.5 presents results of the reduction technique based on dominating values.
This technique is applicable only to models which contain some one-way bounded
monotone variable — for our models it was either discrete time variable or counter of
the number of lost messages. The automatic detection of suitable monotone variable
is not easy. It is better to let a user give us some hints, e.g., by introducing special
data type.

The technique involves non-trivial run-time overhead because we need to check
whether the current state is simulated by some previously visited state. This check
can be implemented by the following way. The identification of simulation relation
is usually based only on some small part of the state vector (e.g., one monotone
variable). For computation of a hash function we use only the part of the state
vector which do not influence the identification of simulation relation. In this way,
all possible candidate states end up in the same collision list. We search this collision
list exhaustively and make a check for simulation.

As we have already noted in Section 3.3, the reduction obtained by this technique
depends on the order in which states are visited. Table 3.5 shows that breadth-first
order is better than depth-first order.

3.7 Summary

Finally, we summarize the insight obtained by the overview of reduction techniques
and their experimental evaluation. We also draw some conclusions for developers of
model checking tools.

52

3.7. Summary

Trade-offs

Reduction techniques are often presented as an unequivocal improvement of state
space exploration. In fact, reduction techniques usually present some kind of trade-
off. Reduction techniques require some precomputation (analysis of a model) and
usually also reduce the speed of exploration (run-time analysis). Therefore, it is
necessary to design reduction techniques carefully so that the computational re-
quirements of the reduction do not overshadow the benefit of the reduction.

Most reduction techniques work only on some models, but their negative effects
(precomputation, decrease of speed) manifest themselves on all models. Therefore,
one should carefully consider whether the use of a particular reduction technique
should be a default option of the tool.

There is also a trade-off between the power of a reduction technique and a pre-
served behavioral equivalence5. Instead of using one fixed reduction technique, we
should choose a reduction according to the type of a verified property.

Specialization

Each technique is applicable to some class of models. There is no silver bullet — no
reduction technique works really universally. A simple but important observation is
that more specialized techniques yield better reduction. This is another trade-off —
we trade the power of the technique and the size of the application domain.

There are few techniques which are applicable to wide range of models, e.g., dead
variable reduction or transition merging. These reductions bring only moderate
effect. More powerful reductions have restricted domain of application, e.g., sym-
metric models, loosely coupled models, acyclic models.

Today, most model checkers are specialized to some domain. Tool developers
should implement only those techniques that are applicable to the application do-
main of their tool.

User is Important

The reduction obtained depends not only on the application domain, but also on the
user’s modeling style. Some reductions, particularly those based on static transfor-
mation of the model, do not bring nearly no improvement when applied to models
crafted by expert users, but can be very efficient on models created by non-expert
users. In general, we can expect reduction techniques to have more significant effect
on novice user’s models.

On the other hand, user’s experience can be important for effective application of
reduction techniques. Many reduction techniques can benefit from special modeling
constructs (e.g., scalarsets for symmetric reduction). A correct and disciplined use
of these constructs requires some experience. The user should be also able to choose

5This is nicely illustrated, for example, by different conditions on partial order reduction.

53

Chapter 3. On-the-fly Reductions

suitable techniques to be applied during the exploration — as discussed above, only
generally applicable techniques should be used as a default option in the tool.

Unfortunately, a user’s role in application and effectiveness of reduction techniques
was not systematically investigated by the model checking community so far. We
consider this to be an interesting topic for future work.

Good, but not Great

We can summarize our experimental evaluation as follows. On real models, no single
reduction is able to reduce the size of the state space significantly under 5%. Claims
about drastic reduction, which occur in some papers, are not really appropriate.
If a ’drastic’ reduction occurs, it is usually restricted to toy examples or to a very
special type of models. However, since there are many different reduction techniques
and many of them are orthogonal, most models can be reduced quite significantly
and certainly there are cases, where the application of reduction techniques can
change the output of the model checker from ‘out of memory’ to something bit
more informative.

However, from the tool developer point of view, there is another trade-off to
consider. Many techniques are non-trivial to implement. Developers should consider
the following question: Is it more useful to spend precious time on implementation
of reduction techniques or rather on some other aspects of tool development, e.g.,
on improving efficiency of the search implementation, data structures? There is not
a simple answer to this question — it depends on the application domain, target
group of the tool, tool developers goals and priorities etc. In any case, the question
should be considered carefully.

3.8 Related Work

Due to the overview nature of this chapter, most of the related work is discussed
during the presentation. Here we give some more details and discuss some other
works which do not fit directly into the flow of the presentation.

Partial Order Reduction

Probably the most studied reduction technique is partial order reduction and re-
lated techniques. The study of partial order reduction started with the papers by
Valmari [167] and Godefroid et al.[111], summarized in Godefroid’s PhD thesis [89].
Partial order reduction was promoted by Spin implementation [112]. Spin uses a
conservative approach, which sacrifices some reduction for low overhead.

There are many other techniques that are based on similar ideas as partial or-
der reduction. Most of them are mentioned in the chapter: transition compres-
sion [125, 74, 110], “next” heuristics [6], path reduction [173], simultaneous reacha-
bility analysis [144], τ -confluence [29, 145]. Another similar approach, which is not
discussed in this chapter, is the net unfolding algorithm by McMillan [138].

54

3.8. Related Work

Under-approximation refinement algorithm based on partial order reduction was
described by Brim et al. [42]. This algorithm uses modified condition CC and refines
invisible transitions.

Godefroid et al. [80] proposed dynamic partial order reduction for acyclic state
spaces. This approach utilizes acyclicity in similar way as our dynamic bisimulation-
based algorithm.

Bisimulation-based Reductions

Another popular reduction technique is symmetry reduction, which was promoted
by the tool Murphi [116]. Later it was extended for software [133, 115, 33]. The
reduction based on dead variables was described by Bozga et al. [79].

A variation of the αSearch algorithm was discussed by Holzman and Joshi [114]
in the context of software model checking in Spin. In their approach, the abstraction
function must be provided by the user (and it is the user responsibility to guarantee
that the abstraction is exact).

Bisimulation Minimization

Another branch of related work is concerned with bisimulation minimization. In
our setting, the goal is to compute a structure which is bisimilar to the original
one and, hopefully, smaller. Bisimulation minimization algorithms, on the other
hand, compute the bisimulation collapse of the structure, i.e., the smallest bisimilar
structure.

General algorithm for bisimulation minimization was provided by Paige and Tar-
jan [146], this algorithm was improved by several authors, see for example work by
Dovier at el. [76, 75]. These algorithms are not on-the-fly: one needs to work with
the whole state space. Lee and Yannakakis [131] give algorithm which computes the
bisimulation quotient on-the-fly and provide complexity analysis of the algorithm.
We discuss this work in more detail at the end of Chapter 5.

55

Chapter 4

Predicate Abstraction and Refinement

“But do they know anything about A? They don’t. It’s just three sticks to them. But
to the Educated–mark this, little Piglet–to the Educated, not meaning Poohs and
Piglets, it’s a great and glorious A.” [47]

This chapter is mainly about a great and glorious A — abstraction. It introduces
may/must abstractions, their variations, and particularly a predicate abstraction.
We formulate techniques of several authors in a single notation which enable us to
compare individual approaches. We formalize the over- and under-approximation
refinement schemes based on predicate abstraction and describe three refinement
strategies. We also discuss termination properties of (semi-)algorithms based on
abstraction refinement. The main purpose of this chapter is to overview and relate
different abstraction and refinement techniques. Another purpose of this chapter
is to set the scene for the introduction of a novel under-approximation refinement
algorithm in the next chapter.

4.1 Introduction

Let us revisit our Sorter example. In the second chapter we described a model
checking activity in which the modeling process was purely manual: we have man-
ually produced model of both the environment and the system (including NQC
programs). Whereas the manual modeling of an environment is in most cases un-
avoidable, modeling of a program code can be automatized. In fact, if we want
to apply model checking to systems with non-trivial amount of a program code,
automatization of model construction is a necessity.

Figure 4.1 gives the code of the light sensor controller of our Sorter. It also gives
a possible abstraction of this code. In this chapter we discuss techniques which
perform transformation from a full code to an abstracted code automatically. The
example in Figure 4.1 illustrates several issues that need to be addressed in order to
make these transformations possible:

– We need to abstract away parts of the program which do not influence the com-
putation of the program (e.g., calls to PlaySound function). This is done with the
use of static analysis tools and it is not in our focus.

57

Chapter 4. Predicate Abstraction and Refinement

task light_sensor_control() {
int x=0;
while (true) {
if (LIGHT > LIGHT_TRESHOLD) {
PlaySound(SOUND_CLICK);
Wait(30);
x = x + 1;

} else {
if (x>2) {
PlaySound(SOUND_UP);
ClearTimer(0);
brick = LONG;
} else if (x>0) {
PlaySound(SOUND_DOUBLE_BEEP);
ClearTimer(0);
brick = SHORT;
}
x = 0;

}
}
}

task ABS_light_sensor_control() {
bool b = false;
while (true) {
if (*) {
b = b ? true : * ;
} else {
if (b) {
brick = LONG;

} else if (b ? true : *) {
brick = SHORT;

}
b = false;
}

}
}

Figure 4.1: An example of NQC code and its abstraction with respect to a predicate
b ≡ x > 2.

– Once we have relevant variables that we want to abstract, we need to find a
suitable abstraction (in the example, we abstract an integer variable x into a
boolean variable b which represents x>0).

– For a given abstraction we need to compute an abstract transition relation (in the
example, we need to find out assignments for b).

The abstraction serves two main purposes. At first, we need to make the program
amenable to formal treatment (this encompasses for example the abstraction of
PlaySound function). Secondly, we need to get rid of (data-oriented) sources of
infinity1 (this encompasses for example the abstraction of integer variable x into
boolean variable b).

The purpose of this chapter is to give an overview of main approaches to soft-
ware model checking based on predicate abstraction and to relate individual ap-
proaches. We discuss techniques for computing both over- and under-approximations
with the use of predicate abstraction. We focus on the most often used ap-
proaches [95, 15, 92, 66]. We also describe relations among resulting approximations.
Then we give an overview of refinement techniques and discuss their completeness
properties; this part follows-up to the work by Dams [63]. We also give justification
for the use of predicates obtained by computation of weakest preconditions and pro-
vide several examples which illustrate interesting behaviors of different techniques
including example which points out an erroneous claim in [142]. As opposed to other

1From practical model checking point of view, it does not make sense to distinguish between
infinity and very large numbers. Hence, we treat int variables as being infinite domain. These
issues need to be considered more carefully if we are concerned with overflow errors.

58

4.1. Introduction

(a, true 7−→ x := x + 1)
(b, ¬x > 0 7−→ x := 0)
(c, x > 0 ∧ x ≤ 2 7−→ x := 0)
(d, x > 2 7−→ x := 0)

x = 0
a //

b

YY x = 1
a //

c
uu

x = 2
a //

c

{{
x = 3

a //

d

kk x = 4

d

hh
// . . .

Figure 4.2: Running example: very simplified version of the light controller task and
its (infinite) state space.

works on predicate abstraction, we pay attention not only to over-approximation
techniques, but also to under-approximation techniques and their refinement.

Running Example

Now we introduce a simple example which is be used through this and the next
chapter to illustrate different notions and techniques. The example is given in Fig-
ure 4.2. It is a very simplified version of the light controller task: we focus only on
the variable x. As shown in the Figure, the state space of this example is infinite.
Thorough the chapter we use abstraction techniques to construct different finite
approximations of the structure. Note that the bisimulation quotient of the state
space is finite and that it is possible to obtain a bisimilar structure using discussed
abstraction techniques if we use suitable predicates. But we prefer to demonstrate
results of abstraction with insufficient set of predicates — it is more illustrative.

In the chapter we consider abstraction with respect to predicates φ1 ≡ x > 0, φ2 ≡
x > 2. Concrete states of this system are given by the value of the variable x, we
denote concrete states as (x = k).

Relationship to Main Themes

– Equivalences. We study several different predicate abstractions and we use equiva-
lences to formalize and study relations among these abstractions and the concrete
state space.

– Abstractions. Abstractions, particularly predicate abstractions, are the key con-
cept of this chapter. We define several abstraction operators on transition systems
and study how to compute these abstractions directly from the model.

– Approximations and refinement. Predicate abstraction is suitable for automatic
refinement. We study both over- and under-approximations, refinement strategies,
and their termination properties.

59

Chapter 4. Predicate Abstraction and Refinement

4.2 May/Must Abstractions

May/must abstraction are a special instance of the framework of abstract interpreta-
tion [62] that maps a (potentially infinite state) transition system into a finite state
transition system over a set of abstract states A. In the case that A is a lattice, it is
possible to define may/must abstraction with the use of Galois connections [64, 15].
Our definition uses only a concretization function γ — this allows us to define ab-
stractions even in the case that A is not a lattice. This approach is equivalent to
definition via description relation [92].

4.2.1 Classical Definition

Let T = (S,Act ,−→, s0) be an LTS and γ be a function from a set of ab-
stract states A to subsets of concrete states 2S . We define a must abstraction
Amust(A, γ, T) = (A,Act ,−→must , a0) and a may abstraction Amay(A, γ, T) =

(A,Act ,−→may , a0) of a transition system T with respect to γ, where a0 is such
that s0 ∈ γ(a0) and transition relations are defined as follows:

– a1
ai−→must a2 iff ∀s1 ∈ γ(a1) ∃s2 ∈ γ(a2) : s1

ai−→ s2

– a1
ai−→may a2 iff ∃s1 ∈ γ(a1) ∃s2 ∈ γ(a2) : s1

ai−→ s2

With the use of weakest precondition, the conditions can be reformulated as fol-
lows:

– a1
ai−→must a2 iff γ(a1) ⊆ pre(ai, γ(a2))

– a1
ai−→may a2 iff γ(a1) ∩ pre(ai, γ(a2)) 6= ∅

Note that the must transition relation is a subset of the may transition relation.

Example 4.1 Let us consider our running example and abstract states2 a11, a10 such
that:

– γ(a11) = {(x = k) | k > 2}
– γ(a10) = {(x = 1), (x = 2)}

Now if we consider a-transitions we obtain the following:

– a11
a−→must a11 (and hence also a11

a−→may a11),
– a10

a−→may a10 and a10
a−→may a11 (but there is no must a-transition from a10).

Lemma 4.1 For any T, A, γ the following holds:

– Amust(A, γ, T) is simulated by T ,
– T is simulated by Amay(A, γ, T).

Proof: Let us consider the following relation R: (a, s) ∈ R
def⇐⇒ s ∈ γ(a). It is easy

to verify that R is a simulation relation in both cases. ¤
2The notation corresponds to the predicate abstraction meaning of these states that we use later

in the chapter.

60

4.2. May/Must Abstractions

4.2.2 Transitions must−

Must transitions, as defined above, are not very practical — under-approximations
based on must transitions are often too coarse to be of any practical use. There
have been several proposals how to compute better under-approximations. One of
them is based on so called must− transitions [11, 13] (other proposals are discussed
in related work).

The condition on a must transition a1 −→must a2 requires that each state s1 ab-
stracted by a1 has a successor s2 abstracted by a2. Alternatively, we can require
that each state s2 abstracted by a2 has a predecessor s1 abstracted by a1. In cor-
respondence with [11, 13], let us denote the classical must transition as must+ and
the newly defined must transition as must−:

a1
ai−→must− a2 iff ∀s2 ∈ γ(a2)∃s1 ∈ γ(a1) : s1

ai−→ s2

Using the strongest postcondition operator, the condition on must− transitions
can be expressed as:

a1
ai−→must− a2 iff γ(a2) ⊆ post(ai, γ(a1))

This new type of transitions is incomparable to the classical one.

Example 4.2 Let us consider abstract states from Example 4.1 and moreover a00 such
that γ(a00) = {(x = k) | k ≤ 0}. Then:

– a11
a−→must+ a11 but there is not a must− a-transition from a11 to a11,

– a00
a−→must− a00 but there is not a must− a-transition from a00 to a00.

Therefore, by using must− transitions we can sometimes get better results than
with must+. More importantly, it is advantageous to combine must+ and must−

transitions in one abstract structure (this approach can be used to check general
properties [13], here we focus only on reachability).

We define Amust
+− (A, γ, T) = (A,Act ,−→must+ ,−→must− , α(s0)) to be an LTS with

two transition relations which are defined as above. For such a transition system we
define the set of reachable actions as follows:

RA(Amust
+−) = {ai ∈ Act | s0 −→∗

must− si −→∗
must+ sn

ai−→ sn+1}

The abstraction based on both must+ and must− transitions gives a (potentially)
larger set of reachable actions than under-approximations based only on must+ or
must−. At the same time, Amust

+− is still a correct under-approximation:

Lemma 4.2 ([11]) RA(Amust
+− (A, γ, T)) ⊆ RA(T)

61

Chapter 4. Predicate Abstraction and Refinement

4.3 Predicate Abstraction

Based on the above given definition, we can, in principle, construct abstract tran-
sition system for an arbitrary (finite) abstract domain and concretization function.
The main problem is the computation of may/must transitions, preferably automat-
ically. This is a reason why we use predicate abstraction3. For predicate abstraction
the conditions on may/must transitions can be expressed as a validity of quantifier
free first order formulas. Such validity queries can be solved by decision procedures.

In the following, we suppose that we have at our disposal a function is valid(ϕ)
that returns true only if ϕ is a tautology, i.e., we require that is valid is a sound,
but not necessary complete decision procedure. Currently, there are readily available
implementation of the is valid function (see the discussion of related work).

Let us consider a set Φ = {φ1, . . . , φn} of predicates over the set of model vari-
ables V . We have several choices of abstract domains and concretization functions
based on these predicates. Here we discuss the most common ones — domains
2{0,1}n

, {0, 1}n, and {0, 1, ∗}n. In the following we write Amay(A, T), Amust(A, T)
when the concretization function γ is clear from the context.

We also use the following notation. Given a vector ~b = 〈b1, . . . , bn〉, where bi ∈
{0, 1, ∗}, we define a formula J~b,ΦK = b1 ·φ1 ∧ . . .∧ bn ·φn where 0 ·φi = ¬φi, 1 ·φi =
φi, ∗ ·φi = true. If a set of states is characterized by a predicate φ, then the weakest
precondition with respect to transition ai can be expressed as pre(ai, JφK) = Jgi ⇒
φ[ui(~x)/~x]K.

4.3.1 Abstract Domains

Now we overview different abstract domains and discuss how to (algorithmically)
compute may/must transitions over these domains. We consider only classical must
transitions, must− transitions can be computed analogically.

Abstract Domain 2{0,1}n
[15, 95, 92]

A set 2{0,1}n
with a natural ordering (set inclusion) forms a lattice and the following

two functions form a Galois connection with 2S :

α1
Φ : 2S → 2{0,1}n

α1
Φ(X) = {~b | X ∩ {s | s |= J~b, ΦK} 6= ∅}

γ1
Φ : 2{0,1}n → 2S γ1

Φ(B) = {s | ∃~b ∈ B : s |= J~b, ΦK}

Example 4.3 Let us consider our running example with Φ = {x > 0, x > 2}. Then
we get, for example:
α1

Φ({(x = 0), (x = 37), (x = 42)}) = {00, 11}
γ1

Φ({00, 11}) = {(x = k) | k ≤ 0 ∨ k > 2}
Compared to abstractions based on other abstract domains, abstractions de-

fined by the abstract domain 2{0,1}n
have some nicer theoretical properties (see,

3Another reason is that it is easy to do refinement of predicate abstraction.

62

4.3. Predicate Abstraction

e.g., [15, 92]). They are, however, not very practical: the number of states is dou-
bly exponential in the number of predicates and transition relations are not easy to
compute.

Abstract Domain {0, 1}n [66, 92]

An abstract domain {0, 1}n (bitvectors of length n) is not a lattice (with any natural
ordering). Therefore, in this case we have only a concretization function:

γ2
Φ : {0, 1}n → 2S , γ2

Φ(~b) = {s | s |= J~b, ΦK}

Given an abstract state ~b we need to compute sets of successors under may/must
transitions. Since we are dealing with bitvectors, sets of successors can be repre-
sented by boolean functions over b′1, . . . , b

′
n. This is done by the following func-

tions [66, 92]:

Hmay
i (~b, η, j) =

(b′j ∧H(~b, η ∧ φj , j + 1))
∨(¬b′j ∧H(~b, η ∧ ¬φj , j + 1) if 0 < j ≤ n

0 if j = n + 1 and is valid(J~b,ΦK⇒ ¬pre(ai, η))
1 otherwise

Hmust
i (~b, η, j) =

(b′j ∧H(~b, η ∧ φj , j + 1))
∨(¬b′j ∧H(~b, η ∧ ¬φj , j + 1) if 0 < j ≤ n

1 if j = n + 1 and is valid(J~b, ΦK⇒ pre(ai, η))
0 otherwise

Example 4.4 Let us consider our running example and suppose that is valid is com-
plete. The value of the function Hmay for the transition a and the abstract state a10

represented by a bitvector 10 is computed as follows:
Hmay

a (10, true, 1) =
(b′1 ∧H(10, x > 0, 2)) ∨ (¬b′1 ∧H(10, x ≤ 0, 2)) =
(b′1 ∧ (b′2 ∧H(10, x > 0 ∧ x > 2, 3)) ∨ (¬b′2 ∧H(10, x > 0 ∧ x ≤ 2, 3)))∨
(¬b′1 ∧ (b′2 ∧H(10, x ≤ 0 ∧ x > 2, 3)) ∨ (¬b′2 ∧H(10, x ≤ 0 ∧ x ≤ 2, 3)))

Now we compute the following:

– H(10, x > 0 ∧ x > 2, 3) = 1
because x > 0 ∧ x ≤ 2 ⇒ ¬pre(x := x + 1, x > 0 ∧ x > 2) is not valid

– H(10, x > 0 ∧ x ≤ 2, 3) = 1
because x > 0 ∧ x ≤ 2 ⇒ ¬pre(x := x + 1, x > 0 ∧ x ≤ 2) is not valid

– H(10, x ≤ 0 ∧ x > 2, 3) = 0
because x > 0 ∧ x ≤ 2 ⇒ ¬pre(x := x + 1, x ≤ 0 ∧ x > 2) is valid

– H(10, x ≤ 0 ∧ x > 2, 3) = 0
because x > 0 ∧ x ≤ 2 ⇒ ¬pre(x := x + 1, x ≤ 0 ∧ x ≤ 2) is valid

63

Chapter 4. Predicate Abstraction and Refinement

¬φ1,¬φ2

a

XXb 33 a
// φ1,¬φ2

a

XX a
//

cqq
φ1, φ2

a

XX

d

xx

Figure 4.3: Abstraction of the program from Figure 4.2 with respect to {0, 1}n do-
main. Must transitions are full lines, may transitions are dotted lines.

And together we get that: Hmay
a (10, true, 1) = (b′1 ∧ (b′2 ∨ ¬b′2)) = b′1

As we see from the example, by unwinding the recursion we get that:

Hmay
i (~b, true, 1) = {~b′ | ¬is valid(J~b, ΦK⇒ ¬pre(ai, J~b′, ΦK))}

Hmust
i (~b, true, 1) = {~b′ | is valid(J~b,ΦK⇒ pre(ai, J~b′, ΦK))}

These sets correspond to the definition of may/must transitions, i.e., we obtain a
correct over-/under-approximation:

Lemma 4.3 ([92]) Let −→may , −→must be transition relations of Amay({0, 1}n, JMK),
Amust({0, 1}n, JMK). Then:

– a
ai−→may a′ only if a′ ∈ Hmay

i (a, true, 1). If the decision procedure is complete
then a

ai−→may a′ if and only if a′ ∈ Hmay
i (a, true, 1).

– a′ ∈ Hmust
i (a, true, 1) only if a

ai−→must a′. If the decision procedure is complete
then a

ai−→must a′ if and only if a′ ∈ Hmust
i (a, true, 1).

Example 4.5 Using the previous lemma and the computation of functions Hmay ,
Hmust as illustrated in Example 4.4, we can algorithmically construct the may/must
abstract transition systems — the result is given in Figure 4.3.

Functions Hmay , Hmust can be computed with the use of standard BDD operations
and calls to a decision procedure. With the use of functions Hmay , Hmust , an approx-
imation can be computed by standard symbolic state space search. Let us denote the
corresponding algorithms BitvectorMay(M, Φ) and BitvectorMust(M, Φ).

Abstract Domain {0, 1, ∗}n [95, 92, 15]

An abstract domain {0, 1, ∗}n (trivectors of length n) can be viewed as monomials
of predicates. Monomials are naturally order by implication, thus this domain forms
a lattice (formally, we need a special bottom element ⊥, because false cannot be
represented as trivector). The Galois connection with 2S is defined as follows4:

4This Galois connection can be obtained by concatenating (α1
Φ, γ1

Φ) and a Cartesian abstrac-
tion [15]. Therefore, it is usually called a predicate-cartesian abstraction.

64

4.3. Predicate Abstraction

– α3
Φ : 2S → {0, 1, ∗}n, α3

Φ(X) = min{~b | X ⊆ J~b, ΦK}
– γ3

Φ : {0, 1, ∗}n → 2S , γ3
Φ(~b) = {s | s |= J~b,ΦK}

We can compute the abstract transition relation in a similar way as for the domain
{0, 1}n (see [92]). Here we give more readable formulation from [95]:

Gmay
i (~b) =

false if is valid(J~b, ΦK⇒ ¬gi)

∧n
j=1

b′j if is valid(J~b, ΦK⇒ pre(ui, φj))
¬b′j if is valid(J~b, ΦK⇒ pre(ui,¬φj))
true otherwise

otherwise

Gmust
i (~b) =

∧n
j=1

b′j if is valid(J~b, ΦK⇒ ¬pre(ui,¬φj))
¬b′j if is valid(J~b, ΦK⇒ ¬pre(ui, φj))
true otherwise

if is valid(J~b, ΦK⇒ gi)

false otherwise

Example 4.6 We again illustrate the computation of the function Gmay in the same
setting as in Example 4.4:
Gmay

a (10) = b′1 ∧ true = b′1
because:

– x > 0 ∧ x ≤ 2 ⇒ pre(x := x + 1, x > 0) is valid
– x > 0 ∧ x ≤ 2 ⇒ pre(x := x + 1, x > 2) is not valid
– x > 0 ∧ x ≤ 2 ⇒ pre(x := x + 1, x ≤ 2) is not valid

We again obtain a correct over-/under-approximation:

Lemma 4.4 Let −→may ,−→must be transition relations of Amay({0, 1, ∗}n, JMK),
Amust({0, 1, ∗}n, JMK). Then:

– a
ai−→may a′ only if a′ ∈ Gmay

i (a). If the decision procedure is complete then
a

ai−→may a′ if and only if a′ ∈ Gmay
i (a).

– a′ ∈ Gmust
i (a) only if a

ai−→must a′. If the decision procedure is complete then
a

ai−→must a′ if and only if a′ ∈ Gmust
i (a).

Using Gmay , Gmust for successor computation we again construct the approxima-
tion using the standard state space exploration algorithm. Let us denote these
approximations TrivectorMay, TrivectorMust.

Example 4.7 The predicate-cartesian abstraction of our running example is given in
Figure 4.4.

65

Chapter 4. Predicate Abstraction and Refinement

¬φ1,¬φ2

b

XX
a // ¬φ2

a //
b

mm

c

cc true

a

YY

b

¡¡

c

{{
d

uu

Figure 4.4: Abstraction of program from Figure 4.2 with respect to {0, 1, ∗}n domain.
Must transitions are full lines, may transitions are dotted lines.

In practice it is useful to separate the abstraction process and the search [14]. In
the first step, the program is abstracted into a boolean program — a program which
uses only boolean variables to hold values of predicates. Updates of boolean variables
are computed by boolean under-/over-approximations of weakest preconditions. In
the second step, the state space of the boolean program is constructed using standard
techniques.

Example 4.8 For our running example, we can construct the following boolean pro-
gram (which defines an over-approximation):

(a, true 7−→ b1 := if b1 then 1 else ∗
b2 := if b2 then 1 else if b1 then ∗ else 0)

(b, ¬b1 7−→ b1 := 0, b2 := 0)
(c, b1 ∧ ¬b2 7−→ b1 := 0, b2 := 0)
(d, b2 7−→ b1 := 0, b2 := 0)

4.3.2 Relations

We have mentioned several different approximations of a concrete system. Let us
discuss relations among them; results are summarized in Figure 4.5. We have the
following relations among may/must predicate abstractions with different abstract
domains:

1. Amay(2{0,1}n
, JMK) is simulated by Amay({0, 1, ∗}n, JMK)

2. Amust({0, 1, ∗}n, JMK) is simulated by Amust(2{0,1}n
, JMK)

3. Amay({0, 1}n, JMK) is simulated by Amay(2{0,1}n
, JMK)

4. Amay({0, 1}n, JMK) is simulated by Amay({0, 1, ∗}n, JMK)
The simulation relation for the case 1 is (X, cartesian(X)), where cartesian(X) is

cartesian abstraction of the set X [15]. The simulation relation for cases 2, 3, 4 is a
natural embedding.

4.4 Refinement Schemes

In this section we deal with the problem of refining approximations. If an approx-
imation is not good enough to either find an error or to guarantee its absence, we

66

4.4. Refinement Schemes

Amay({0, 1, ∗}n, JMK) // TrivectorMay(M, Φ)

Amay(2{0,1}n

, JMK)

OO

Amay({0, 1}n, JMK) //

OO

BitvectorMay(M, Φ)

OO

JMK

OO

Amust
+− (2{0,1}n

, JMK)

66mmmmmmmmmmmmmmmmmmm
αSearchCheck(M, Φ)

iiRRRRRRRRRRRRRRRRRRRRR

Amust
+− ({0, 1, ∗}n, JMK)

OO

Amust(2{0,1}n

, JMK)

hhQQQQQQQQQQQQQQQQQQ

66lllllllllllllllllll

Amust
+− ({0, 1}n, JMK)

OO

Amust({0, 1, ∗}n, JMK)

OOhhQQQQQQQQQQQQQQQQQQ
TrivectorMust(M, Φ)oo

Amust({0, 1}n, JMK)

OOhhRRRRRRRRRRRRRRRRRR
BitvectorMust(M, Φ)

OO

oo

Figure 4.5: Relations among abstractions. Relations are compared with respect to
reachability preorder (inclusion of sets of reachable actions). Doted in-
clusions are due to incompleteness of decision procedure (for complete
decision procedure there would be an equivalence). For the sake of clar-
ity, counterparts of BitvectorMust,TrivectorMust for Amust

+− are
not shown. The algorithm αSearchCheck(M, Φ) is described and dis-
cussed in the next chapter.

67

Chapter 4. Predicate Abstraction and Refinement

need to refine it. In the case of approximations based on predicate abstraction, the
refinement done by adding more predicates.

At first, we mention why it makes sense to use predicates obtained by iterated
computation of weakest precondition. Secondly, we present pseudocodes of both
over- and under-approximation refinement schemes and we describe three refine-
ment strategies that use predicates obtained by weakest preconditions. Finally, we
discuss some completeness and termination results and compare different refinement
algorithms.

4.4.1 Predicates by Weakest Precondition

All below discussed refinement strategies use predicates from guards or predicates
constructed by a repeated application of the weakest precondition operator to
guards. Here we justify that this is a reasonable approach. We define the following
sets:

– Pre1(M) is the set of all predicates which occur in some guard in M ,
– Prei+1(M) = Prei(M) ∪ {pre(ai, φ) | φ ∈ Prei(M)},
– Pre(M) =

⋃∞
i=1 Prei(M).

The following lemmas hold for any algorithm (respectively for any algo-
rithm computing under-approximation) discussed in the previous section (i.e.,
TrivectorMust, TrivectorMay, BitvectorMust, BitvectorMay).

Lemma 4.5 For each k: Approximation(M,Prek(M)) is k-bisimilar to JMK.
Proof: The proof is done by straightforward induction with respect to k. ¤

Lemma 4.6 If JMK has a finite bisimulation quotient then there exists a finite set of
predicates Φ ⊆fin Pre(M) such that Approximation(M, Φ) is bisimilar to JMK.
Proof: If JMK has a finite bisimulation quotient then there exists k such that ∼=∼k.
The result follows from Lemma 4.5. ¤

Lemma 4.7 There exists a finite set of predicates Φ ⊆fin Pre(M) such that
RA(UnderApproximation(M, Φ)) = RA(JMK).
Proof: Let k be such that each ai ∈ RA(JMK) is reachable in at most k steps (such
k exists because a set of reachable actions is finite). Due to Lemma 4.5, there exists
Φk ⊆fin Pre(M) such that UnderApproximation(M, Φk) is k-bisimilar to JMK.
Therefore, RA(JMK) = RA(UnderApproximation(M, Φ)). ¤

Unfortunately, the analogy of Lemma 4.7 does not hold for over-approximations.
This is illustrated by example in Figure 4.6. No finite subset of Pre(M) = {x =
i | i ∈ Z} ∪ {y = i | i ∈ Z} is sufficient to rule out the transition d. To get that d
is unreachable, we need the predicate x = y which cannot be obtained by weakest
preconditions.

68

4.4. Refinement Schemes

(a, pc = 0 7−→ x := x + 1, y := y + 1)
(b, pc = 0 7−→ x := x− 1, y := y − 1)
(c, pc = 0 ∧ x = 0 7−→ pc := 1)
(d, pc = 1 ∧ y 6= 0 7−→ pc := 2)

Figure 4.6: Example showing non-sufficiency of predicates obtained by weakest pre-
conditions for over-approximation techniques (the example is inspired
by [149]).

proc RefinementOver(M)
Φ := predicates in guards of M
while true do

A := OverApproximation(M, Φ)
if e 6∈ RA(A) then return true fi
if there is a concrete path to e then return false fi
Φ := Refine(A, Φ, M)

od
end

proc RefinementUnder(M)
Φ := predicates in guards of M
old := ∅
while old 6= Φ do

old := Φ
A := UnderApproximation(M, Φ)
if e ∈ RA(A) then return false fi
Φ := Refine(A, Φ, M)

od
return true

end

Figure 4.7: Refinement algorithms for verification of safety properties (we are check-
ing for the reachability of an error action e).

4.4.2 Refinement Strategies

Figure 4.7 presents the core of refinement algorithms for both over- and under-
approximations. We suppose that the function Refine(A,Φ,M) returns a set of
predicates Φ′ such that Φ ⊆ Φ′. For the correctness of RefinementUnder it is
important that the function Refine(A, Φ, M) returns Φ only if RA(A) = RA(JMK).
Now we discuss three strategies for realization of the function Refine. All of them
are based on computation of weakest preconditions.

Non-guided [142, 63]

The simplest approach is to compute new predicates by computing weakest precon-
ditions of all currently used predicates. The refinement algorithm can be specified

69

Chapter 4. Predicate Abstraction and Refinement

as follows:
RefineN(A, Φ,M) = {pre(ai, φ) | φ ∈ Φ, ai ∈ Act}

If we start with predicates from guards, this leads to the use of sets Pre1,Pre2,
This is a safe approach since we know that we do not miss any important predicate
(see Lemmas 4.7, 4.6). But it may lead to the use of predicates which are not relevant
for the verification and only unnecessarily increase the size of refined approximations.

Exactness-guided

This is a novel strategy, which is an ‘optimization’ of the previous one. We try to
use only relevant predicates. In order to determine which predicates are relevant, we
employ a notion of an inexact transition. We say that abstract transition a

ai−→ a′

is inexact if it is a may transition but not a must transition. This can be expressed
as:

γ(a) ∩ pre(ai, γ(a′)) 6= ∅ ∧ γ(a) ∩ ¬pre(ai, γ(a′)) 6= ∅
This situation can be recognized with the use of a decision procedure in a similar

way in which we computed may/must transitions. Since inexact transitions are the
source of imprecision of the approximation, it makes sense, intuitively, to compute
weakest preconditions only with respect to these transitions. The exactness-guided
refinement can be specified as follows:

RefineE(A, Φ,M) = {pre(ai, φ) | φ ∈ Φ, there exists inexact a
ai−→ a′ in A}

Counterexample-guided [55, 63, 127]

Suppose that we have a path π = a1, . . . , an which demonstrates that A and JMK are
not equivalent (a counterexample). Then we can guide the refinement specifically to
get rid of this discrepancy. We extend the pre operator to work over paths:

preπ,k =

{
pre(ak, φ) k = n

pre(ak, preπ,k+1) k < n

For the refinement we use predicates computed by this operator over the spurious
counterexample:

RefineC(A, Φ) = {preπ,k(Φ) | π is a counterexample to equivalence of A and JMK,
1 ≤ k ≤ length(π)}

This basic scheme can be optimized in several ways, e.g., we do not include preπ,k

for all k but only for those for which ak is not feasible in JMK. Another optimization
is to work with several counterexamples at once [63, 127].

How do we get a counterexample? For over-approximation techniques we get
it directly from the spurious counterexample produced by the search. For under-
approximations we do not have any guaranteed technique to get the counterexample.
It is possible to use random walk over JMK to try to find a path which is not included
in the current under-approximation.

70

4.4. Refinement Schemes

4.4.3 Completeness

Since the problem of computing RA(JMK) is undecidable, we cannot have truly
complete algorithm (such that it terminates on all inputs). Therefore, we study
several weaker completeness properties.

Since these properties sometimes depend on an exact formulation of algorithms
(e.g., details like search order), we do not provide formal results in this part and
only discuss the main observations.

Semi-completeness of Reachability

The refinement algorithm eventually produces structure A such that RA(A) = JMK
(but may not recognize it).

As illustrated by example in Figure 4.6, over-approximation based algorithms
which use only predicates computed by weakest precondition cannot have this prop-
erty.

Refinement algorithms based on non-guided refinement and under-approximation
have this property due to Lemma 4.7. Algorithms using exactness-guided refinement
have this property as well. Intuitively, everything that is needed is added. Formally,
it is necessary to back up this claim for each specific algorithm. We discuss a specific
exactness-guided refinement algorithm and its correctness in the next chapter.

Termination for Systems with a Finite Bisimulation Quotient

If JMK has a finite bisimulation quotient then the refinement algorithm terminates.
Due to Lemma 4.6, only a finite number of predicates from Pre(M) is sufficient if a

finite bisimulation quotient exists. Therefore, over-approximation based algorithms
have this completeness property, because they either find an error or eventually
construct an abstract structure that does not contain an error state.

In the case of systems without an error, under-approximation based algorithms
eventually construct a bisimilar structure. However, it may happen that the algo-
rithm does not recognize this situations and keeps on refining (unnecessarily). For
example, non-guided refinement algorithms need not terminate, e.g., on the following
example:

(a, pc = 0 ∧ y ≥ 0 7−→ y := y + 1)
(b, pc = 0 ∧ y < 0 7−→ pc := 1)

Here the non-guided refinement keeps on introducing predicates y ≥ 1, y ≥ 2,
This is redundant because the transition y := y + 1 is exact with respect to pred-
icate y ≥ 0. Algorithms with exactness-guided refinement can recognize this and
terminate.

Semi-completeness for Systems with Finite Reachable Bisimulation Quotient

If JMK has finite reachable bisimulation quotient then the refinement algorithm even-
tually terminates or produces a structure A that is bisimilar to JMK (but may not
recognize it).

71

Chapter 4. Predicate Abstraction and Refinement

In [142] (Theorem 3) it is claimed that their non-guided algorithm based on may
transitions does have this property. Example in Figure 4.8 shows that this claim is
incorrect. In fact, for this example no may/must abstraction based on predicates
from weakest preconditions produces structure bisimilar to the concrete system (the
concrete system is rather trivial — it has only one state).

In the next chapter we present an under-approximation refinement algorithm
which does have this semi-completeness property.

(a, pc = 0 ∧ y ≥ 0 7−→ y := y + x)
(b, pc = 0 ∧ y < 0 7−→ pc := 1)

pc = 0
y ≥ 0

a

°°
a // pc = 0

y < 0
b // pc = 1

y < 0

pc = 0
y + x ≥ 0

a // pc = 0
y ≥ 0

a

°°
a // pc = 0

y < 0
b // pc = 1

y < 0

pc = 0
y + 2x ≥ 0

a // pc = 0
y + x ≥ 0

a // pc = 0
y ≥ 0

a

°°
a // pc = 0

y < 0
b // pc = 1

y < 0

Figure 4.8: First few iterations of predicate-cartesian abstractions are illustrated.
Solid lines are must transitions, dotted lines are may transitions; not all
predicates are shown in states.

4.5 Related Work

Abstractions in Model Checking

The basic foundations of abstraction for analysis of programs were given by Cousot
and Cousot [62] and their theory of abstract interpretations. Formal aspects of
application of abstraction to model checking were first treated by Clarke, Grumberg
and Long [57]. These ideas were further developed, for example, by Dams et al. [64]
and implemented in the Bandera project [61] (a verification environment for Java
programs). All these approaches can construct a model automatically, but an user
has to choose a suitable abstraction function.

Predicate Abstraction

Predicate abstraction was introduced by Graf and Saidi [95]. Dill et al. [66] in-
troduced more practical implementation of the approach based on symbolic repre-

72

4.5. Related Work

sentation using BDDs. Godefroid et al. [92] provided formal treatment of different
predicate abstractions using modal systems.

The SLAM project [14, 15, 17] was the first full-fledged tool based on predicate
abstraction which was applicable to verification of programs in a high-level program-
ming language. This tool is based on an automatic abstraction of C programs into
booleans programs and on a refinement using counterexamples.

Extensions of Predicate Abstraction

Must transition usually provide rather poor under-approximation. This problem
was addressed in several ways. One approach, suggested by Ball et al. [11, 13], is
based on the use of must− transitions. This approach is discussed in the text.

Another approach is to use as a target of a must transition a set of states instead
of a single state — these are so called hyper-transitions [163, 69, 65]. Formally,
hyper-transitions are of the type (a, Y), where a ∈ A, Y ⊆ A. The condition on
must hyper-transition is the following:

a1
ai−→hmust Y if ∀s1 ∈ γ(a1)∃a2 ∈ Y, s2 ∈ γ(a2) : s1

ai−→ s2

It is necessary to change appropriately definitions of simulation, reachable actions,
etc. These generalized structures have nicer theoretical properties than classical
may/must abstractions, e.g., completeness for branching time model checking [65]
and monotonicity of refinement [163]. It is, however, not clear how to effectively
compute structures with hyper-transitions and whether they can be used to effi-
ciently compute the set of reachable actions. Therefore, we do not consider them in
our comparisons.

Another direction is to improve the performance of predicate abstraction by op-
timizations. Henzinger et al. [104] suggested the use of lazy abstraction — newly
discovered predicates are not used globally, but propagated only lazily, as needed.
Another optimizations based on a more selective use of predicates were proposed by
Jain et al. [118].

Automatic Refinement

Namjoshi and Kushan [142] described algorithm with a non-guided refinement. The
basic idea of the counterexample-guided refinement was proposed by Clarke et al.
[55]. Lakhnech [127] described a similar approach named incremental verification.

Although most of the automatic refinement algorithms address undecidable prob-
lems (i.e., they are semi-algorithms rather than algorithms), there has been some
interest in termination properties and comparisons between approaches. Dams [63]
provides summary of different refinement schemes in a single notation. Ball et al. [16]
study completeness properties, particularly the relative completeness of algorithms.

73

Chapter 4. Predicate Abstraction and Refinement

Theorem Provers

As we described in this chapter, automatic predicate abstraction makes heavy use of
theorem provers for deciding validity of queries over predicates. The first implemen-
tations of predicate abstraction tools used general theorem provers like Simplify [71].
Since validity queries generated by predicate abstraction tools are rather specific,
several specialized theorem provers have been developed, e.g., Zapato [12] and Co-
gent [60]. Recently, Lahiri et al. [126] introduced new approach based on symbolic
decision procedures which are specifically tailored towards predicate abstraction
problems.

74

Chapter 5

Under-Approximation Refinement

‘Contrariwise,’ continued Tweedledee, ‘if it was so, it might be; and if it were so, it
would be; but as it isn’t, it ain’t. That’s logic.’ [47]

In this chapter, we propose a novel technique for exploring state spaces — an
abstraction-based model checking method which relies on refinement of an under-
approximation of the feasible behaviors of the model under analysis. The method
is based on the αSearch algorithm, which was introduced in Chapter 3. As an ab-
straction function we use predicate abstraction. Following Tweedledee, we use logic,
more specifically automated theorem provers, to automatically detect whether the
abstraction is exact. The refinement is guided by the exactness of the abstraction.
We study properties of this new algorithm and discuss some applications.

5.1 Introduction

In the previous chapter we discussed techniques based on the refinement of approx-
imations based on predicate abstraction. Practice shows that the most useful of
these approaches is the counterexample-guided abstraction refinement (CEGAR) of
over-approximations. This approach forms the basis of some of the most popular
software model checkers [15, 52, 104]. However, a strength of model checking is
its ability to automate the detection of subtle errors and to produce traces that
exhibit those errors. Over-approximation based abstraction techniques are not par-
ticularly well suited for this, since the detected defects may be spurious due to
the over-approximation. We propose an alternative approach based on refinement
of under-approximations, which effectively preserves the defect detection ability of
model checking in the presence of aggressive abstractions.

The technique uses a novel combination of (explicit state) model checking, predi-
cate abstraction and automated refinement to efficiently analyze increasing portions
of the feasible behavior of a model. At each step, either an error is found, we
are guaranteed no error exists, or the abstraction is refined. The core of the ap-
proach is the αSearch algorithm from Chapter 3. The technique traverses the
concrete transitions of the model and for each explored concrete state, it stores an
abstract version of the state. The abstract state, computed by predicate abstrac-
tion, is used to determine whether the model checker’s search should continue or
backtrack (if the abstract state has been visited before). This effectively explores

75

Chapter 5. Under-Approximation Refinement

an under-approximation of the feasible behavior of the analyzed model. Hence all
counter-examples to safety properties are preserved.

Refinement uses weakest precondition calculations to check, with the help of a
theorem prover, whether the abstraction introduces any loss of precision with re-
spect to each explored transition. If there is no loss of precision due to abstraction
(we say that the abstraction is exact) the search stops and we conclude that the
property holds. Otherwise, the results from the failed checks are used to refine the
abstraction and the whole verification process is repeated anew. In general, the iter-
ative refinement may not terminate. However, if a finite bisimulation quotient [131]
exists for the model under analysis, then the proposed approach is guaranteed to
eventually explore a finite structure that is bisimilar to the full state space.

Let us illustrate the technique on the example from Figure 4.2 (the running ex-
ample introduced in the previous Chapter); see Figure 5.1. At first, let us consider
the search in which we use the predicates φ1 ≡ x > 0, φ2 ≡ x > 2. The search starts
in the initial state (x = 0) and we store the corresponding abstract state (¬φ1,¬φ2).
Now we compute successors of the initial state: an a-successor is a state (x = 1)
which has a corresponding abstract state (φ1,¬φ2). This is a new abstract state,
therefore we visit the concrete state (x = 1). In this case, an a-successor leads to a
state (x = 2) which has the same corresponding abstract state (φ1,¬φ2). Therefore,
the search does not continue and the state (x = 2) is not further explored. We are,
however, able to detect that this a-transition is not exact — exactness is equivalent
to the validity of a formula x > 0 ∧ ¬x > 2 ⇒ x + 1 > 0 ∧ ¬x + 1 > 2. With
the use of a theorem prover, it can be automatically shown that this is not a valid
formula. Therefore, we need to refine, i.e., add new predicates. If we look at the
failed validity query, we find a reasonable new predicate φ3 ≡ x > 1. If we add this
predicate and run the algorithm again we obtain a structure with four states which
is bisimilar to the full state space. In this case, all transitions are exact and the
refinement algorithm terminates.

The technique can also be used in a lightweight manner, without a theorem prover,
i.e., the refinement guided by the exactness checks is replaced with refinement based
on syntactic substitutions (non-guided refinement) [142] or heuristic refinement. The
proposed technique can be used for systematic testing, as it examines increasing por-
tions of the model under analysis. In fact, our method extends existing approaches
to testing that use abstraction mappings [96, 172], by adding support for automated
abstraction refinement.

To the best of our knowledge, the presented approach is the first predicate abstrac-
tion based analysis which focuses on automated refinement of under-approximations
with the goal of efficient error detection. We illustrate the application of the ap-
proach for checking safety properties in concurrent programs.

Relationship to Main Themes

– Equivalences. Equivalences are, as usual in this thesis, used to formalize cor-
rectness and properties of the studied algorithm. The correctness and behaviour

76

5.2. The New Algorithm

x = 0
¬φ1,¬φ2

b

QQ
a

// x = 1
φ1,¬φ2

a

QQ

cqq

x = 0
¬φ1,¬φ2,¬φ3

b

QQ
a

// x = 1
φ1,¬φ2,¬φ3 a

//
cpp x = 2

φ1,¬φ2, φ3 a
//

c

rr
x = 3

φ1, φ2, φ3

a

QQ

d

tt

Figure 5.1: Illustration of the algorithm on example from Figure 4.2, φ1 ≡ x >
0, φ2 ≡ x > 2, φ3 ≡ x > 1. Exact transitions are full lines, inexact
transitions are dotted lines.

of the algorithm is studied with respect to bisimulation. In comparison to other
approaches we also make use of reachability equivalence (preorder) and simulation.

– Abstractions. Predicate abstraction function is the key ingredient of the new
algorithm. Moreover, a structure computed by the algorithm is compared to
other (predicate) abstractions that we studied in the previous chapter.

– Approximations and refinement. This is the key theme in this chapter — we pro-
pose a new refinement algorithm which computes series of under-approximation.

5.2 The New Algorithm

In this section we introduce the new refinement algorithm and discuss its properties.

5.2.1 The Algorithm

Our algorithm is a refinement algorithm which repeatedly explores under-
approximations of the model. In each iteration we use an algorithm αSearchCheck
(see Figure 5.2). This algorithm is very similar to the algorithm αSearch, which
we discuss in Chapter 3. As an abstraction function we use a predicate abstraction
function given by a set of predicates1 Φ: αΦ : S → Bn, where αΦ(s) is a bitvector
b1b2 . . . bn such that bi = 1 ⇔ s |= φi. Let Φs be a set of all abstraction predicates
that evaluate to true for a given state s, i.e. Φs = {φ ∈ Φ | s |= φ}. If the meaning
is clear from the context, we sometimes write, for succinctness, αΦ(s) (or just α(s))
instead of JαΦ(s), ΦK.

Moreover, the algorithm performs validity checking, using a theorem prover, to
determine whether the abstraction is exact with respect to each explored transition

1Note that here we use an abstraction function which works on states, whereas abstraction func-
tions that we use in the previous chapter work on sets of states.

77

Chapter 5. Under-Approximation Refinement

proc αSearchCheck(M, Φ)
Φnew := Φ; add s0 to Wait ; add αΦ(s0) to States
while Wait 6= ∅ do

remove s from Wait
foreach i from 1 to n do

if s |= gi then
if ¬is valid(αΦ(s) ⇒ gi)

then add gi to Φnew fi
s′ := ui(s)
if ¬is valid(αΦ(s) ⇒ αΦ(s′)[ui(~x)/~x])

then add predicates in αΦ(s′)[ui(~x)/~x] to Φnew fi
if αΦ(s′) 6∈ States then

add s′ to Wait
add αΦ(s′) to States

fi
add (αΦ(s), ai, αΦ(s′)) to Transitions

else
if ¬is valid(αΦ(s) ⇒ ¬gi)

then add gi to Φnew fi
fi

od
od
A := (States,Transitions, αΦ(s0))
return (A, Φnew)

end

Figure 5.2: Search procedure with checking for exact abstraction.

— see discussion below. The set Φnew maintains the list of new abstraction pred-
icates. The procedure returns the computed structure and a set of new predicates
that are used for the refinement.

Figure 5.3 gives the iterative refinement algorithm for checking whether M can
reach an error state described by ϕ. At each iteration of the loop, the algorithm
invokes procedure αSearchCheck to analyze an under-approximation of the model.
The under-approximation either violates the property, it is proved to be correct (if
the abstraction is found to be exact with respect to all transitions), or it needs to
be refined. Counterexamples are generated as usual — with depth-first search order
using the stack or with breadth-first search order using parent pointers (these are
standard algorithms and therefore we do not discuss this issue here).

Checking for Exact Abstraction and Refinement

Let us recall the notion of exact transition. We say that an abstraction function α
is exact with respect to transition s

a−→ s′ iff for all s1 such that α(s) = α(s1) there
exists s′1 such that α(s′1) = α(s′) and s1

a−→ s′1. In other words, α is exact with
respect to s

a−→ s′ iff α(s) a−→must α(s′). This definition is also related to the notion
of completeness in abstract interpretation (see e.g. [87]), which states that no loss
of precision is introduced by the abstraction.

Checking that the abstraction is exact with respect to concrete transition s
ai−→ s′

is equivalent to checking that αΦ(s) ⇒ pre(ai, αΦ(s′)) is valid. This formula is

78

5.2. The New Algorithm

proc RefinementSearch(M, ϕ)
j := 1; Φj := AP
while true do

(Aj , Φj+1) := αSearchCheck(M, Φi)
if ϕ is reachable in Aj then return counterexample fi
if Φj+1 = Φj then return unreachable fi
j := j + 1

od
end

Figure 5.3: Iterative refinement algorithm.

equivalent to αΦ(s) ⇒ αΦ(s′)[ui(~x)/~x] when s |= gi. Checking the validity for these
formulas is in general undecidable. As is customary, if the theorem prover can not
decide the validity of a formula, we assume that it is not valid. This may cause
some unnecessary refinement, but it keeps the correctness of the approach. If the
abstraction can not be proved to be exact with respect to some transition, then
the new predicates from the failed formula are added to the set of new abstraction
predicates. Intuitively, these predicates will be useful for proving exactness in the
next iteration.

5.2.2 Correctness and Termination

Now we state correctness and termination properties of the refinement algorithm.
The presentation is divided into two parts: results and a technical material. The
reader may wish to skip the technical material on the first reading.

Results

Due to Lemma 3.1 from Chapter 3 we know that the αSearchCheck algorithm
gives an under-approximation. We now show that if the iterative algorithm termi-
nates, then the result is correct and moreover, if the error state is unreachable, the
output structure is bisimilar to the model under analysis:

Theorem 5.1 (Correctness of RefinementSearch)
If RefinementSearch(M,ϕ) terminates then:

– if it returns a counterexample, then it is a real error,
– if it returns ‘unreachable’, then an error state is indeed unreachable in JMK and

moreover the computed structure is bisimilar to JMK.
In general, the proposed algorithm might not terminate (the reachability problem

for our modeling language is undecidable). However, the algorithm is guaranteed to
eventually find all the reachable actions of the concrete program, although it might
not be able to detect that (to decide termination). Moreover, if the (reachable part
of the) model under analysis has a finite bisimulation quotient, then the algorithm
eventually produces a finite bisimilar structure.

79

Chapter 5. Under-Approximation Refinement

Theorem 5.2 (Termination properties of RefinementSearch)
Let the αSearchCheck algorithm use the breadth-first search order and let A1,

A2 ... be a sequence of transition systems generated during iterative refinement
performed by RefinementSearch(M, ϕ). Then

– there exits i such that RA(Ai) = RA(JMK) (i.e., RefinementSearch has the
‘semi-completeness of reachability’ property),

– if the reachable part of the bisimulation quotient is finite, then there exists i such
that Ai ∼ JMK (i.e., RefinementSearch has the ‘semi-completeness for models
with the finite reachable bisimulation quotient’ property).

The basic idea of the proof is that any two states that are in different bisimulation
classes (s 6∼ s′) are eventually distinguished by the abstraction function, i.e., there
exists j such that αΦj (s) 6= αΦj (s

′). Moreover, each bisimulation class is eventually
visited by RefinementSearch and the finite set of reachable actions emerge.

Technical Material

Here we provide several technical lemmas and the proofs for the two main theorems.
We use the following notation: a state s is visited during the search if it is inserted
into Wait ; a state s is considered during the search if it is generated as a successor
of some state in the foreach loop; a state s1 is matched to a state s2 if the check
αΦ(s1) 6∈ States fails because αΦ(s1) = αΦ(s2) and s2 was visited before. We say that
transition s

ai−→ s′ is exact if αΦ is exact with respect to it. Note that sometimes we
let αSearchCheck(M, Φ) denote just the structure A computed by the algorithm
and not the tuple (A, Φnew).

Lemma 5.1 If a state s is reachable in JMK via exact transitions with respect to Φ,
then there exists s′ such that s′ is visited during the αSearchCheck(M, Φ) and
αΦ(s) = αΦ(s′).

Proof: By induction with respect to the number of exact transitions from the initial
state. Basic step (k = 0) is trivial. For the induction step, suppose that state s is
reachable via sequence of exact transitions: s0

a0−→ . . .
ak−1−→ sk

ak−→ sk + 1 = s. By
induction hypothesis there exists s′k such that s′k is visited and αΦ(s′k) = αΦ(sk).
Because the abstraction is exact with respect to sk

ak−→ s, there must be s′ such that
s′k

ak−→ s′ and αΦ(s′) = αΦ(s). This successor s′ is considered during the visit of s′k.
There are two cases to be considered:

– s′ is added to Wait and later visited,
– s′ is matched to a previously visited s′′ such that αΦ(s′) = αΦ(s′′).

In both cases we get that some state with the same abstract counterpart as s is
visited during the search. ¤

Lemma 5.2 Let AP ⊆ Φ. If for all reachable states s1, s2 : αΦ(s1) = αΦ(s2) ⇒ s1 ∼
s2, then αSearchCheck(M, Φ) ∼ JMK.

80

5.2. The New Algorithm

Proof: Consider a relation R defined as: s1Rs2 iff s1 = s2 or s1 was matched to s2.
It is easy to verify that R is a bisimulation relation between αSearchCheck(M, Φ)
and JMK. ¤

Lemma 5.3 Let (A,Φnew) = αSearchCheck(M, Φ). If Φnew = Φ, then A ∼ JMK.
Proof: Due to Lemma 5.2 it is sufficient to show that αΦ induces a bisimulation
relation on the reachable part of the transition system. We proceed by contradiction.
Suppose that αΦ does not induce bisimulation on the reachable part of the transition
system JMK. This implies that there exists reachable states s1, s2 such that αΦ(s1) =
αΦ(s2) and there exists s1

ai−→ s′1 such that s2
ai−→ s′2 and α(s′1) 6= α(s′2), i.e. a set

S′ = {s is reachable and s is a source of an inexact transition } is nonempty.
Let us consider a state s ∈ S′ which has the shortest distance from the initial

state from states in S′. This state must be reachable only via exact transitions.
According to Lemma 5.1 some state s′ such that α(s) = α(s′) is visited during the
search. During the visit of the state s′ we check whether the abstraction is exact
for all transition from s′. Since s is a source of inexact transition, s′ is also source
of inexact transition. Therefore, some of the checked implications is not valid and
Φnew is updated and thus Φ 6= Φnew (which is a contradiction). ¤

For the following lemmas we suppose that the αSearchCheck algorithm uses
the breadth-first search order.

Lemma 5.4 Let {Aj}∞j=0 be a sequence of transition systems generated during an
infinite run of RefinementSearch and Inf M = {s | there exists infinitely many j
such that s ∈ Aj}. If s 6∼ s′ and s ∈ Inf M then there exists j such that αΦj (s) 6=
αΦj (s

′).

Proof: We prove the lemma by induction with respect to k where k is the smallest
number such that s 6∼k s′. Basic step (k = 0): trivial. Induction step (k + 1): Let
s1, s

′
1 be such that s

a−→ s1, s
′ a−→ s′1 and s1 6∼k s′1. Since s is visited in infinitely

many iterations of αSearchCheck, s1 is considered in infinitely many iteration of
αSearchCheck and therefore one of the following must hold:

1. State s1 ∈ Inf M . Then we can apply induction hypothesis, i.e. there exits j
such that αΦj (s1) 6= αΦj (s

′
1).

2. State s1 is matched to some state in infinitely many runs of αSearchCheck.
Since we use the breadth-first search order, there are only finitely many states
to which it can be matched (with breadth-first search order the state can be
matched only to states with lower or equal distance from the initial state).
Therefore, there exists a state s2 such that s1 is matched to s2 in infinitely
many runs of αSearchCheck. From induction hypothesis we get that s1 ∼k s2

and hence s2 6∼k s′1. From induction hypothesis we get that there exists m
such that αΦm(s2) 6= αΦm(s′1). Because s1 is matched to s2 infinitely often we
eventually get also αΦj (s1) 6= αΦj (s

′
1) for some j ≥ m.

81

Chapter 5. Under-Approximation Refinement

In both cases we get that there exists j such that αΦj is not exact with re-
spect to s

ai−→ s1, therefore pre(ai, αΦj (s1)) will be included in Φj+1 and therefore
αΦj+1(s1) 6= αΦj+1(s

′
1). ¤

Lemma 5.5 For each reachable bisimulation class B there exists a state s ∈ B such
that s is visited by RefinementSearch.

Proof: By induction with respect to the length of the shortest path by which
state from B is reachable. Base step is obvious. Induction step: let state from B
be reachable via path s0, . . . , sk, sk+1. By induction hypothesis some state s′ ∼ sk

is reached during the search. And with the use of Lemma 5.4 we get that some
s′′ ∼ sk+1 is reached. ¤

Lemma 5.6 Let {Aj}∞j=0 be a sequence of transition systems generated during an
infinite run of RefinementSearch(M, ϕ). There exits j such that RA(Aj) =
RA(JMK).
Proof: For each a ∈ RA(JMK) we choose some bisimulation class B such that
s ∈ B ⇒ ∃s′ : s

a−→ s′. In this way we obtain a finite set of bisimulation classes
{B1, . . . , Bk} which cover all action is RA(JMK) (note that RA(JMK) is finite because
AP is finite). Now we show that there exists an iteration in which at least one state
from each of these classes is visited. This is done similarly to the proof of Lemma 5.5.

¤

Lemma 5.7 Let {Aj}∞j=0 be a sequence of transition systems generated during an
infinite run of RefinementSearch. If the reachable part of bisimulation quotient
is finite, then there exists j such that Aj ∼ JMK.
Proof: By contradiction. Suppose that ∀j : Aj 6∼ JMK. From Lemma 5.2 we get
that there exists reachable s, s′ such that ∀j : αφj (s) = αφj (s

′) and s 6∼ s′. We
show (similarly to the proof of Lemma 5.1) that there exists such s which is visited
infinitely often. From Lemma 5.4 we get that eventually αφj (s) 6= αφj (s

′) which is
the contradiction. ¤
Proof: [of Theorem 5.1] The first claim follows from the fact that αSearchCheck
produces an under-approximation (Lemma 3.1). The second claim follows from
Lemma 5.2. ¤
Proof: [of Theorem 5.2] This theorem is a direct consequence of Lemmas 5.6, 5.7.

¤

5.2.3 Properties of the Algorithm

Having discussed the basic completeness and termination properties, we turn to
other interesting properties of the algorithm.

82

5.2. The New Algorithm

A (a, x ≥ 0 7−→ x := x− 1)

B

(a, pc = 0 7−→ pc := 1, x := 1)
(b, pc = 0 7−→ pc := 1, x := 2)
(c, pc = 1 7−→ pc := 2, x := x + 1)
(d, pc = 2 ∧ x ≥ 3 7−→ pc := 3)
(e, pc = 2 ∧ x < 3 7−→ pc := 3)

Figure 5.4: Examples showing incomparability of under-approximations based on
αSearchCheck and Amust

+− .

Relation to Other Abstractions

The αSearchCheck produces structure which is incomparable to JMK and other
approximations with respect to simulation. But it is comparable with respect to
reachability:

Lemma 5.8 RA(Amust(2{0,1}n
, JMK)) ⊆ RA(αSearchCheck(M, Φ)) ⊆ RA(JMK)

Proof: This is a direct consequence of Lemmas 3.1 and 5.1. ¤
Under-approximations based on Amust

+− and on αSearchCheck are incomparable.
A trivial example in Figure 5.4 A illustrates that αSearchCheck can be more
precise. If we consider abstraction with respect to a single predicate x ≥ 0 we see
that there is neither must+ nor must− transition and therefore the RA set is empty
for Amust

+− . The αSearchCheck finds a1 to be reachable.
On the other hand, consider an example in Figure 5.4 B and abstraction with

respect to a single predicate x ≥ 3. Due to the state matching on (pc = 1, x = 1) and
(pc = 1, x = 2) the αSearchCheck computes structure with the set of reachable
actions either {a, b, c, d} or {a, b, d, e} depending on the exact search order — whether
a or b is traversed first from the initial state. But RA(Amust

+− ({x ≥ 3}, JMK)) contains
all five transitions.

Figure 4.5 shows the relation of structure produced by αSearchCheck with
respect to other predicate abstractions.

Search Order and Non-Monotonicity

The search order used in αSearchCheck (depth-first or breadth-first) influences
the size of the generated structure, the newly computed predicates, and even the
number of iterations of the main algorithm. If there are two states s1 and s2 such
that αΦ(s1) = αΦ(s2) but s1 6∼ s2 then, depending on whether s1 or s2 is visited
first, different parts of the transition system will be explored.

Also note that the refinement algorithm is non-monotone, i.e., a state which is
reachable in one iteration may not be reachable in the next iteration. A similar
problem occurs in the context of must abstractions: the set of must transitions is
not generally monotonically non-decreasing when predicates are added to refine an

83

Chapter 5. Under-Approximation Refinement

(a, pc = 0 7−→ pc := 1, x := 1)
(b, pc = 0 7−→ pc := 2)
(c, pc = 1 7−→ pc := 2)
(d, pc = 2 7−→ pc := 3)
(e, pc = 2 7−→ pc := 1, x := x + 2)
(f, pc = 3 7−→ pc := 4, x := x + 4)
(g, pc = 4 7−→ pc := 5)

pc = 3
x = 1

f // pc = 4
x = 5

g // pc = 5
x = 5

pc = 1
x = 1

c // pc = 2
x = 1

e //

d

<<yyyyyyyy
pc = 4
x = 3

g // pc = 5
x = 3

pc = 0
x = 0

a

<<yyyyyyyy
b // pc = 2

x = 0
e //

d

""EE
EE

EE
EE

pc = 4
x = 2

g // pc = 5
x = 2

pc = 3
x = 0

f // pc = 4
x = 4

g // pc = 5
x = 4

Figure 5.5: Example of a model on which the refinement can be non-monotone.

abstract system [92, 163]. However, we should note that the algorithm is guaranteed
to converge to the correct answer.

The example in Figure 5.5 illustrates that the behaviour of the search is not
necessary monotone in subsequent iterations. Let’s consider the first iteration with
predicate x ≥ 3 and with breadth-first search order: then we visit states (pc =
0, x = 0), (pc = 1, x = 1), (pc = 2, x = 0), (pc = 4, x = 2), (pc = 3, x = 0), (pc =
5, x = 2), (pc = 4, x = 4), (pc = 5, x = 4). If we add a predicate x = 1 then we visit
states (pc = 0, x = 0), (pc = 1, x = 1), (pc = 2, x = 0), (pc = 2, x = 1), (pc = 4, x =
2), (pc = 3, x = 0), (pc = 3, x = 1), (pc = 4, x = 3), (pc = 5, x = 2), (pc = 4, x =
5), (pc = 5, x = 3), (pc = 5, x = 5). The state (pc = 5, x = 2) is visited during the
first iteration and is not visited during the second one.

Non-termination for Finite State System

We should also note that the proposed iterative algorithm is not guaranteed to
terminate even for a finite state program. This situation is illustrated by the example
in Figure 4.8. Although the program is finite state (and therefore the problem can
be easily solved with classical explicit model checking), it is quite difficult to solve
using abstraction refinement techniques. The iterative algorithm does not terminate
on this example: it keeps adding predicates y ≥ 0, y + x ≥ 0, y + 2x ≥ 0, Note
that, in accordance with Theorem 5.2, it eventually produces a bisimilar structure.

84

5.3. Extensions

However, the algorithm is not able to detect termination, and it keeps refining
indefinitely. The reason is that the algorithm keeps adding predicates that refine
the unreachable part of the model under analysis. Also note that the same problem
occurs with over-approximation based abstraction techniques that use refinement
based on weakest precondition calculations [52, 142]. Those techniques introduce
the same predicates.

5.3 Extensions

In this section we propose several extensions of the algorithm.

5.3.1 Heuristics for Termination

We briefly discuss two heuristics for termination of the refinement algorithm.

Termination for Finite State Systems

To solve the problem of non-termination for finite state systems, we propose to use
the following heuristic. If there is a transition for which we cannot prove that the
abstraction is exact in several subsequent iterations of the algorithm, then we add
predicates describing the concrete state; i.e., in the example from Figure 4.8 we
would add predicates x = 0; y = 0. The abstraction eventually becomes exact with
respect to each transition. And since the number of reachable transitions is finite,
the algorithm must terminate.

Corollary 5.1 If JMK is finite state then the modified algorithm terminates.

Locally Stable Output

We discuss termination heuristic based on detecting ‘local stability’ of the refinement
algorithm, i.e., that Aj ∼ Aj+1. This heuristic is not correct. However, it is quite
a natural heuristics and our experience suggest that many people tend to suggest it
when they see the algorithm for the first time. Therefore, we find it useful to discuss
and clarify it.

If the finite bisimulation quotient exists, then, due to Lemma 5.7, there exists n
such that for each j: An ∼ An+j ∼ JMK. As we see from our examples, it may,
however, happen that we do not recognize this situation and keep on refining forever.
Now the question is: if we detect a ‘locally stable output’ of the αSearchCheck
algorithm, i.e., if Aj ∼ Aj+1 or even Aj = Aj+1 (or even Aj = Aj+k for several k),
can we conclude anything about Aj (with respect to JMK)?

The answer is, unfortunately, “no”. This follows directly from undecidability of
the reachability problem, but we prefer to illustrate it on a specific simple example
(k is a parameter of the example):

85

Chapter 5. Under-Approximation Refinement

(a, pc = 0 ∧ x < k 7−→ x := x + 1)
(b, pc = 0 ∧ x = k 7−→ pc := 1)

For first k−1 iterations of the refinement algorithm, the output Aj is a single state
with a a-transition self-loop. The algorithm needs k iterations to find the bisimilar
system and terminate. Hence we see that no bound on ’local stability’ is sufficient
to guarantee the correctness of the output.

However, we can get use this approach to report ‘conditional correctness’. In the
case of locally stable output, we can report to the user a list of transition which the
algorithm cannot prove to be exact, i.e., the correctness is conditioned by exactness
of these transitions (in the reachable part of the state space).

5.3.2 Open Systems

Until now, we have discussed our approach in the context of “closed” systems. How-
ever, the approach can be extended to handling “open” systems (i.e. programs with
inputs). In order to model open systems, we extend the guarded commands lan-
guage by allowing assignments of the form x := input , which assigns to program
variable x an arbitrary value from the input domain (in our case the set of integers).
We can also allow the initial values of the program variables to be unspecified, in
which case the transition system representing the open program has several (possibly
unbounded) initial states.

In order to apply our approach, we need to compute, for each input variable,
explicit concrete values that drive the concrete execution of the program. What
we really want here is to pick one input value for each satisfiable valuation of the
abstraction predicates. We can directly use the original algorithm — it will simply
try all the possible values and continue the program execution only from values that
satisfy the predicate combinations (most of the states that contain such input values
will be matched if they lead to the same valuation of abstraction predicates). This
“brute force” approach requires enumerating eventually the whole input domain,
which is impossible for infinite input domains. Note however that the approach
might still be very useful at detecting errors.

Alternatively, we can use a constraint solver for computing the input values that
are solutions of the satisfiable combinations of abstraction predicates (provided that
satisfiability is decidable for the abstraction predicates). The decision whether to
use the “brute force” approach or the satisfiability approach depends on the number
of abstraction predicates and the size of the input domain. With the brute force
approach, the the whole input domain needs to be enumerated eventually. With the
satisfiability approach, there are at most 2k satisfiability queries (where k is number
of predicates which depend on the input variable).

Example 5.1 Let us consider the following simple program with input variables x, y.

86

5.3. Extensions

(a, pc = 0 ∧ x < y 7−→ pc := 1, z := x + y)
(b, pc = 0 ∧ x ≥ y 7−→ pc := 1, z := x · y)
(c, pc = 1 7−→ pc := 2, max := x)
(d, pc = 2 ∧max < y 7−→ pc := 3, max := y)
(e, pc = 3 ∧max < z 7−→ pc := 4, max := z)

At the beginning the only predicate on input values is x < y, so in first iteration we
use two tuples of input values: one which satisfies the predicate (e.g., x = 0, y =
1) and one which does not satisfy the predicate (e.g., x = 0, y = 0). Using the
refinement algorithm we keep on adding new predicates (in this case x < x · y, x <
x+y, y < x+y, y < x ·y) and new input tuples such that each satisfiable combination
of predicates is covered.

5.3.3 Transition Dependent Predicates

The predicates that are generated after the validity check for one transition are
used ‘globally’ at the next iteration. This may cause unnecessary refinement — the
new predicates may distinguish states which do not need to be distinguished. To
avoid this, we could use ‘transition dependent’ predicates. The idea is to associate
the abstraction predicates with the program counter corresponding to the transition
that generated them. New predicates are then added only to the set of the respective
program counter. However, with this approach, it may take longer before predicates
are ‘propagated’ to all the locations where they are needed, i.e., more iterations
are needed before an error is detected or an exact abstraction is found. We need
to further investigate these issues. Similar ideas are presented in [53, 103], in the
context of over-approximation based predicate abstraction.

5.3.4 Light-weight Approach

As mentioned, the under-approximation and refinement approach can be used in
a lightweight but systematic manner, without using a theorem prover for validity
checking. This corresponds to the non-guided refinement that we discuss in the
previous chapter.

We are also considering several heuristics for generating new abstraction predi-
cates. For example, it is customary to add the predicates that appear in the guards
and in the property to be checked. One could also add predicates generated dy-
namically, using tools like Daikon [78], or predicates from known invariants of the
system (generated using static analysis techniques).

In order to extend the applicability of the proposed technique to the analysis of
full-fledged programming languages, we are investigating abstractions that record
information about the shape of the program heap, to be used in conjunction with
the abstraction predicates. We have reported about these experiments in [147, 148].

87

Chapter 5. Under-Approximation Refinement

5.4 Implementation and Applications

This section is concerned with our practical experiences with the proposed algorithm.
We describe an implementation, examples to which the implementation was applied,
and results of experiments.

5.4.1 Implementation

We have implemented our approach for the guarded command language. Our im-
plementation is done in the Ocaml2 language and it uses the Simplify theorem
prover [71]. The implementation has just 590 lines of code (parsing + definition of
semantics: 390 lines, αSearchCheck algorithm: 170 lines, RefinementSearch
algorithm: 30 lines).

It turns out that the main practical bottleneck of the algorithm are calls to the
theorem prover. Therefore, we have implemented several optimizations for reducing
the number of theorem prover calls:

– When updating Φnew for refinement, we add only those conjuncts of
αΦ(s′)[ui(~x)/~x] for which we cannot prove validity.

– We cache queries to ensure that the theorem prover is not called twice for the
same query.

– All queries have the form of implication. Before calling the theorem prover for the
implication, we check whether the right hand side is a tautology (in such case the
implication is clearly satisfied). Results of these checks are also cached.

These optimizations reduce significantly the number of theorem prover calls and
they are sufficient for the sake of application of the algorithm on small guarded
command language examples. For the application to real programming languages
it would be necessary to further improve these optimizations (note that significant
amount of optimizations is also used in tools based on over-approximation refine-
ment).

5.4.2 Examples

We discuss the application of our implementation for several concurrent programs.
These preliminary experiments show merits of our approach. Of course, much more
experimentation is necessary to really assess the practical benefits of the proposed
technique and a lot more engineering is required to apply it to real programming
languages.

Note that in the described experiments, we always start the first iteration of the
refinement algorithm with predicates which occur in guards (particularly, we never
abstract the program counter). All the reported results are for the breadth-first
search order. We report the following results for each iteration of the refinement
algorithm: the number of generated concrete states, the number of stored abstract

2http://caml.inria.fr/

88

5.4. Implementation and Applications

pc = 0 7−→ pc := 1, packetsOld := packets
pc = 1 ∧ locked = 0 7−→ pc := 2, locked := 1
pc = 1 ∧ locked = 1 7−→ pc := 10
pc = 2 7−→ pc := 3
pc = 2 7−→ pc := 4
pc = 3 ∧ locked = 1 7−→ pc := 4, locked := 0, packets := packets + 1
pc = 3 ∧ locked = 0 7−→ pc := 10
pc = 4 ∧ packets 6= packetsOld 7−→ pc := 0
pc = 4 ∧ packets = packetsOld 7−→ pc := 5
pc = 5 ∧ locked = 1 7−→ pc := 6, locked := 0
pc = 5 ∧ locked = 0 7−→ pc := 10

Figure 5.6: The device driver example.

states, the number of queries to the theorem prover, the number of hits to a queries
cache, and newly generated predicates.

The Device Driver Example

The first example that we discuss is the “classic” predicate abstraction example of
a device driver program (this example was used for the first time in [17], where the
code of the program is given). Figure 5.6 gives the skeleton of the example in the
guarded command language. The property of interest is the correct use of a lock
— in the model it is expressed as non-reachability of a predicate pc = 10. In this
case the first iteration (using just predicates from guards) is sufficient to prove the
property: the search finds 10 concrete states, 9 abstract states and casts 3 queries
to the theorem prover.

The Ticket Protocol

The next example is a ticket protocol for mutual exclusion [8] (we use the formal-
ization of the algorithm given in [44]). The algorithm is based on simple “ticket”
procedure: a process which wants to enter a critical section draws a number which
is one larger than the number held by any other process. The process then waits
until all processes with smaller numbers are served: this is checked by a “display”
variable which shows the value of the currently smallest ticket number. The model
of the protocol is given in Figure 5.7. The property of interest is a mutual exclusion
in the critical section (¬(pc1 = 2∧ pc2 = 2∨ pc2 = 2∧ pc3 = 2∨ pc1 = 2∧ pc3 = 2)).
The state space is infinite state (the ticket numbers increase without any bound),
but it has a finite bisimulation quotient.

The property can be proved by the tool. Intermediate results for the protocol
with 3 processes are given in Table 5.1. Final results (results of the last iteration)
with respect to number of processes are given in Table 5.2.

89

Chapter 5. Under-Approximation Refinement

pc1 = 0 7−→ pc1 := 1, a1 := t, t := t + 1
pc1 = 1 ∧ a1 ≤ s 7−→ pc1 := 2
pc1 = 2 7−→ pc1 := 0, s := s + 1

pc2 = 0 7−→ pc2 := 1, a2 := t, t := t + 1
pc2 = 1 ∧ a2 ≤ s 7−→ pc2 := 2
pc2 = 2 7−→ pc2 := 0, s := s + 1

pc3 = 0 7−→ pc3 := 1, a3 := t, t := t + 1
pc3 = 1 ∧ a3 ≤ s 7−→ pc3 := 2
pc3 = 2 7−→ pc3 := 0, s := s + 1

Figure 5.7: The ticket protocol (an instance for three processes).

Iteration Concrete Abstract TP Cache New predicates
states states queries hits

1 52 25 14 18 a1 ≤ s + 1, a2 ≤ s + 1, a3 ≤ s + 1,
t ≤ s

2 58 31 70 152 a1 ≤ s + 2, a2 ≤ s + 2, a3 ≤ s + 2,
t ≤ s + 1, t + 1 ≤ s

3 58 31 151 475 t ≤ s + 2
4 58 31 173 585 t ≤ s + 3
5 58 31 195 657 -

Table 5.1: The ticket protocol for three processes: intermediate results.

n Num. of Concr. Abs. TP Cache Predicates
iterations states states queries hits

2 4 15 9 49 87 6
3 5 49 26 167 481 14
4 6 253 129 1057 4239 22
5 7 1296 651 7269 29011 32

Table 5.2: The ticket protocol: final results with respect to number of processes.

90

5.4. Implementation and Applications

The Bakery Protocol

As a next protocol we consider the well-known bakery protocol for mutual exclusion.
The protocol is based on similar idea as the ticket protocol (the ticket protocol
requires special hardware instruction like Fetch-and-Add, whereas bakery protocol
is applicable without any special instructions). Figure 5.8 gives the model of the
protocol. The property of interest is again mutual exclusion. The state space is
again infinite with a finite bisimulation quotient.

The property can be proved by the algorithm, intermediate results are given in
Table 5.3.

RAX

The RAX example (illustrated in Figure 5.9) is derived from the software used within
the NASA Deep Space 1 Remote Agent experiment, which deadlocked during flight
[170]. We encoded the deadlock check as “pc1 = 4 ∧ pc2 = 5 ∧ w1 = 1 ∧ w2 = 1 is
unreachable”. The error is found after one iteration; the reported counterexample
has 8 steps.

Note that the state space of the program is unbounded, as the program keeps
incrementing the counters e1 and e2, when pc2 = 2 and pc1 = 6, respectively. We also
ran our algorithm to see if it converges to a finite bisimulation quotient. Interestingly,
the algorithm does not terminate for the RAX example, although it has a finite
reachable bisimulation quotient. The results are shown in Table 5.4. However, if
we declare the counters in the program as non-negative, i.e., we introduce two new
predicates, e1 ≥ 0, e2 ≥ 0, then the algorithm terminates after three iterations.

The application of over-approximation based predicate abstraction to a Java ver-
sion of RAX is described in detail in [170]. In that work, four different predicates
were used to produce an abstract model that is bisimilar to the original program.
In contrast, the work presented here allowed more aggressive abstraction to recover
feasible counterexamples.

The Sorter Example

Finally, we consider our Sorter example (we use the source code given in the
Appendix). The state space in this case is also infinite (the variable request
can grow indefinitely) with a finite bisimulation quotient. All variables except
x, t1, t2, requests, timer are kept concrete. For listed variables we use predicates
from guards: timer > 3, timer < 7, timer > 8, timer < 8, requests > 0, requests =
0, t1 < 4, t1 = 4, x ≤ 2, x > 2, t2 > 0, t2 = 0.

5.4.3 Discussion

We see that the approach works for non-trivial infinite state systems. The ap-
proach proves to be effective in computing finite bisimilar structures of non-trivial

91

Chapter 5. Under-Approximation Refinement

pc0 = 0 7−→ pc0 := 1, choosing0 := 1, j0 := 0,max0 := 0
pc0 = 1 ∧ j0 = 0 7−→ j0 := j0 + 1
pc0 = 1 ∧ j0 = 1 ∧max0 < num1 7−→ max0 := num1, j0 := j0 + 1
pc0 = 1 ∧ j0 = 1 ∧ ¬max0 < num1 7−→ j0 := j0 + 1
pc0 = 1 ∧ j0 = 2 7−→ pc0 := 3,num0 := max0 + 1, j0 := 0,

choosing0 := 0
pc0 = 3 ∧ j0 = 0 ∧ choosing0 = 0 7−→ pc0 := 4
pc0 = 3 ∧ j0 = 1 ∧ choosing0 = 0 7−→ pc0 := 4
pc0 = 4 ∧ j0 = 0 7−→ pc0 := 3, j0 := j0 + 1
pc0 = 4 ∧ j0 = 1∧
(num1 = 0 ∨ num1 < num0) 7−→ pc0 := 3, j0 := j0 + 1
pc0 = 3 ∧ j0 = 2 7−→ pc0 := 5
pc0 = 5 7−→ pc0 := 0,num0 := 0
pc1 = 0 7−→ pc1 := 1, choosing1 := 1, j1 := 0,max1 := 0
pc1 = 1 ∧ j1 = 0 ∧max1 < num0 7−→ max1 := num0, j1 := j1 + 1
pc1 = 1 ∧ j1 = 0 ∧ ¬max1 < num0 7−→ j1 := j1 + 1
pc1 = 1 ∧ j1 = 1 7−→ j1 := j1 + 1
pc1 = 1 ∧ j1 = 2 7−→ pc1 := 3,num1 := max1 + 1, j1 := 0,

choosing1 := 0
pc1 = 3 ∧ j1 = 0 ∧ choosing1 = 0 7−→ pc1 := 4
pc1 = 3 ∧ j1 = 1 ∧ choosing1 = 0 7−→ pc1 := 4
pc1 = 4 ∧ j1 = 0∧
(num0 = 0 ∨ num0 ≤ num1) 7−→ pc1 := 3, j1 := j1 + 1
pc1 = 4 ∧ j1 = 1 7−→ pc1 := 3, j1 := j1 + 1
pc1 = 3 ∧ j1 = 2 7−→ pc1 := 5
pc1 = 5 7−→ pc1 := 0,num1 := 0

Figure 5.8: The bakery example for two processes.

Iteration Concrete states Abstract states TP queries Cache hits

1 429 223 90 277
New predicates: 0 < num0,num0 < 0,num1 < 0, 0 < num1,max0 < 0,max1 < 0,

max0 + 1 = num1,max0 + 1 < num1,max0 + 1 = 0,num0 = max1 + 1,
max1 + 1 < num0,max1 + 1 = 0,max0 < max1 + 1,max1 < max0 + 1

2 565 291 620 2023
New predicates: max1 < num1 + 1,num1 < max1 + 1,num0 < max0 + 1,max0 < num0 + 1,

1 < num1, 1 = num1, 1 < num0,num0 = 1,max0 < 1,max1 < 1

3 791 410 1271 4412
New predicates: -

Table 5.3: The bakery protocol: intermediate results.

Iter. Concr. Abs. TP Cache New predicates
states states queries hits

1 69 44 10 10 e1 = 0, e2 = 0
2 101 65 20 44 e1 = −1, e2 = −1
3 101 65 26 64 e1 = −2, e2 = −2
4 101 65 32 84 . . .

Table 5.4: The RAX example: intermediate results.

92

5.4. Implementation and Applications

pc1 = 1 7−→ c1 := 0, pc1 := 2
pc1 = 2 ∧ c1 = e1 7−→ pc1 := 3
pc1 = 3 7−→ w1 := 1, pc1 := 4
pc1 = 4 ∧ w1 = 0 7−→ pc1 := 5
pc1 = 2 ∧ ¬(c1 = e1) 7−→ pc1 := 5
pc1 = 5 7−→ c1 := e1, pc1 := 6
pc1 = 6 7−→ e2 := e2 + 1,w2 := 0, pc1 := 2

pc2 = 1 7−→ c2 := 0, pc2 := 2
pc2 = 2 7−→ e1 := e1 + 1,w1 := 0, pc2 := 3
pc2 = 3 ∧ c2 = e2 7−→ pc2 := 4
pc2 = 4 7−→ w2 := 1, pc2 := 5
pc2 = 5 ∧ w2 = 0 7−→ pc2 := 6
pc2 = 3 ∧ not(c2 = e2) 7−→ pc2 := 6
pc2 = 6 7−→ c2 := e2, pc2 := 2

Figure 5.9: The RAX example.

Iteration Concrete states Abstract states TP queries Cache hits

1 2025 1682 380 446
New predicates: timer > 6, timer > 2, timer = 7, timer < 7,

x > 1, x <= 1, t2 = 1, t2 > 1

2 4805 2495 1613 3114
New predicates: timer > 5, timer < 6, timer = 6, timer > 1,

t1 = 3, t1 < 3, x ≤ 0, x > 0

4 6334 4799 4130 11567
New predicates: t1 = 1, t1 < 1, timer > −1

5 6334 4799 4472 13029
New predicates: t1 = 0, t1 < 0

6 6334 4799 4593 13657
New predicates: -

Table 5.5: The Sorter: intermediate results.

93

Chapter 5. Under-Approximation Refinement

infinite-state systems and in finding errors using under-approximation based predi-
cate abstraction.

The main limiting factor is the number of theorem prover calls. We believe that
this is not such an issue as it may seem from our results:

– In our examples, we work with manually constructed models. These models,
naturally, contain only relevant variables. In applications to real programming
languages we can expect much larger portion of variables which can be abstracted
away.

– The number of theorem prover calls can be significantly reduced by optimizations.
Even the simple optimizations that we implemented reduced the number of queries
by order of magnitude.

In general, we believe that the technique presented here is complementary to over-
approximation abstraction techniques and it can be used in conjunction with such
techniques, as an efficient way of discovering feasible counterexamples. We view the
integration of the two approaches as an interesting topic for future research. Our
technique explores transitions that are guaranteed to be feasible in the state space
bounded by the abstraction predicates. In contrast, the over-approximation based
techniques may also explore transitions that are spurious and therefore could require
additional refinement before reporting a real counterexample. Hence, our technique
can potentially finish in fewer iterations and it can use fewer predicates (which enable
more state space reduction), while retaining the model checker’s capability of finding
real errors.

5.5 Related Work

The most closely related work to ours is the work of Grumberg et al. [98] where a
refinement of an under-approximation is used to improve analysis of multi-process
systems. The procedure in [98] checks models with an increasing set of allowed
interleavings of the given processes, starting from a single interleaving. It uses SAT-
based bounded model checking for analysis and refinement, whereas here we focus on
explicit model checking and predicate abstraction, and we use weakest precondition
calculations for abstraction refinement.

Another closely related work is that of Lee and Yannakakis [131], which proposes
an on-the-fly algorithm for computing the bisimulation quotient of an (infinite state)
transition system. Similar to our approach, the algorithm from [131] traverses con-
crete transitions while computing blocks of equivalent states; if some transition is
found to be unstable the block is split into sub-blocks . There are some important
differences between our approach and the work presented in [131]. We use refinement
globally while the block splitting in [131] is local. This makes the approach in [131]
more efficient in the number of visited states, but less efficient in the treatment of
states/blocks and more difficult to realize — the work [131] provides realization only

94

5.5. Related Work

for restricted systems of affine transition systems. As a consequence of this global re-
finement, our algorithm may not compute the bisimulation quotient (as in [131]) but
rather just a bisimilar structure (due to extra refinement). Moreover, unlike [131],
our algorithm is formulated in terms of predicate abstraction and it provides a clear
separation between state exploration and refinement. As a result, we have a simple
algorithm that we believe it is easy to understand and implement and it allows for
combination with other abstraction approaches (e.g. over-approximation techniques
based on predicate abstraction).

Our approach can be contrasted with the work on predicate abstraction for modal
transition systems [92, 163], used in the verification and refutation of branching time
temporal logic properties. An abstract model for such logics distinguishes between
may transitions, which over-approximate transitions of the concrete model, and
must transitions, which under-approximate the concrete transitions (see also [11,
65, 69]). The technique presented here explores and generates a structure which
is more precise (contains more feasible behaviors) than the model defined by the
must transitions, for the same abstraction predicates. The reason is that the model
checker explores transitions that correspond not only to must transitions, but also
to may transitions that are feasible.

Moreover, unlike [92, 163] and over-approximation based abstraction techniques
[15, 52], the under-approximation and refinement approach does not require the a
priori construction of the abstract transition relation, which involves exponentially
many theorem prover calls (in the number of predicates), regardless of the size
of (the reachable portion of) the analyzed system. In our case, the model checker
executes concrete transitions and a theorem prover is only used during refinement, to
determine whether the abstraction is exact with respect to each executed transition.
Every such calculation makes at most two theorem prover calls, and it involves
only the reachable state space of the system under analysis. Another difference
with previous abstraction techniques is that the refinement process is not guided by
the spurious counterexamples, since no spurious behavior is explored. Instead, the
refinement is guided by the failed exactness checks for the explored transitions.

Păsăreanu et al. [159] developed a technique for finding guaranteed feasible coun-
terexamples in abstracted programs. The technique essentially explores an under-
approximation defined by the must abstract transitions (although the presentation
is not formalized in these terms). The work presented here explores an under-
approximation which is more precise than the abstract system defined by the must
transitions. Hence it has a better chance of finding errors while enabling more
aggressive abstraction and therefore more state space reduction.

Holzmann and Joshi [114] advocates the use of abstraction mappings during con-
crete model checking in a way similar to what we present here (they called the
approach “model-driven software verification”). In their approach, the abstraction
function needs to be provided by the user. The CMC model checking tool [141]
also attempts to store state information in memory using aggressive compressing
techniques (which can be seen as a form of abstraction), while the detailed state in-
formation is kept on the stack. These techniques allow the detection of subtle errors

95

Chapter 5. Under-Approximation Refinement

which can not be discovered by classical model checking, using e.g., breadth-first
search or by state-less model checking [90]. While these techniques use abstractions
in an ad-hoc manner, our work contributes the automated generation and refinement
of abstractions.

96

Chapter 6

Sampled Semantics of Timed Systems

He looked up at his clock, which had stopped at five minutes to eleven some weeks
ago. “Nearly eleven o’clock,” said Pooh happily. “You’re just in time for a little
smackerel of something.” [139]

Now we turn to the study of timed systems, i.e., systems with clocks (and also
stopped clocks). In this chapter we study some theoretical aspects of timed systems.
In the next chapter we turn our attention to a practical verification problem.

Timed systems can be considered with two types of semantics — dense time se-
mantics and discrete time semantics. The most typical examples are real semantics
and sampled semantics (i.e., discrete semantics with a fixed time step ε). We inves-
tigate the relations between real semantics and sampled semantics with respect to
different behavioral equivalences. We also overview different non-emptiness prob-
lems for timed systems and we fill two missing results: non-emptiness of stopwatch
automata with fixed sampling period and ω-language non-emptiness of timed au-
tomata with an unknown sampling period. Decidability of the latter problem is our
main technical contribution (this problem was previously wrongly classified as unde-
cidable). For the proof we employ a novel characterization of reachability relations
between configurations of a timed automaton.

6.1 Introduction

Let us review the Sorter example. In previous chapters we discussed techniques
suitable for dealing with software aspects of the system. The Sorter example, how-
ever, has also real time aspects which are important for a correct functionality of
the system.

Our modeling of the system in Chapter 2 illustrates two possible approaches to
dealing with real time aspects. The guarded command language model uses dis-
cretization — time is sampled, all events occur in discrete time intervals. The timed
automata model uses dense time — events can occur in any moment. In this chapter
we study some questions about these two approaches to time.

The semantics of models of timed systems can be defined over various time do-
mains. The usual approach is to use dense time semantics, particularly real time
semantics (time domain is R+

0). From many points of view, this semantics is very

97

Chapter 6. Sampled Semantics of Timed Systems

plausible. One does not need to care about the granularity of time during the mod-
eling phase. This semantics leads to an uncountable structure with a finite quotient
(for timed automata) and thus it is amenable to verification with finite state meth-
ods. Moreover, theoretical and often also practical complexity of problems for dense
time semantics is usually the same as for various discrete semantics.

Discrete semantics, particularly sampled semantics with fixed time step ε ∈ Q+
>0

(time domain is {k · ε | k ∈ Z+
0 }), is also often considered, e.g., in [39, 38, 27]. One

of the advantages of the sampled time domain is a wider choice of representations
for sets of clock valuations, e.g., explicit representation or symbolic representation
using decision diagrams. Another important issue is implementability. If a system is
realized on a hardware then there is always some granularity of time (e.g., clock cycle,
sampling period). Therefore, sampled semantics is closer to the implementation then
more abstract dense time semantics.

Dense time semantics can even lead to misleading verification results. Assume
that we have a model of a timed system such that it satisfies some property in dense
time semantics. Now the question is whether there is an implementation (realized on
a discrete time hardware) such that it preserves this property. Dense time semantics
allows behaviors which are not realizable in any real system. If satisfaction of the
property depends on these behaviors then there might not be an implementation
satisfying the property (we discuss such examples in this chapter).

Previous chapter suggests another motivation for sampled semantics — under-
approximation refinement. For real-time systems, sampled semantics gives a natural
under-approximation. This under-approximation can be moreover easily refined by
decreasing ε.

The sampled semantics, on the other hand, brings the problem of determining a
fixed sampling period. Therefore, we also consider non-emptiness problems with an
unknown sampling period — for these problems the goal is to decide whether there
exists some sampling period ε such that the language with respect to ε is non-empty.

Verification problems can be stated as (ω-)language non-emptiness problems.
Non-emptiness problems are the main focus of this chapter. Our main result con-
cerns ω-language non-emptiness problem with an unknown period, i.e., the problem
of deciding whether there exists ε such that Lε

ω(A) 6= ∅. We show that this problem
is decidable for timed automata. This problem was previously wrongly classified as
undecidable [5]. The same problem was studied in the control setting with a slightly
different sampled behavior in [48]. In their setting, the automaton is a model of a
controller with the periodic control loop which always gets a sampled data and per-
forms a control action. Therefore, the automaton has to perform an action at every
sampled time point. This is a difference from our definition of sampled semantics –
the automaton can idle for several sampling periods. The fact that the automaton
has to react at every sampled time point makes the problem undecidable even for
(finite word) language non-emptiness.

Our proof uses a novel characterization of reachability relations in timed automata.
Representations of reachability relations were studied before: using additive theory
of real numbers [59] and 2n-automata [73]. Our novel representation is based on sim-

98

6.2. Region Graph

ple linear (in)equalities (comparisons of clock differences). This representation is of
independent interest, since it is simpler and more specific then previously considered
characterizations and it gives a better insight into reachability relations.

We also study non-emptiness problems for stopwatch automata. Particularly,
we provide a new undecidability proof for the non-emptiness problem in sampled
semantics for stopwatch automata with diagonal constraints and one stopwatch.

Finally, we systematically study relations between dense time semantics and sam-
pled semantics for different timed systems. We study these relations in terms of
behavioral equivalences, as it is well known which verification results are preserved
by which equivalence (see Chapter 2). All considered equivalences are “untimed”
— the only important information for an equivalence are actions performed and not
precise timepoints at which these actions are taken.

Relationship to Main Themes

– Equivalences. We study equivalences between different semantics of
timed/stopwatch automata. These results provide insight into the applicability
of discrete methods to real time verification. They are also used in the study of
non-emptiness problems.

– Abstractions. We do not explicitly talk about abstraction in this chapter. Anyway,
sampled semantics may be seen as a must abstraction of the dense semantics — it
would be sufficient to use an abstraction function which maps each dense valuation
into its nearest “sampled point”.

– Approximation and refinement. We do not explicitly consider refinement algo-
rithms here, but approximation and refinement serve as a motivation. The under-
approximation refinement algorithm could be naturally applied to unknown period
non-emptiness problems. But in this way we would not be able to obtain decid-
ability results.

6.2 Region Graph

Before we discuss our results, we introduce a classical timed automata technique
— a region graph construction (this construction is used in several of our proofs).
Although we use a slightly nonstandard definition of a region graph, the reader who
is familiar with time automata may wish to skip this section on the first reading.

For any δ ∈ R, int(δ) denotes the integral part of δ and fr(δ) denotes the fractional
part of δ. Let k be an integer constant. We define the following relations on the
valuations. The equivalence ∼=k is a standard region equivalence (its equivalence
classes are regions), the equivalence ∼k is an auxiliary relation which allows us to
forget about the clocks whose values are above k.

– ν ∼=k ν ′ iff all the following conditions hold:
– for all x ∈ C : int(ν(x)) = int(ν ′(x)) or ν(x) > k ∧ ν ′(x) > k,

99

Chapter 6. Sampled Semantics of Timed Systems

– for all x, y ∈ C with ν(x) ≤ k and ν(y) ≤ k : fr(ν(x)) ≤ fr(ν(y)) iff fr(ν ′(x)) ≤
fr(ν ′(y)),

– for all x ∈ C with ν(x) ≤ k : fr(ν(x)) = 0 iff fr(ν ′(x)) = 0;
– ν ∼k ν ′ iff for all x ∈ C : ν(x) = ν ′(x) or ν(x) > k ∧ ν ′(x) > k.

Note that ∼k is refinement of ∼=k, ∼=k has a finite index for all semantics, ∼k has a
finite index for sampled semantics.

Lemma 6.1 ([4]) Let A be a diagonal-free timed automaton and K be a maximal
constant which occurs in some guard in A. For each location l ∈ L : ν ∼=K ν ′ ⇒
(l, ν) ∼ (l, ν′).

In the following (and in all subsequent uses of region graph) we suppose that the
timed automaton is diagonal-free and that each transition resets at most one clock.
Each timed automaton can be transformed into an automaton which satisfies these
constraints and which is equivalent to the original one with respect to simulation
equivalence.

Given a region D (an equivalence class of ∼=K) we define:

– integral(D) is a set of clocks x such that x ≤ K and fr(x) = 0 in D,
– fractional(D) is a set of clocks x such that x ≤ K and fr(x) 6= 0 in D,
– maxfractional(D) is a set of clocks x such that x ≤ K and the fractional part of

x is maximal in D,
– minfractional(D) is a set of clocks x such that x ≤ K and the fractional part of x

is minimal in D,
– above(D) is a set of clocks x such that x > K in D,
– D |= g, D′ = D[Y := 0] are defined naturally.

A region D′ is an immediate time successor of a region D iff one of the following
holds:

– integral(D) 6= ∅ : integral(D′) = ∅; the ordering of fractional parts is the same
in D′ as in D; and above(D′) is the same as above(D) except that it contains
x ∈ integral(D) such that D(x) = K, or

– integral(D) = ∅ : integral(D′) = maxfractional(D), integer values of these clocks
are incremented; ordering of fractional parts in D′ is the same as in D except for
clocks in maxfractional(D) which become the smallest; above(D′) = above(D).

A region graph of a timed automaton A is defined as follows1:

– states are tuples (l,D) where l is a location and D is a region such that
integral(D) 6= ∅,

– there is an transition (l,D) → (l′, D′) iff one of the following applies

1Note that we use non-standard definition, because for the proof we need to work only with regions
such that integral(D) 6= ∅ and we want to have ’as small steps as possible’.

100

6.3. Dense vs. Sampled Semantics

closed TA TA SWA

rational semantics bisimilar bisimilar trace eq.

sampled semantics similar reachability eq. reachability eq.

Table 6.1: Summary of equivalences between semantics: each field gives the relation
to real semantics.

– Time: l = l′ and there exists D′′ such that D′′ is an immediate time successor
of D and D′ is an immediate time successor of D′′,

– Reset: there exists a transition (l, a, g, Y, l′) ∈ E such that D |= g and D′ =
D[Y := 0],

– Time&Reset: there exists a region D′′ and a transition (l, a, g, Y, l′) ∈ E such
that D′′ is a time successor of D, D′′ |= g and D′ = D′′[Y := 0].

The region graph construction is finite and bisimilar to JAKR+
0

[4]. Thus we can
use it to answer model checking problems, particularly the non-emptiness problem:

Theorem 6.1 ([4]) Let A be a timed automaton. The problem of deciding whether
L(A) is non-empty is PSPACE-complete.

6.3 Dense vs. Sampled Semantics

In this section, we present a set of results about relations between dense time se-
mantics and sampled semantics of timed systems. This shows the limits of using
discrete time verification methods for the dense time problems.

All the results are summarized in Table 6.1. For the sampled semantics, a given
result means that there exists an ε such that the given equivalence is guaranteed.
In a case of closed TA, such ε can be easily constructed from the syntax of the
automaton (as the greatest common divisor of all constants). For general TA, such
ε can be constructed, but it requires to explore the region graph corresponding to
the automaton. For SWA, such ε cannot be constructed algorithmically (because we
do not know which actions are reachable).

6.3.1 Real versus Rational

We start with relations between real and rational semantics as it creates a connection
between dense and sampled semantics.

Lemma 6.2 Let A be a timed automaton. Then JAKQ+
0

is bisimilar to JAKR+
0
.

Proof: This follows directly from the region construction since each region contains
at least one rational valuation. ¤

101

Chapter 6. Sampled Semantics of Timed Systems

// ?>=<89:;l1
0<x<2 // ?>=<89:;l2

a,x≥1,”x=x−1”
++

b,x<1

33 ?>=<89:;l3

BC@A
”x=2·x”

OO

Figure 6.1: Stopwatch automaton for binary expansion. Clock x is stopped in loca-
tions l2 and l3.

For stopwatch automata, however, we can guarantee only trace equivalence — we
show that there exists a SWA which has infinite traces realizable in real semantics,
but not in rational one.

Lemma 6.3 Let A be an SWA. Then JAKQ+
0

is trace equivalent to JAKR+
0
.

Proof: Let us consider a run π in JAKR+
0
. We can consider the delays on this

run as parameters δ1, . . . , δn. The set of values of these parameters, which enable
execution through the same sequence of location and over the same trace is described
by a system of linear inequalities in δ1, . . . , δn — these inequalities are obtained by
substituting sums of δ1, . . . , δn for ν(x) in guards. The set of solutions of this system
of linear inequalities is a non-empty convex polyhedron and it has a rational solution.
Therefore, there exists a run π′ in JAKQ+

0
over the same trace as π. ¤

Lemma 6.4 There exist an SWA A such that JAKQ+
0

is not infinite trace equivalent
to JAKR+

0
.

Proof: [sketch] A skeleton of the example illustrating this observation is given in
Figure 6.1. The operations x = x − 1 and x = 2 · x are not valid operations of
stopwatch automata, but can be simulated using several locations and (stopwatch)
clocks (see e.g., [105]). The automaton in the first step nondeterministically chooses
a value between 0 and 2 and then it accepts a sequence of actions a, b corresponding
to a binary expansion of the chosen value. ¤

6.3.2 Real versus Sampled

Now we study relations between dense time and sampled semantics. We show that
for a closed TA we can guarantee the simulation equivalence (i.e., that there is
an ε such that JAKR+

0
is simulation equivalent to JAKε), but not bisimilarity. For

general TA (as well as for SWA) the best what we can guarantee is the reachability
equivalence (i.e., that there is an ε such that JAKR+

0
is reachability equivalent to

JAKε).

Lemma 6.5 Let A be a closed TA and ε be the greatest common divisor of constants
in A. Then JAKε is simulation equivalent to JAKR+

0
.

102

6.3. Dense vs. Sampled Semantics

// ?>=<89:;l1
a,x≤1,x:=0 // ?>=<89:;l2

e,x=0∧y=1

²²

b,y≤1,z:=0 // ?>=<89:;l3
c,x=0∧z=0 //

d,y=1∧z=0

²²

?>=<89:;l4

?>=<89:;l6 ?>=<89:;l5

Figure 6.2: An automaton for which there is no ε such that discrete and dense se-
mantics are bisimilar.

Proof: Let A′ is an automaton obtained from A by dividing all constants by ε.
Then JAKε is bisimilar to JA′K1 = JA′KZ+

0
. Therefore, it is sufficient to prove the

claim for ε = 1.
Let ν be a clock valuation and [ν] denote a valuation such that [ν](x) = bν(x)c or

[ν](x) = dν(x)e for all clocks x. Consider the following relation:

S = {(ν, [ν]) | ∀x, y.(([ν](x) = bν(x)c) ∧ ([ν](y) = dν(y)e)) ⇒ fr(ν(x)) < fr(ν(y))}

Informally, (ν, ν ′) ∈ S if and only if ν ′ is a corner point of a region containing ν. If
A is closed then S is a simulation relation on JAKR+

0
and JAKZ+

0
.

We show that S is a simulation relation. If a guard is enabled for ν and (ν, ν ′) ∈ S
then this guard is enabled also for ν ′, since A is closed. If A performs an action step
resetting clocks in Y , then obviously (ν[Y := 0], ν ′[Y := 0]) ∈ S. We show that
S is preserved by two special delay steps (immediate time successor) such that any
delay step can be composed of them.

The first delay step changes a valuation where some clocks have fractional part
equal to zero to a valuation where all clocks have nonzero fractional parts, but the
integral parts are the same. If A performs such a delay step in dense time semantics,
we do not do anything in sampled time semantics.

The second delay step changes a valuation where all fractional parts are nonzero
and x has a greatest fractional part to a valuation νdelay where νdelay(x) = dν(x)e. If
ν ′(x) = dν(x)e then ν ′delay = ν ′, otherwise ν ′delay = ν ′+1. Note, that (νdelay, ν

′+1) ∈
S because x had a greatest fractional part and thus for all other clocks y it holds
that ν ′(y) = bν(y)c.

¤

Lemma 6.6 There exits a closed TA A such that JAKR+
0

is not bisimilar to JAKε for
any ε.

Proof: Figure 6.2 shows an automaton for which there is no ε such that dense time
and sampled semantics are bisimilar. For the proof we use a characterization of
bisimulation in terms of a game between Challenger and Defender [166]. Consider
the following play of the bisimulation game. We suppose that ε is a divisor of 1
(otherwise we choose ε′ such that ε′ | 1 ∧ ε′ | ε). Challenger plays with sampled
semantics, delays for 1 − ε and then takes a transition. Defender can delay for

103

Chapter 6. Sampled Semantics of Timed Systems

A B

// ?>=<89:;l1

a,y>0∧x<1,y:=0

// ?>=<89:;l1

a,y=1,y:=0

,, ?>=<89:;l2
b,x>1,x:=0

ll

Figure 6.3: Difference between dense and sampled semantics (example (b) is taken
from [5]).

0 ≤ δ < 1 and then take a transition. If Defender delays for 1 time unit then
Challenger takes e transition, which Defender cannot take.

Now Challenger plays with dense time semantics, delays for (1 − δ)/2 and then
takes b transition. Defender can either delay for 0 or for ε and then take b transition.
Challenger plays with sampled semantics again in the next step, delays for 0 and
takes a transition according to the previous move of Defender. If Defender delayed
for 0 then Challenger takes d transition, otherwise he takes c transition. Defender
has no answer. ¤

Lemma 6.7 Let A be an SWA. Then there exists ε such that JAKR+
0

is reachability
equivalent to JAKε.
Proof: From Lemma 6.3 we have that for each reachable action a there is a finite
run πa which contains action a and which has only rational delays. Let εa be the
greatest common divisor of all delays on πa. Let ε be the greatest common divisor
of all εa where a is a reachable action. Then, clearly, each action is reachable in JAKε
if and only if it is reachable in JAKR+

0
. ¤

Lemma 6.8 There exists a TA A such that JAKR+
0

is not trace equivalent to JAKε for
any ε.

Such an automaton could be easily obtained by enabling zeno behavior (arbitrary
number of events in finite time), see Figure 6.3 A. Zeno behavior cannot be obtained
in the sampled semantics. But there are also non-zeno automata which are not trace
equivalent in dense and sampled domains, see Figure 6.3 B.

6.4 Reachability Relations

In this section we study reachability relations and their efficient representations.
Reachability relations describe which valuations can be reached from a given valua-
tion. Representations of reachability relations were studied before2: using additive

2Definition of reachability relations in these works is slightly different from ours. Our definition
is geared towards application in the proof of Theorem 6.3. Nevertheless, the difference is not
significant with respect to results about representations.

104

6.4. Reachability Relations

theory of real numbers [59] and 2n-automata [73].
We present a novel simple representation for reachability relations (called clock

difference relations). We use this characterization in the next section to prove our
main result (Theorem 6.3). The fact that such simple (in)equalities are sufficient
to capture the reachability relations and that these relations can be computed ef-
fectively is of independent interest and can be used in other applications which are
beyond the scope of this thesis (see [59, 73]).

Let (l,D), (l,D′) be two states in a region graph. Then reachability relation of
the tuple (l,D), (l, D′) is a relation on valuation C(l,D)(l′,D′) ⊆ D×D′ such that for
each ν ∈ D, ν ′ ∈ D′:

(ν, ν ′) ∈ C(l,D)(l′,D′) ⇐⇒ ∃ν ′′ ∼K ν ′ : (l, ν) →+ (l, ν ′′)

Clock difference relations (CDR) structure over a set of clocks C is a set of
(in)equalities of the following form:

– x′ − y′ ./ u− v
– x′ − y′ ./ 1− (u− v)

where ./∈ {<,>,=}, x, y, u, v ∈ C. The semantics of a CDR B is defined as follows.
We say that a pair of valuations (ν, ν ′) satisfies B ((ν, ν ′) ² B) if and only if:

– if x′ − y′ ./ u− v ∈ B then fr(ν ′(x))− fr(ν ′(y)) ./ fr(ν(u))− fr(ν(v)),
– if x′ − y′ ./ 1− (u− v) ∈ B then fr(ν ′(x))− fr(ν ′(y)) ./ 1− (fr(ν(u))− fr(ν(v))),

Theorem 6.2 Reachability relations C(l,D)(l′,D′) are effectively definable as a finite
unions of clock difference relations.

The proof of this theorem is based on the following key facts:

– If there is an immediate transition (l, D) → (l′, D′) then the reachability relation
can be directly expressed as a CDR.

– If (l, D) →+ (l′′, D′′) → (l′, D′) and the reachability relation over (l, D), (l′′, D′′)
is expressed as a union of CDRs then the reachability relation over (l, D), (l′, D′)
can be expressed as a union of CDRs as well.

– Using these two steps, reachability relations can be computed by a standard dy-
namic programming algorithm. Termination is guaranteed, because there is only
a finite number of CDRs over a fixed set of clocks. Correctness is proved by
induction with respect to the length of a path between (l, D) and (l′, D′).

The formal proof of this theorem is rather technical and complicated. Since reach-
ability relations are not directly connected with main topics of this thesis, we do not
present the proof here. An interested reader may find the full proof in a technical
report [121].

105

Chapter 6. Sampled Semantics of Timed Systems

6.5 Non-emptiness Problems

Most verification problems can be reduced to some non-emptiness problem, i.e.,
non-emptiness problems are at the core of verification. As we show below, for timed
systems, there is quite a large number of non-emptiness problems to consider (each
of them answers different verification question). In the verification effort, we have
to be careful to solve the right one.

Let us, for example, consider examples in Figure 6.3. For these examples Lω(A)
is non-empty whereas for all ε the language Lε

ω(A) is empty. Non-emptiness implies
existence of a behavior which violates a given liveness property. These examples
demonstrates that all infinite traces may be non-realizable. Therefore, on a real
system the property would be satisfied.

On the other hand, it may be difficult to choose the right sampling period ε.
Therefore, it may be useful to consider the unknown period non-emptiness problem,
i.e., the question whether there exists an ε such that Lε

ω(A) is non-empty.
Let us summarize all the parameters of non-emptiness problems in our setting:

– type of the automaton3:
– timed automata,
– diagonal-free stopwatch automata,
– stopwatch automata;

– semantics:
– dense semantics4,
– sampled semantics - a fixed sampling period,
– sampled semantics - an unknown sampling period;

– type of language:
– finite words (non-emptiness is equivalent to reachability in the semantics5),
– infinite words (non-emptiness is equivalent to cycle detection in the semantics).

By combining all these cases we obtain 18 different non-emptiness problems. In
the rest of this section we provide results for cases which were not considered before
(or were considered erroneously) and then we give a brief summary of all 18 cases.

6.5.1 Timed Automata, Infinite Words, Unknown Period

The most interesting case is for languages of infinite words for timed automata with
an unknown sampling period. We show that the problem of deciding whether there
exists an ε such that Lε

ω(A) is non-empty is decidable. This problem was considered
in a survey paper [5] where it is claimed that the problem is undecidable, with a

3For non-emptiness problems, it is not important whether the automaton is closed and for timed
automata it is also not important whether the automaton is diagonal-free.

4It is not important whether we consider real or rational semantics.
5In order to have meaningful non-emptiness problem for finite words, it is necessary to introduce

accepting states. This extension is classical and straightforward and we gloss over this issue
here.

106

6.5. Non-emptiness Problems

reference to [48]. The work [48], however, deals with a slightly different problem: it
is required that the timed automaton performs action step after every discrete time
step (this requirement is motivated by control theory). In that setting, the problem
is undecidable even for finite words. In our setting, the problem is decidable:

Theorem 6.3 Let A be a timed automaton. The problem of deciding whether there
exists ε such that Lε

ω(A) 6= ∅ is decidable.

Our proof is based on the region construction and on the application of Theo-
rem 6.2 (representation of reachability relations by linear constraints). The region
graph can be directly used for ω-language emptiness checking in dense semantics —
the ω-language is non-empty if and only if there is a cycle in the region graph. This
is, however, not true for sampled semantics, as illustrated by examples in Figure 6.3.

Intuitively, the problem is the following. Existence of a cycle in the region graph
from a region (l, D) to itself means that there exists some valuations ν, ν ′ ∈ D such
that (l, ν) →+ (l, ν ′). These valuations may be constrained, e.g., in example in
Figure 6.3(b) the constraint on paths from state (l1, [x = 0, 0 < y < 1]) to itself is
that 1 > ν ′(y) > ν(y) > 0. In dense semantics we can have an infinite run which
satisfies this constraint, but in sampled semantics we cannot. In sampled semantics
we need a path (l, ν) →+ (l, ν ′) such that ν ∼k ν ′ (valuations may differ only in
clocks above constants).

Lemma 6.9 There exists an ε such that Lε
ω(A) is non-empty if and only if there exists

a reachable state (l, D) in the region graph of A such that the following condition is
satisfiable:

∃ν, ν ′ ∈ D : (ν0, ν) ∈ C(l0,D0)(l,D) ∧ (ν, ν ′) ∈ C(l,D)(l,D) ∧ ν ∼K ν ′

Proof: At first, suppose that the condition is satisfiable. Due to Theorem 6.2, the
condition can be expressed as boolean combination of linear inequalities. The set of
solutions is an union of convex polyhedrons and therefore there must exist a rational
solution ν, ν ′. From the definition of reachability relations we get that there exists
ν ′′ ∼K ν such that (l0, ν0) →+ (l, ν) →+ (l, ν ′′) in the real semantics. Since real and
rational semantics are bisimilar, there exists such a path in rational semantics as
well. We take ε as the greatest common divisor of time steps on this path. Thus the
path (l0, ν0) →+ (l, ν) →+ (l, ν′′) is executable in JAKε and since ν ′′ is bisimilar to ν
(because ν ∼K ν ′′) we can construct an infinite run. Therefore Lε

ω(A) is non-empty.
On the other hand, if Lε

ω(A) is non-empty then there exists an infinite run
(l0, ν0) → (l1, ν1) → (l2, ν2) → Since ∼K has a finite index (over sampled
semantics) there must exists i, j such that li = lj , νi ∼K νj . These valuation demon-
strate the satisfiability of the condition. ¤

Now, we can easily prove the main result :
Proof: [of Theorem 6.3] The result now directly follows from Lemma 6.9, since the
condition given in this lemma can be expressed by linear constraints (due to Theorem
6.2) and satisfiability of such constraint can be decided (it is a special case of linear
programming). ¤

107

Chapter 6. Sampled Semantics of Timed Systems

6.5.2 Stopwatch Automata, Finite Words, Fixed Period

The second interesting case is for finite words and stopwatch automata with a fixed
period. We show that the choice of the time domain and the type of constraints
are important. With dense semantics, the problem is known to be undecidable even
for diagonal-free constraints and one stopwatch [105]. We show that in sampled
semantics the problem is decidable for diagonal-free constraints. However, if we
allow diagonal constraints, the non-emptiness problem is again undecidable. We
have to use a different reduction than in the dense case, but, surprisingly, only one
stopwatch suffices even in the case of sampled semantics.

Lemma 6.10 Let A be a diagonal-free SWA and ε a given sampling period. Then the
finite words non-emptiness problem in sampled semantics JAKε is PSPACE-complete.

Proof: We use a standard extrapolation approach6 — it is easy to check that the
relation ∼K induces bisimulation on JAKε (K is the largest constant occurring in
guards) for a diagonal-free SWA. We can easily obtain unique representant of each
bisimulation class (by extrapolating all clock values larger than K to the value K+1)
and thus we can easily perform the search over the bisimulation collapse.

Complexity: PSPACE-membership follows from the algorithm (search in an ex-
ponential graph can be done in polynomial space), PSPACE-hardness follows from
PSPACE-hardness for timed automata. ¤

Lemma 6.11 Let A be an SWA with one stopwatch. Then the finite words non-
emptiness problem in sampled semantics JAKε is undecidable.

Proof: We show the undecidability by reduction from the halting problem for a two
counter machine M . Since this is a usual approach in this area (see e.g., [105, 48,
36]), we just describe the main idea — how to encode counter values and perform
increment/decrement.

The value of a counter i is represented as the difference of two clocks: xi − yi.
Before the start of the simulation of M the simulating SWA nondeterministically
guesses the maximal value c of counters during a computation of M and sets the
stopwatch to the value c + 1. From this moment, the stopwatch is stopped for the
rest of the computation with the value c + 1.

Values of clocks are kept in the interval [0, c+1] all the time. Whenever the value
of a clock reaches c + 1, the clock is reseted. Testing the value of a counter for
zero is straightforward: just testing xi = yi. Decrementing a counter i is performed
by postponing the reset of a clock xi by 1 time unit. Incrementing a counter i
is performed by postponing the reset of a clock yi by 1 time unit. During the
increment we have to check for an ‘overflow’ — if the difference xi − yi equals to c
and we should perform an increment then it means that the initial nondeterministic
guess was wrong and the simulation should not continue.

6We discuss extrapolation in more detail in the next chapter.

108

6.6. Related Work

timed diagonal-free stopwatch

automata stopwatch automata automata

fixed period PSPACE-compl. PSPACE-compl. undec

unknown period PSPACE-compl./dec undec undec

dense PSPACE-compl. undec undec

Table 6.2: Summary of non-emptiness problems: in all cases but one the result is the
same for languages of finite, and infinite words. Only in the case of timed
automata, an unknown period, and infinite words the complexity of the
problem is not known.

Note that the stopwatch is used in a very limited fashion: it is stopped once and
then keeps a constant value. ¤

6.5.3 Summary of Results

We are ready to present summary of all 18 non-emptiness problems. All problems,
with potential exception of one for which the exact complexity is unknown, are
either PSPACE-complete or undecidable. In all cases the (un)decidability result is
the same for languages of finite and infinite words. Only in one case the justification
is principally different. The summary is given in Table 6.2. Justification for these
results is as follows:

1. timed automata, dense time: proved in [4],
2. timed automata, fixed period: proved in [4] (the same proof as for 1.),
3. timed automata, unknown period:

– finite words: due to Lemma 6.7 this problem is equivalent to 1.,
– infinite words: Theorem 6.3,

4. diagonal-free stopwatch automata, dense time: proved in [105],
5. diagonal-free stopwatch automata, fixed period: Lemma 6.10 (for languages of

infinite words it is an easy extension),
6. diagonal-free stopwatch automata, unknown period:

– finite words: due to Lemma 6.7 this problem is equivalent to 4.,
– infinite words: easy reduction from the finite words case,

7. stopwatch automata, dense time: follows from 4.,
8. stopwatch automata, fixed period: Lemma 6.11,
9. stopwatch automata, unknown period: follows from 8.

6.6 Related Work

Timed automata were introduced by Alur and Dill [4], who also proved the basic
results. Stopwatch automata and their expressive power was studied by Cassez and
Larsen [49]. They showed that stopwatch automata are expressively equivalent to

109

Chapter 6. Sampled Semantics of Timed Systems

linear hybrid automata. Abdeddaim and Maler [3] and Krčál and Yi [122] studied
usefulness of stopwatch automata for modeling scheduling problems. Henzinger
et al. [105] studied reachability problems for different types of hybrid automata,
including stopwatch automata.

There has been a considerable amount of work related to discretization issues and
verifying dense time properties using discrete time methods, e.g., [106, 128, 143, 10].
The main difference to our work is that usually only a fixed sampling period and a
trace equivalence are considered.

Implementability issues are discussed in a connection with robust semantics of
timed automata in [171, 160]. Goal of these works is to decide whether a set of bad
states is reachable if the clock rates drift a little bit or the guards are enlarged a
little bit. It is argued that a real hardware can never produce synchronized clocks
and measure them with infinite precision.

Gollu et al. [94] studied discretization of timed automata preserving reachability.
They present an elaborate discretization scheme which preserves reachability (and
in fact even bisimilarity) for any timed automaton. Our discretization scheme is just
sampling with a fixed period.

Practical aspects of verification with the use of sampled semantics are discussed
in [39, 38, 27, 32, 9]. These works are concerned mainly with data structures for
representing sets of discrete valuations (e.g., different types of decision diagrams).
They do not consider theoretical problems concerning relations between dense and
sampled semantics in greater depth.

Reachability relations were studied by Comon and Jurski [59] and by Dima [73].
Comon and Jurski [59] showed that reachability relations are definable by addi-
tive theory of real numbers (this theory is decidable). Their construction proceeds
through timed automata without nested loops. Dima [73] showed that reachability
relations are definable by 2n-automata, a novel representation technique. The proof
is based on closure of the representation under union, composition and star.

110

Chapter 7

Zone Based Abstractions of Time
Systems

“Are we nearly there?” Alice managed to pant out at last. “Nearly there!” the
Queen repeated. “Why, we passed it ten minutes ago! Faster!” [47]

In this chapter we consider the classical reachability problem for timed automata
with dense time semantics. We propose a novel technique which improves the per-
formance of state-of-the-art model checkers for timed automata.

In verification of timed automata we usually use zone based abstractions with
respect to the maximal constants to which clocks of the timed automaton are com-
pared. In this chapter we show that by distinguishing maximal lower and upper
bounds we can obtain significantly coarser abstractions. We show the correctness of
the new abstractions and we experimentally demonstrate their advantages.

7.1 Introduction

In the previous chapter we study fundamental questions about timed automata
semantics and non-emptiness problems. In this chapter we turn to more practical
aspects: given a timed automaton we want to solve a particular problem (reachability
in dense time semantics) as quickly as possible, despite the fact that it is a PSPACE-
complete problem. Techniques presented in this chapter make use of special use
of clocks in practical timed automata models. More specifically, we distinguish
between lower and upper bounds when consider maximal bounds to which clocks
are compared. For example, in our Sorter example the clock Timer is compared only
to lower bounds.

By their very definition timed automata describe (uncountable) infinite state-
spaces. Thus, algorithmic verification relies on existence of exact finite abstractions.
In the original work by Alur and Dill the so-called region-graph construction pro-
vided a “universal” such abstraction (we discuss this construction in the previous
chapter). However, whereas well-suited for establishing decidability of problems re-
lated to timed automata, the region-graph construction is highly impractical from a
tool-implementation point of view. Instead, most real-time verification tools apply
abstractions based on so-called zones, which in practice provide much coarser (and
hence smaller) abstractions.

111

Chapter 7. Zone Based Abstractions of Time Systems

To insure finiteness, it is essential that the given abstraction (region- or zone-
based) takes into account the actual constants with which clocks are compared. In
particular, the abstraction could identify states which are identical except for the
clock values which exceed the maximum such constants. Obviously, the smaller we
may choose these maximum constants, the coarser the resulting abstraction will be.
Allowing clocks to have different (maximum) constants is an obvious first step in
this direction, and in [20] this idea has been (successfully) taken further by allowing
the maximum constants not only to depend on the particular clock but also of the
particular location of the timed automata. In all cases the exactness is established
by proving that the abstraction respects bisimilarity (i.e., states identified by the
abstraction are bisimilar).

²²
?>=<89:;l1 ?>=<89:;l

x≥10oo x≤106
//

y=1,y:=0

UU
?>=<89:;l2

Figure 7.1: A small timed automaton.

Consider the timed automaton of Figure 7.1. Clearly 106 is the maximum constant
for x and 1 is the maximum constant for y. Thus abstraction based on maximum
constants will distinguish all states where x ≤ 106 and y ≤ 1. In particular, a
forward computation of the full state space will – regardless of the search-order –
create an excessive number of symbolic states including all symbolic states of the
form (l, x − y ≤ k) where 0 ≤ k ≤ l06. However, assuming that we are only inter-
ested in reachability properties the application of downwards closure with respect to
simulation will lead to an exact abstraction which could potentially be substantially
coarser than closure under bisimilarity. Observing that 106 is an upper bound on the
edge from l to l2 in Figure 7.1, it is clear that for any state where x > 10 increasing x
will only lead to “smaller” states with respect to simulation preorder. In particular,
applying this downward closure results in the radically smaller collection of abstract
states, namely (l, x− y ≤ k) where 0 ≤ k ≤ 10 and (l, x− y ≥ 11).

The fact that 106 is an upper bound in the example of Figure 7.1 is crucial for the
reduction we obtained above. In this paper we present new, substantially coarser
yet still exact abstractions which are based on two maximum constants obtained
by distinguishing upper and upper bounds. In all cases the exactness is established
by proving that the abstraction respects downwards closure with respect to simu-
lation (i.e., for each state in the abstraction there is an original state simulating
it). The variety of abstractions comes from the additional requirements to effective
representation and efficient computation and manipulation. In particular we insist
that zones can form the basis of our abstractions; in fact the suggested abstractions

112

7.2. Symbolic Semantics

are defined in terms of low-complexity operations on the difference bound matrix
(DBM) representation of zones. We also experimentally demonstrate the significant
speedups obtained by our new abstractions. Here, the distinction between lower and
upper bounds is combined with the orthogonal idea of location-dependency of [20].

In [21] we also discuss how to use the idea of distinguishing upper and lower
bounds to accelerate successor computation and we describe an application of the
technique to a jobshop scheduling problem. We do not discuss these issues here since
they are not directly related to our main themes.

Relationship to Main Themes

– Equivalences. We study, which equivalences are preserved by given extrapolation
operation: classical extrapolation operation preserve bisimulation equivalence,
whereas our new extrapolation preserves only simulation equivalence. Consid-
eration of a weaker equivalence enables us to obtain a more powerful reduction
technique.

– Abstractions. The symbolic semantics, which is the basic approach used in this
section, is an (exact) abstraction of concrete semantics. Moreover, extrapolation
operation are formalized in terms of abstraction.

– Approximations and refinement. These are not used in this chapter as our tech-
niques produce exact results. We just compare (experimentally) the new tech-
niques to convex-hull over-approximation.

7.2 Symbolic Semantics

For readability, let us denote the set of all real valuations Val = RC≥0. The symbolic
semantics of a timed automaton A = (L,Act , C, l0, E) is based on the abstract
transition system JAKS = (S, s0,=⇒), where S = L × 2Val , and ’=⇒’ is defined by
the following two rules:

– time step: (l,W)
delay
=⇒ (l, W ′) if W ′ = {ν + d | ν ∈ W ∧ d ≥ 0},

– action step: (l, W)
act(a)
=⇒ (l′,W ′) if there exists a transition (l, a, g, Y, l′) ∈ E such

that W ′ = {ν[Y := 0] | ν ∈ W ∧ ν |= g}.
In a similar way to concrete semantics, we define the transition relation of JAKS

by concatenating these two types of transitions: (l, W) a=⇒ (l′,W ′) iff there exists

(l′′,W ′′) such that (l,W)
delay
=⇒ (l′′,W ′′)

act(a)
=⇒ (l′, W ′).

Symbolic semantics induces a transition system which is countable (as opposed
to uncountable JAKR+

0
) but it still may be infinite and hence not directly usable for

exploration. To obtain a finite graph one may, as suggested in [20], apply some
abstraction α : 2Val 7→ 2Val , such that W ⊆ α(W). The abstract transition system
A(α, JAKS) = (S, s0, =⇒α) is then given by the following inference rule:

113

Chapter 7. Zone Based Abstractions of Time Systems

(l, W) =⇒ (l′,W ′)

(l,W) =⇒α

(
l′, α(W ′)

) if W = α(W)

To make the presentation more readable, we sometimes write in this chapter
’abstraction α’ instead of ’A(α, JAKS)’.

A simple way to assure that the reachability graph induced by ’=⇒α’ is finite is to
establish that there are only finitely many abstractions of sets of valuations; that is,
the set {α(W) | α defined on W} is finite. In such a case, α is a finite abstraction.

Of course, if α and α′ are two abstractions such that for any set of valuations W ,
α(W) ⊆ α′(W), we prefer to use abstraction α′, because the graph induced by it, is a
priori smaller than the one induced by α. Our aim is thus to propose an abstraction
which is finite, as coarse as possible, and which induces an exact abstract transition
system.

The abstraction traditionally used in real-time model-checkers such as Up-
paal [129] and Kronos [37], is based on the idea that the behaviour of an automaton
is only sensitive to changes of a clock if its value is below a certain constant. That
is, for each clock there is a maximum constant such that once the value of a clock
has passed this constant, its exact value is no longer relevant — only the fact that
it is larger than the maximum constant matters. Transforming a DBM to reflect
this idea is often referred to as extrapolation [35, 20] or normalisation [67]. In the
following we choose the term extrapolation.

7.2.1 Classical Maximal Bounds

The classical abstraction for timed automata is based on maximal bounds, one for
each clock of the automaton. Let A = (L,Act , C, l0, E) be a timed automaton. The
maximal bound of a clock x ∈ C, denoted M(x), is the maximal constant k such
that there exists a guard containing x ./ k in A. Let ν and ν ′ be two valuations.
We define the following relation:

ν ≡M ν ′ def⇐⇒ ∀x ∈ C : either ν(x) = ν ′(x) or
(
ν(x) > M(x) and ν ′(x) > M(x)

)

.

Lemma 7.1 The relation R = {((l, ν), (l, ν ′)) | ν ≡M ν ′} is a bisimulation relation.

Definition 7.1 (α≡M w.r.t. ≡M) Let W be a set of valuations. We define the abstrac-
tion w.r.t. ≺M as α≡M (W) = {ν | ∃ν ′ ∈ W, ν ′ ≡M ν}.

Lemma 7.2 Let A be a timed automaton. Then the abstraction A(α≡M , JAKS) is
reachability equivalent to JAKR+

0
and finite.

The above given lemmas come from [20]. They are, moreover, consequences of
the below given results.

114

7.2. Symbolic Semantics

7.2.2 Lower and Upper Bounds

The new abstractions introduced in the following is substantially coarser than α≡M .
It is no longer based on a single maximal bound per clock but rather on two maximal
bounds per clock allowing lower and upper bounds to be distinguished.

Definition 7.2 Let A = (L,Act , C, l0, E) be a timed automaton. The maximal lower
bound denoted L(x), (resp. maximal upper bound U(x)) of a clock x ∈ C is the
maximal constant k such that there exists a constraint x > k or x ≥ k (resp. x < k
or x ≤ k) in a guard of some transition of A. If such a constant does not exist, we
set L(x) (resp. U(x)) to −∞.

Let us fix for the rest of this section a timed automaton A and bounds L(x), U(x)
for each clock x ∈ C as above. The idea of distinguishing lower and upper bounds
is the following: if we know that the clock x is between 2 and 4, and if we want
to check that the constraint x ≤ 5 can be satisfied, the only relevant information is
that the value of x is greater than 2, and not that x ≤ 4. In other terms, checking
the emptiness of the intersection between a non-empty interval [c, d] and]−∞, 5]
is equivalent to checking whether c > 5; the value of d is not useful. Formally, we
define the LU-preorder as follows.

Definition 7.3 (LU-preorder ≺LU) Let ν and ν ′ be two valuations. Then ν ′ ≺LU ν if
and only if for each clock x:

– either ν ′(x) = ν(x),
– or L(x) < ν ′(x) < ν(x),
– or U(x) < ν(x) < ν ′(x).

Lemma 7.3 The relation R = {((l, ν), (l, ν ′)) | ν ′ ≺LU ν} is a simulation relation.

Proof: The only non-trivial part in proving that R indeed satisfies the properties
of a simulation relation is to establish that if g is a clock constraint, then “ν |= g
implies ν ′ |= g”. Consider the constraint x ≤ c. If ν(x) = ν ′(x), then we are done. If
L(x) < ν ′(x) < ν(x), then ν(x) ≤ c implies ν ′(x) ≤ c. If U(x) < ν(x) < ν ′(x), then
it is not possible that ν |= x ≤ c (because c ≤ U(x)). Consider now the constraint
x ≥ c. If ν(x) = ν ′(x), then we are done. If U(x) < ν(x) < ν ′(x), then ν(x) ≥ c
implies ν ′(x) ≥ c. If L(x) < ν ′(x) < ν(x), then it is not possible that ν satisfies the
constraint x ≥ c because c ≤ L(x). ¤

Using the above LU-preorder, we can now define a first abstraction based on the
lower and upper bounds.

Definition 7.4 (α≺LU , abstraction w.r.t. ≺LU) Let W be a set of valuations. We de-
fine the abstraction w.r.t. ≺LU as α≺LU (W) = {ν | ∃ν ′ ∈ W, ν ′ ≺LU ν}.

Before going further, we illustrate this abstraction in Figure 7.2. There are several
cases, depending on the relative positions of the two values L(x) and U(x) and of the
valuation we are looking at. We represent with a plain line the value of α≺LU ({ν1})

115

Chapter 7. Zone Based Abstractions of Time Systems

L(x)

L(x)

L(x)

L(x) U(x)

U(x)U(x)

U(x)

ν2 ν2

ν1ν1

ν2

ν1 ν1

ν2

Same

Coarser! Coarser!

Coarser!

Figure 7.2: Quality of α≺LU (full line) compared with α≡M (dashed line) for M =
max(L,U).

and with a dashed line the value of α≡M ({ν2}), where the maximal bound M(x)
corresponds to the maximum of L(x) and U(x). In each case, we indicate the
“quality” of the new abstraction compared with the “old” one. We notice that the
new abstraction is coarser in three cases and matches the old abstraction in the
fourth case.

Lemma 7.4 Let A be a timed automaton. Then the abstraction A(α≺LU , JAKS) is
reachability equivalent to JAKR+

0
and coarser or equal to A(α≡M , JAKS).

Proof: Completeness is obvious, and soundness comes from Lemma 7.3. Definitions
of α≺LU and α≡M give the last result because for each clock, x, we have M(x) =
max (L(x), U(x)). ¤

This result could suggest to use α≺LU in real time model-checkers. However, we
do not yet have an efficient method for computing the transition relation ’=⇒α≺LU

’.
Indeed, even if W is a zone, it might be the case that α≺LU (W) is not even convex.
For effectiveness and efficiency reasons we prefer abstractions which transform zones
into zones because we can then use the DBM data structure.

7.3 Extrapolation Using Zones

In this section we present DBM-based extrapolation operators that gives abstrac-
tions which are exact, finite and also effective.

116

7.3. Extrapolation Using Zones

7.3.1 Zones and Difference Bound Matrices

A first step in finding an effective abstraction is realizing that W is always a zone
whenever (l0, {ν0}) =⇒∗ (l, W). A zone is a conjunction of constraints on the
form x ≺ c or x − y ≺ c, where x and y are clocks and c ∈ Z. Zones can be
represented using Difference Bound Matrices (DBM). We briefly recall the definition
of DBMs, and refer to [72, 24, 34] for more details. A DBM is a square matrix
D = 〈ci,j ,≺i,j〉0≤i,j≤n such that ci,j ∈ Z and ≺i,j∈ {<,≤} or ci,j = ∞ and ≺i,j=<.
The DBM D represents the zone JDK which is defined by JDK = {ν | ∀0 ≤ i, j ≤
n, ν(xi) − ν(xj) ≺i,j ci,j}, where {xi | 1 ≤ i ≤ n} is the set of clocks, and x0 is
a clock which is always 0, (i.e. for each valuation ν, ν(x0) = 0). DBMs are not a
canonical representation of zones, but a normal form can be computed by considering
the DBM as an adjacency matrix of a weighted directed graph and computing all
shortest paths. In particular, if D = 〈ci,j ,≺i,j〉0≤i,j≤n is a DBM in normal form, then
it satisfies the triangular inequality, that is, for every 0 ≤ i, j, k ≤ n, we have that
(ci,j ,≺i,j) ≤ (ci,k,≺i,k)+ (ck,j ,≺k,j) where comparisons and additions are defined in
a natural way (see [34]). All operations needed to compute ’=⇒’ can be implemented
by manipulating the DBMs.

7.3.2 Extrapolation Operations

The exact symbolic transition relations induced by abstractions considered so far,
unfortunately do not preserve convexity of sets of valuations. In order to allow
for sets of valuations to be represented efficiently as zones, we consider slightly
finer abstractions αExtra such that for every zone Z, Z ⊆ αExtra(Z) ⊆ α≡M (Z)
(resp. Z ⊆ αExtra(Z) ⊆ α≺LU (Z)) (this ensures correctness) and αExtra(Z) is a zone
(this gives an effective representation). These abstractions are defined in terms of
extrapolation operators on DBMs. If Extra is an extrapolation operator, it defines
an abstraction on zones αExtra such that for every zone Z, αExtra(Z) = JExtra(DZ)K
where DZ is the DBM in normal form which represents the zone Z.

In the remainder, we consider a timed automaton A over a set of clocks C =
{x1, . . . , xn} and we suppose that we are given another clock x0 which is always zero.
For all these clocks, we define the constants M(xi), L(xi), U(xi) for i = 1, ..., n. For
x0, we set M(x0) = U(x0) = L(x0) = 0 (x0 is always equal to zero, so we assume we
are able to check whether x0 is really zero). In our framework, a zone is represented
by DBMs of the form 〈ci,j ,≺i,j〉i,j=0,...,n.

We now present several extrapolations starting from the classical one and improv-
ing it step by step. Each extrapolation is illustrated by a small picture representing
a zone (in black) and its corresponding extrapolation (dashed).

117

Chapter 7. Zone Based Abstractions of Time Systems

Classical Extrapolation Based on Maximal Bounds M(x).

If D be a DBM 〈ci,j ,≺i,j〉i,j=0...n, ExtraM (D) is given by the DBM 〈c′i,j ,≺′i,j〉i,j=0...n

defined and illustrated below:

(c′i,j ,≺′i,j) =

∞ if ci,j > M(xi)
(−M(xj), <) if −ci,j > M(xj)
(ci,j ,≺i,j) otherwise

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

M(x)

M(y)

x

y

This is the extrapolation operator used in the real-time model-checkers Uppaal
and Kronos. This extrapolation removes bounds that are larger than the maximal
constants. The correctness follows from αExtraM

(Z) ⊆ α≡M (Z) and is proved in [35]
and for the location-based version in [20].

In the remainder, we propose several other extrapolations that improve the clas-
sical one, in the sense that zones obtained with the new extrapolations are larger
than zones obtained with the classical extrapolation.

Diagonal Extrapolation Based on Maximal Constants M(x).

The first improvement consists in noticing that if the whole zone is above the maxi-
mal bound of some clock, then we can remove some of the diagonal constraints of the
zones, even if they are not themselves above the maximal bound. More formally, if
D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, Extra+

M (D) is given by 〈c′i,j ,≺′i,j〉i,j=0,...,n defined
as:

(c′i,j ,≺′i,j) =

∞ if ci,j > M(xi)
∞ if −c0,i > M(xi)
∞ if −c0,j > M(xj), i 6= 0
(−M(xj), <) if −ci,j > M(xj), i = 0
(ci,j ,≺i,j) otherwise

118

7.3. Extrapolation Using Zones

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

M(x)

M(y)

x

y

For every zone Z it then holds that Z ⊆ αExtraM
(Z) ⊆ αExtra+

M
(Z).

Extrapolation Based on LU-bounds L(x) and U(x).

The second improvement uses the two bounds L(x) and U(x). If D = 〈ci,j ,≺i,j

〉i,j=0,...,n is a DBM, ExtraLU (D) is given by 〈c′i,j ,≺′i,j〉i,j=0,...,n defined as:

(c′i,j ,≺′i,j) =

∞ if ci,j > L(xi)
(−U(xj), <) if −ci,j > U(xj)
(ci,j ,≺i,j) otherwise

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

L(y)

L(x) = U(x)

U(y)

x

y

This extrapolation benefits from the properties of the two different maximal
bounds. It does generalise the operator αExtraM

. For every zone Z, it holds that
Z ⊆ αExtraM

(Z) ⊆ αExtraLU
(Z).

Diagonal Extrapolation Based on LU-bounds L(x) and U(x).

This last extrapolation is a combination of the extrapolation based on LU-bounds
and the improved extrapolation based on maximal constants. It is the most general
one. If D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, then Extra+

LU (D) is given by the DBM
〈c′i,j ,≺′i,j〉i,j=0,...,n defined as:

(c′i,j ,≺′i,j) =

∞ if ci,j > L(xi)
∞ if − c0,i > L(xi)
∞ if − c0,j > U(xj), i 6= 0
(−U(xj), <) if − c0,j > U(xj), i = 0
(ci,j ,≺i,j) otherwise

119

Chapter 7. Zone Based Abstractions of Time Systems

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

L(y)

U(y)

x

y

L(x) = U(x)

7.3.3 Correctness

We know that all the above extrapolations are complete abstractions as they trans-
form a zone into a clearly larger one. Finiteness also comes immediately, because
we can do all the computations with DBMs and the coefficients after extrapolation
can only take a finite number of values. Effectiveness of the abstraction is obvious
as extrapolation operators are directly defined on the DBM data structure. The
only difficult point is to prove that the extrapolations we have presented are correct.
To prove the correctness of all these abstractions, due to the inclusions shown in
Figure 7.3, it is sufficient to prove the correctness of the largest abstraction, viz
αExtra+

LU
.

αExtraM (Z)

Z

α
Extra+

M
(Z)

α
Extra+

LU
(Z)

αExtraLU (Z)

α≡M (Z)

α≺LU (Z)

Figure 7.3: For any zone Z, we have the inclusions indicated by the arrows. The sets
αExtra+

M
(Z) and αExtraLU

(Z) are incomparable. The αExtra operators are
DBM based abstractions whereas the other two are semantic abstractions.
The dashed arrow was proved in [20] whereas the dotted arrow is the main
result of this paper.

Lemma 7.5 Let Z be a zone. Then αExtra+
LU

(Z) ⊆ α≺LU (Z).

The proof of this lemma is quite technical (notice, however, that it is a key result).
Before we turn to this proof, we give the main theorem which states that αExtra+

LU

is an abstraction which can be used in the implementation of timed automata.

120

7.3. Extrapolation Using Zones

Theorem 7.1 Let A be a timed automaton. Then the abstraction A(αExtra+
LU

, JAKS)
is reachability equivalent to JAKR+

0
, finite and effectively computable.

This theorem is a consequence of Lemma 7.5 and above stated results. Let us
turn to the proof of Lemma 7.5 (the reader may wish to skip this proof on the first
reading).
Proof: [of Lemma 7.5] Let D = 〈ci,j ; ≺i,j〉i,j=0...n be a DBM in normal form repre-
senting a non-empty zone. We note D′ = 〈c′i,j ; ≺′i,j〉i,j=0...n be the DBM Extra+

LU (D).
Let us fix ν ∈ JExtra+

LU (D)K. We want to prove that ν ∈ α≺LU (JDK). For this, we
define the set Pν as {ν ′ ∈ JDK | ν ′ ≺LU ν}, and we prove that Pν is not empty.
This is sufficient as, by definition of α≺LU , we have ν ∈ α≺LU (JDK) ⇐⇒ Pν 6= ∅.
The set Pν is defined by the constraints:

{xi − xj ≺i,j ci,j | i, j ∈ {0, 1, ..., n}}
∪ {xi > L(xi) | ν(xi) > L(xi) and i ∈ {1, ..., n}}
∪ {xi ≤ ν(xi) | ν(xi) ≤ U(xi) and i ∈ {1, ..., n}}
∪ {xi ≥ ν(xi) | ν(xi) ≤ L(xi) and i ∈ {1, ..., n}}

The first set of constraints represents the constraints of D. The other lines represent
the constraints due to · ≺LU ν. Indeed, it is easy to check that for each i, the
constraint (xi = ν(xi)) ∨ (L(xi) < xi < ν(xi)) ∨ (U(xi) < ν(xi) < xi) which is the
direct definition of ≺LU is equivalent to the constraint (ν(xi) > L(xi) =⇒ xi >
L(xi)) ∧ (ν(xi) ≤ U(xi) =⇒ x ≤ ν(xi)) ∧ (ν(xi) ≤ L(xi) =⇒ xi ≥ ν(xi)). The
three last lines above correspond to this set of constraints.

We simplify the constraints defining Pν . For this, we need the following three
lemmas.

Lemma 7.6 If cj,0 < +∞, then (c′j,0,≺′j,0) = ∞ implies cj,0 > L(xj).

Lemma 7.7 If (c′0,i,≺′0,i) 6= (c0,i,≺0,i) then −c0,i > U(xi) and (c′0,i,≺′0,i) =
(−U(xi), <).

Lemma 7.8 Let ν ∈ JExtra+
LU (D)K. Then

1. If ν(xi) ≤ U(xi), L(xi), then ν(xi) ≺i,0 ci,0 and therefore (ν(xi),≤) ≤ (ci,0,≺i,0).
2. If ν(xi) ≤ L(xi), U(xi), then −c0,i ≺0,i ν(xi) and therefore (−ν(xi),≤) ≤

(c0,i,≺0,i).

Proof:

1. If ci,0 > L(xi), then we have ν(xi) ≺i,0 ci,0. If ci,0 ≤ L(xi), then (c′i,0,≺′i,0) =
(ci,0,≺i,0) and we are done for the first inequality.

2. If −c0,i > U(xi), then it is not possible as (c′0,i,≺′0,i) = (−U(xi), <). Otherwise,
(c′0,i,≺′0,i) = (c0,i,≺0,i). Thus we are also done for the second inequality.

121

Chapter 7. Zone Based Abstractions of Time Systems

¤
Applying the previous lemmas, we get that Pν is represented by the DBM 〈pi,j ,⊂i,j

〉i,j=0...n where

(pi,0,⊂i,0) =

(ν(xi),≤) if ν(xi) ≤ L(xi), U(xi)
min((ν(xi),≤), (ci,0,≺i,0)) if L(xi) < ν(xi) ≤ U(xi)
(ci,0,≺i,0) if ν(xi) > U(xi)

(p0,i,⊂0,i) =

(−ν(xi),≤) if ν(xi) ≤ L(xi), U(xi)
min((c0,i,≺0,i), (−ν(xi),≤)) if U(xi) < ν(xi) ≤ L(xi)
min((c0,i,≺0,i), (−L(xi), <)) if ν(xi) > L(xi)

(pi,j ,⊂i,j) = (ci,j ,≺i,j) if i, j 6= 0

We need to prove that Pν is non-empty. If it is not the case, it means that there is
a negative cycle in any DBM representing Pν . As the above DBM only differs from
D (which is non-empty and in normal form) by coefficients (i, 0) and (0, i) (for all
i’s), we get that there exist some i and j (with potentially i = j) such that:

(pi,0,⊂i,0) + (p0,j ,⊂0,j) + (cj,i,≺j,i) < (0,≤) (7.1)

We want to prove that this is not possible. We have to distinguish several cases,
depending on the values of pi,0 and p0,j .

Case (pi,0,⊂i,0) = (ci,0,≺i,0) (hyp not used).

We can simplify inequality (7.1) by applying the triangular inequality and we get
that

(cj,0,≺j,0) + (p0,j ,⊂0,j) < (0,≤)

1. Case (p0,j ,⊂0,j) = (c0,j ,≺0,j).
In this case, we get

(cj,0,≺j,0) + (c0,j ,≺0,j) < (0,≤)

which implies that D is empty. Contradiction.
2. Case (p0,j ,⊂0,j) = (−ν(xj),≺). (hyp: ν(xj) ≤ L(xj))

We then get that
(cj,0,≺j,0) + (−ν(xj),≤) < (0,≤)

which implies that ν(xj) 6≺j,0 cj,0. In particular we have, (c′j,0,≺′j,0) > (cj,0,≺j,0),
which is possible only if cj,0 > L(xj) (see Lemma 7.6). However, in this case, we
have that ν(xj) ≤ L(xj), which is a contradiction.

3. Case (p0,j ,⊂0,j) = (−L(xj), <). (hyp: (−L(xj), <) ≤ (c0,j ,≺0,j) and ν(xj) >
L(xj))
We get that

(cj,0,≺j,0) + (−L(xj), <) < (0,≤)

122

7.3. Extrapolation Using Zones

and thus that
cj,0 ≤ L(xj) < ν(xj)

As cj,0 ≤ L(xj), we get that (c′j,0,≺′j,0) = (cj,0,≺j,0) and thus there is a contra-
diction (because ν(xj) ≺′j,0 c′j,0).

Case (pi,0,⊂i,0) = (ν(xi),≤) (hyp: ν(xi) ≤ U(xi)).

In this case, we get that

(ν(xi),≤) + (p0,j ,⊂0,j) + (cj,i,≺j,i) < (0,≤)

1. Case (p0,j ,⊂0,j) = (c0,j ,≺0,j). (hyp not used)
Using the triangular inequality, we can simplify and we get

(ν(xi),≤) + (c0,i,≺0,i) < (0,≤)

If (c0,i,≺0,i) = (c′0,i,≺′0,i), this is not possible. Otherwise, −c0,i > U(xi) and
(c′0,i,≺′0,i) = (−U(xi), <) (see Lemma 7.7). Thus ν(xi) > U(xi), which is indeed
a contradiction.

2. Case (p0,j ,⊂0,j) = (−ν(xj),≤). (hyp: ν(xj) ≤ L(xj))
We get that

(ν(xi)− ν(xj),≤) + (cj,i,≺j,i) < (0,≤)

If (c′j,i,≺′j,i) = (cj,i. ≺j,i), then this is not possible. Thus, ∞ = (c′j,i,≺′j,i) >
(cj,i,≺j,i) and there are three cases:
– cj,i > L(xj), thus (cj,i,≺j,i) > (ν(xj),≤) which implies that (ν(xi),≤) < (0,≤

), impossible. We thus assume that cj,i ≤ L(xj).
– −c0,j > L(xj), thus −c0,j > ν(xj). From Lemma 7.8 (point 2.), this is not

possible (as ν(xj) ≤ L(xj)) if ν(xj) ≤ U(xj). Assume thus that ν(xj) > U(xj).
In this case, −ν(xj) ≤ c0,j , i.e. ν(xj) ≥ −c0,j , which leads to a contradiction.

– −c0,i > U(xi), contradiction with ν(xi) ≤ U(xi)

3. Case (p0,j ,⊂0,j) = (−L(xj), <). (hyp: ν(xj) > L(xj) and (c0,j ,≺0,j) ≥
(−L(xj), <))
We get that

(ν(xi),≤) + (−L(xj), <) + (cj,i,≺j,i) < (0,≤)

If (cj,i,≺j,i) > (L(xj), <), then we get (ν(xi),≤) < (0,≤) which is not possible.
Assume now that (cj,i,≺j,i) ≤ (L(xj), <). If (c′j,i,≺′j,i) = (cj,i,≺j,i), then

(ν(xi)− ν(xj),≤) + (c′j,i,≺′j,i) < (0,≤)

This is not possible. The only possibility is thus to have ∞ = (c′j,i,≺′j,i) >
(cj,i. ≺j,i). Can we have −c0,j > L(xj) or −c0,i > U(xi)? By hypothesis, the
first case is not possible. If −c0,i > U(xi), then (c′0,i,≺′0,i) = (−U(xi), <) which
contradicts the fact that ν(xi) ≤ U(xi).

In all cases, there is a contradiction with inequality 7.1, Pν is thus non-empty. This
concludes the proof. ¤

123

Chapter 7. Zone Based Abstractions of Time Systems

7.4 Experiments

We have implemented a prototype of a location based variant of the Extra+
LU oper-

ator in Uppaal 3.4.2. Uppaal supports networks of communicating timed automata.
Maximum lower and upper bounds for clocks are found for each automaton using a
simple fixed point iteration. Given a location vector, the maximum lower and upper
bounds are found by taking the maximum of the bounds in each location, similar
to the approach taken in [20]. For storing visited states, we rely on the minimal
constraint form representation of a zone described in [129], which does not store
+∞ entries.

As expected, experiments with the model in Figure 7.1 show that with LU extrap-
olation, the computation time for building the complete reachable state space does
not depend on the value of the constants, whereas the computation time grows with
the constant when using the classical extrapolation. We have also performed exper-
iments with models of various instances of the CSMA/CD protocol and Fischer’s
protocol for mutual exclusion. Finally, experiments using a number of industrial case
studies were made. For each model, Uppaal was run with four different options: (-
n1) classic non-location based extrapolation (without active clock reduction), (-n2)
classic location based extrapolation (active clock reduction is a side-effect of this),
(-n3) LU location based extrapolation, and (-A) classic location based extrapolation
with convex-hull approximation. In all experiments the minimal constraint form
for zone representation was used [129] and the complete state space was generated.
All experiments were performed on a 1.8GHz Pentium 4 running Linux 2.4.22, and
experiments were limited to 15 minutes of CPU time and 470MB of memory. The
results can be seen in Table 7.1.

Looking at the table, we see that for both Fischer’s protocol for mutual exclusion
and the CSMA/CD protocol, Uppaal scales considerably better with the LU extrap-
olation operator. Comparing it with the convex hull approximation (which is an
over-approximation), we see that for these models, the LU extrapolation operator
comes close to the same speed, although it still generates more states. Also notice
that the runs with the LU extrapolation operator use less memory than convex hull
approximation, due to the fact that in the latter case DBMs are used to represent
the convex hull of the zones involved (in contrast to using the minimal constraint
form of [129]). For the three industrial examples, the speedup is less dramatic.
These models have a more complex control structure and thus little can be gained
from changing the extrapolation operator. This is supported by the fact that also
the convex hull technique fails to give any significant speedup (in the last example it
even degrades performance). During the course of our experiments we also encoun-
tered examples where the LU extrapolation operator does not make any difference:
the token ring FDDI protocol and the B&O protocols found on the Uppaal website1

are among these.

1http://www.uppaal.com

124

7.4. Experiments

-n
1

-n
2

-n
3

-A
M

o
d
el

T
im

e
S
ta

te
s

M
em

T
im

e
S
ta

te
s

M
em

T
im

e
S
ta

te
s

M
em

T
im

e
S
ta

te
s

M
em

f5
4
.0

2
8
2
,6

8
5

5
0
.2

4
1
6
,9

8
0

3
0
.0

3
2
,8

7
0

3
0
.0

3
3
,6

5
0

3
f6

5
9
7
.0

4
1
,4

8
9
,2

3
0

4
9

6
.6

7
1
5
8
,2

2
0

7
0
.1

1
1
1
,4

8
4

3
0
.1

0
1
4
,6

5
8

3
f7

3
5
2
.6

7
1
,6

2
0
,5

4
2

4
6

0
.4

7
4
4
,1

4
2

3
0
.4

5
5
6
,2

5
2

5
f8

2
.1

1
1
6
4
,5

2
8

6
2
.0

8
2
0
8
,7

4
4

1
2

f9
8
.7

6
5
9
8
,6

6
2

1
9

9
.1

1
7
5
4
,9

7
4

3
9

f1
0

3
7
.2

6
2
,1

3
6
,9

8
0

6
8

3
9
.1

3
2
,6

7
6
,1

5
0

1
4
3

f1
1

1
5
2
.4

4
7
,5

1
0
,3

8
2

2
6
8

c5
0
.5

5
2
7
,1

7
4

3
0
.1

4
1
0
,5

6
9

3
0
.0

2
2
,0

2
7

3
0
.0

3
1
,6

5
1

3
c6

1
9
.3

9
2
8
7
,1

0
9

1
1

3
.6

3
8
7
,9

7
7

5
0
.1

0
6
,2

9
6

3
0
.0

6
4
,9

8
6

3
c7

1
9
5
.3

5
8
1
3
,9

2
4

2
9

0
.2

8
1
8
,2

0
5

3
0
.2

2
1
4
,1

0
1

4
c8

0
.9

8
5
0
,0

5
8

5
0
.6

6
3
8
,0

6
0

7
c9

2
.9

0
1
3
2
,6

2
3

1
2

1
.8

9
9
9
,2

1
5

1
7

c1
0

8
.4

2
3
4
1
,4

5
2

2
9

5
.4

8
2
5
1
,7

5
8

4
9

c1
1

2
4
.1

3
8
5
9
,2

6
5

7
6

1
5
.6

6
6
2
5
,2

2
5

1
3
8

c1
2

6
8
.2

0
2
,1

2
2
,2

8
6

2
0
2

4
3
.1

0
1
,5

2
5
,5

3
6

3
9
4

b
u
s

1
0
2
.2

8
6
,7

2
7
,4

4
3

3
0
3

6
6
.5

4
4
,6

2
0
,6

6
6

2
5
4

6
2
.0

1
4
,3

1
7
,9

2
0

2
4
6

4
5
.0

8
3
,8

2
6
,7

4
2

3
2
4

p
h
il
ip

s
0
.1

6
1
2
,8

2
3

3
0
.0

9
6
,7

6
3

3
0
.0

9
6
,5

9
9

3
0
.0

7
5
,9

9
2

3
sc

h
ed

1
7
.0

1
9
2
9
,7

2
6

7
6

1
5
.0

9
7
0
0
,9

1
7

5
8

1
2
.8

5
6
1
9
,3

5
1

5
2

5
5
.4

1
3
,6

3
6
,5

7
6

4
2
7

T
ab

le
7.

1:
R

es
ul

ts
fo

r
F
is

ch
er

pr
ot

oc
ol

(f
),

C
SM

A
/C

D
(c

),
a

m
od

el
of

a
bu

sc
ou

pl
er

,t
he

P
hi

lip
s

A
ud

io
pr

ot
oc

ol
,a

nd
a

m
od

el
of

a
5

ta
sk

fix
ed

-p
ri

or
it
y

pr
ee

m
pt

iv
e

sc
he

du
le

r.
-n

1
is

w
it

h
cl

as
si

ca
l
m

ax
im

um
bo

un
ds

ex
tr

ap
ol

at
io

n,
-n

2
is

w
it

h
lo

ca
ti

on
ba

se
d

m
ax

im
um

bo
un

ds
ex

tr
ap

ol
at

io
n,

-n
3

is
w

it
h

lo
ca

ti
on

ba
se

d
L
U

ex
tr

ap
ol

at
io

n,
an

d
-A

is
w

it
h

co
nv

ex
hu

ll
ov

er
-a

pp
ro

xi
m

at
io

n.
T

im
es

ar
e

in
se

co
nd

s,
st

at
es

ar
e

th
e

nu
m

be
r

of
ge

ne
ra

te
d

st
at

es
an

d
m

em
or

y
us

ag
e

is
in

M
B

.

125

Chapter 7. Zone Based Abstractions of Time Systems

7.5 Related Work

Extrapolation

The classical abstraction technique for timed automata takes into account the maxi-
mum constants to which the various clocks are compared. This technique — termed
extrapolation or normalization — was described by Daws and Tripakis [67] and rig-
orously proved by Bouyer [35]. Most of the zone based abstractions (including the
ones examined in this chapter) require that guards are restricted to conjunctions
of simple lower or upper bounds (strict or non-strict) on individual clocks. Thus,
constraints on clock differences are generally not allowed. Bouyer [35] gives more
details about intricacies of zone based abstractions in the presence of difference con-
straints. Bengtsson and Yi [25] provide a solution for this case which is based on
zone splitting.

Uppaal

Uppaal [7] is an integrated tool environment for modeling, validation and verifica-
tion of real-time systems modeled as networks of timed automata, extended with
data types (bounded integers, arrays, etc.). It is a state-of-the-art tool supporting
temporal logic verification, storage reductions [129, 23] and other reduction tech-
niques. There are many extension of the tool, e.g., Uppaal Cora for cost optimal
reachability analysis, Times for schedulability analysis and synthesis of schedules, or
Uppaal Tron for testing of real-time systems. The basic search algorithm of Uppaal
is based on zones. The technique presented in this chapter is applicable even in
these extensions of the Uppaal tool.

Improvements of Zone Based Approach

The basic extrapolation technique has been extended before. Daws and Tripakis [67]
describe a number of additional abstraction techniques including active clock reduc-
tion and the over-approximating convex hull abstraction. Behrmann et al. [20] use
approach in which the maximum constraints used in the abstraction do not only
depend on the clocks but also on the particular locations of the timed automata.
They show that active clock reduction is obtained as a special case of the location-
dependent abstraction. In this paper we compare the performance of our new (exact)
abstraction technique to that of convex hull approximation.

Successor Computation

The computation of successors over DBMs is a nontrivial operation. It requires
several steps: intersection with guards, reseting clocks, elapse of time, extrapolation
operation, and canonization (computation of normal form). The most time con-
suming is the canonization function which has complexity cubic with respect to the
number of clocks. When applying guard, resetting clocks, or computing the delay

126

7.5. Related Work

successors, the normal form can be recomputed much more efficiently [162] — this
leads to acceleration of the successor computation. In [22] we show, that by distin-
guishing lower and upper bounded clocks, we can accelerate the computation even
further.

Jobshop Scheduling

The jobshop scheduling problem consists in scheduling a finite set of jobs on a finite
set of machines under given restrictions (two jobs can not use the same machine
at the same time) such that all jobs are completed in the shortest amount of time.
As shown by Abdeddaim and Maler [2], jobs can be represented by simple timed
automata and the jobshop scheduling problem can be encoded as a (minimal cost)
reachability. Since obtained timed automata are quite special, [2] proposed a spe-
cialized technique, called domination test, for accelerating the computation. In [22]
we show that inclusion checking with the new LU-extrapolation algorithm is more
general than this domination test technique.

127

Chapter 8

Conclusions

“Anyhow,” he said, “it is nearly Luncheon Time.” [139]

The final chapter provides a summary of the thesis and its contribution, some
critique of the work and several directions for future work.

8.1 Summary

The thesis is concerned with formal verification of computer systems, particularly
with the model checking method. Techniques studied in the thesis are geared towards
an application in embedded system verification — our main interest lies in techniques
suitable for verification of systems with software and real-time aspects.

The basic aim of our effort is to alleviate the effect of state space explosion. To
this end, we study different techniques that try to reduce the size of the state space,
particularly abstraction and reduction techniques. Although we study techniques of
different flavour, all of them are connected by three main themes:

– Equivalences. Equivalences are used to study the effect of reductions and abstrac-
tions and to formalize their correctness. The main equivalences that are employed
are reachability equivalence, simulation equivalence, and bisimulation.

– Abstraction. Abstraction serves in different ways as a powerful reduction tech-
nique. We work with abstraction functions both on the level of states (i.e., for
a given concrete state a function produces an abstract state) and on the level
of transition systems (i.e., for a given concrete transition system a function pro-
duces an abstract transition system). In this way, abstraction can be employed
both to discuss theoretical reasoning about techniques and their correctness and
to describe the realization of reduction techniques.

– Approximation and refinement. In order to reduce the size of a state space signifi-
cantly, we often end up with (only) approximation of the full state space. Approxi-
mations are often sufficient to find errors or prove properties. If the approximation
is not good enough, an iterative refinement is used to get better approximations.

In Chapter 2 we describe a simple Lego c© Mindstorms system for sorting bricks.
Let us review the content of the thesis on this example and discuss how different
parts of the thesis could be useful for verification of (more realistic version of) such
a system.

129

Chapter 8. Conclusions

Chapter 3 is concerned with on-the-fly reductions. These reductions aim at reduc-
ing the size of the state space during the exploration by omitting some parts of the
state space. We preform the reduction in such a way that the reduced structure is
equivalent to the full state space. For the Sorter model, this technique can elimi-
nate redundancy introduced by the symmetry of bricks. If we had considered more
realistic model of the system, it would be useful to employ partial order reduction,
which reduces some interleaving due to concurrency1.

Chapter 4 is concerned with predicate abstraction and refinement techniques.
These techniques would be particularly useful if we considered a more realistic ver-
sion of the Sorter with a more complex control program. Predicate abstraction
techniques are suitable for abstracting away (data) aspects of the program which
do not directly influence the critical behaviour of the system. For example, the
PlaySound function or the exact value of request variable are not important in
the Sorter example. The key feature of these techniques is that the abstraction is
performed automatically using an automatic refinement.

Chapter 5 aims at similar goals as Chapter 4. The main difference is that instead
of over-approximations, which are used and refined in Chapter 4, we use under-
approximations and their refinement. This approach is more suitable for falsification
rather then verification. Thus the approach would be particularly useful during the
construction of the Sorter system, as a bridge between usual debugging techniques
and classical verification techniques.

Chapter 6 turns to real-time aspects of embedded systems and studies the nature of
time, particularly the relation between dense time and sampled time. In Chapter 2,
we provide two models of the Sorter system: one with sampled time, another with
dense time. This demonstrates the usefulness of understanding the relations between
these two semantics. The chapter also studies different non-emptiness problems.
Non-emptiness problems form a fundamental part of the verification process.

Chapter 7 is also concerned with real-time features of systems. It is more specific
and practical then Chapter 6 — it focuses on reduction technique for a particular
algorithm for timed automata state space exploration. The technique is based on
the observation that practical examples often use clocks in restricted ways. For
example, the Timer clock in the Sorter is compared only to lower bounds, i.e., we
never check whether Timer is smaller than some bound. This observation enables
us to do an abstraction step during the exploration more aggressively and thus to
obtain smaller state space.

8.2 Contribution and Critique

In the review of contributions of the thesis, we also consider a possible critique and
provide arguments to defend the thesis.

1In our simple model we use token-based synchronization so there is no interleaving.

130

8.2. Contribution and Critique

The most important contribution of the thesis lies in the under-approximation
refinement algorithm for software verification. The algorithm presents a novel ap-
proach to application of predicate abstraction in software verification. We prove the
correctness of the approach and discuss formal termination properties.

At the moment, it is not completely clear whether the approach will be useful for
realistic programs — the approach is demonstrated only by small examples and the
implementation for real programming languages is not straightforward. Although
we believe that the approach will scale, we have to admit that at the moment
we are not able to demonstrate it. An engineering effort required to address the
implementation issues is well beyond the scope of the thesis. Tools based on over-
approximation refinement, despite being intensively developed during last years, are
also still applied to rather small examples.

Moreover, the contribution of this approach is also in the attitude to the prob-
lem: it provides a new point of view on refinement algorithms. Maybe the proposed
algorithm will not turn out to be the practically most useful one, but it can in-
spire another work based on under-approximation refinement. It also suggests new
possibilities for combining under- and over-approximations (as we discuss below).

The thesis also contains several important technical results. The most interesting
one is the decidability of the non-emptiness problem of timed automata ω-language
in sampled semantics with an unknown sampling period. A straightforward objec-
tion is that this problem is so specialized and complicatedly formulated that nobody
is really interested in it. There are, however, quite good reasons why to study this
problem:

– This problem can be more practically relevant than another, more simply for-
mulated non-emptiness problems. The formulation of this problem overcomes
difficulties of both dense time semantics (the problem of non-realizable runs) and
classical sampled semantics (the problem of determining a fixed sampling period).

– This problem was formulated before by Alur and Madhusudan [5] who provided
wrong classification of the problem.

– The decidability proof is interesting. Particularly, we provide an interesting char-
acterization of reachability relations between valuations. This characterization
can be useful in other contexts as well.

The contribution of the thesis with the most straightforward practical outcome is
the novel extrapolation technique for zone based exploration algorithm for timed au-
tomata. This technique is based on distinguishing between lower and upper bounds
in guards. Although the provided experimental results for this technique are not
very thorough, the new technique clearly improves on previously used extrapolation
techniques: in some cases it brings clear improvement and at the same time it does
not bring any additional overhead. This alone justifies its usage in the model checker
implementation.

Finally, the thesis provides overviews of on-the-fly reduction techniques, predicate
abstraction techniques, and results about dense and sampled semantics of timed

131

Chapter 8. Conclusions

automata. The presented results are collected from many different sources which
use different notations. Our overviews are presented in a single framework and fill
in some missing results. This presentation greatly facilitates understanding of the
results and enables better comparison. For on-the-fly reductions we also provide an
experimental evaluation.

However, for the predicate abstraction the experimental comparison is absent and
even for on-the-fly reductions it would be useful to have a more thorough comparison,
particularly with models taken from “real users” and not only “polished” models
from academics.

This objection is definitely pertinent. Reasons why the thesis does not contain
more experimental results are practical: it would be very difficult to perform such
experiments at the time. Examples used in the evaluation of on-the-fly reductions
are state-of-the-art examples. Compared to usual experimental works in the model
checking field, the set of used examples is rather large. Concerning predicate ab-
straction techniques, here the comparison is even more problematical. At first, the
usefulness of these techniques is based on a significant amount of an engineering work
(heuristics, implementation details, etc.). It would be very difficult to implement
different techniques in a single setting. Secondly, interesting benchmark examples
are hard to find — even practically oriented papers on predicate abstraction usually
contain experiments on only few classical examples.

To conclude, we believe that the thesis present several interesting contributions.
Some of the results need to be further extended, improved, or evaluated, but this
work is beyond the scope of the thesis and we leave it as a future work.

8.3 Future Work

There exist many possible direction for future work, some of them are directly pro-
posed by the above given critique. Here we discuss the most interesting ones.

Evaluation of Under-approximation Refinement for Finite State Systems

In Chapter 3 we briefly outline possible under-approximation refinement approaches
for finite state systems (e.g., based on non-exact abstraction functions or on approx-
imate techniques for reduction of interleaving). The merit of these approaches is, at
the moment, disputable. From theoretical point of view, we cannot say much about
these techniques — in the worst case they need to do the same work as exact tech-
niques. These techniques can be advantageous only for error detection. The question
is, whether they are really advantageous, i.e., whether we can find interesting errors
in early iterations of the refinement algorithm.

As we argue above, it is difficult to perform testifying evaluation. For evaluation
of these techniques we need models with realistic, non-trivial errors. At the moment,
there is quite a large number of finite state systems case studies. But most of these

132

8.3. Future Work

case studies present only a final, correct model. For the evaluation of error-detecting
techniques we need semi-finished models with errors.

Evaluations over Non-expert Users’ Models

In Chapter 3 we argue that there can be a significant difference between models cre-
ated by experts and models created by non-expert users. Since model checking aims
at automatization of the verification process it should be applicable by non-expert
users. Unfortunately, most of the currently performed experimental evaluation is
done on models crafted by researches. It is important to create benchmarks of ex-
amples created by ordinary users and evaluate techniques (particularly reduction
techniques) over these models.

Under-approximation Refinement for Full Programming Languages

One of the straightforward directions for further work is the extension of the under-
approximation refinement algorithm given in Chapter 5 to full programming lan-
guages. This represents several nontrivial engineering challenges, for example: deal-
ing with pointers and complex data structures, heuristics for optimization of theorem
prover calls, heuristics for guiding of the refinement. Note that many of these issues
are very similar to those encountered in implementation of over-approximation re-
finement techniques and we expect that they can be solved in similar manner. There
are, however, certain issues which are specific for this approach and which need to
be solved (e.g., guiding of the refinement).

Combination of Over- and Under-Approximations

Up to now, the combination of over- and under-approximations based on predicate
abstraction has been advocated only in theoretical works as a technique for proving
general properties (involving both universal and existential quantification) [92, 13].
In practice, the combination has not been exploited to a larger extent. This is
caused by impracticality of must-abstractions2. We believe that the new under-
approximation based on αSearchCheck is more practical.

This opens possibilities of practical combinations of over- and under-
approximations. Such a combination has several plausible advantages. These tech-
niques are complementary, each has its own strength: over-approximation based
techniques are better for proving programs correct, whereas under-approximation
based techniques are better for finding errors. By using combination, we can get
earlier termination. In the case that the search does not terminate, we can give user
more information. By having both over- and under-approximation it should also be
possible to better choose predicates for the refinement.

2Note that whereas there exist several tools based on may-abstractions [14, 104, 52], there is none
based on must-abstractions.

133

Chapter 8. Conclusions

Heuristic Search for a Right Abstraction

Software model checking consists of two main steps: searching for a right abstraction
and searching in the state space of the abstract model. Whereas the second step is
automatic and quite optimized, the first step is still mainly manual.

Current refinement algorithms perform automated search for abstraction, but only
in a limited fashion. They start with a set of predicates and keep on adding new
predicates according to some strategy — so the search is one-way, linear. It may
be useful to view the search for a right abstraction as a standalone problem and
consider also other approaches then a one-way search.

Let us consider a ’meta state space’ of abstractions. Each node in this meta state
space is given by a tuple (A, Φ) where A is an approximation technique based on
predicate abstraction and Φ is a set of predicates. Each node in this meta state
space defines an approximation of an input program. Given an input program P
and a property ϕ, the goal of the meta-search is to find a tuple (A,Φ) such that the
corresponding approximation produced by (A, Φ) is sufficient to determine whether
P satisfy ϕ.

Since we are dealing with undecidable problems, we cannot hope to get some de-
terministic optimal algorithm for the meta-search. So the meta-search is a heuristic
search and we should concentrate on finding practical heuristics for guiding this
search.

The meta-search setting lends itself to a distributed solution. Each tuple (A, Φ)
defines a stand-alone, non-trivial problem — generation of the approximation and
checking of the property over this approximation. These problems can be easily
distributed among many workstations. The manager coordinates the meta-search —
it collects answers and determines the strategy, i.e., it decides which approximations
should be computed. This use of distribution can be much more efficient than the
usual use of a distributed computation in model checking, when several workstation
compute together a single state space and thus have to communicate intensively.

Algorithms for the Non-emptiness Problems with an Unknown Period

We provide decidability result for the ω-language non-emptiness problem in sampled
semantics with an unknown sampling period and we give some arguments, why this
problem can be practically important. So the natural questions to ask are:

– What is the complexity of the problem?
– Is there any practically usable algorithm for the problem?

Distinguishing Lower/Upper Bounds in Timed Automata Verification

In Chapter 7 we show that distinguishing lower and upper bounds can be beneficial
for zone based algorithms for timed automata verification. There exist several other
approaches to timed automata verification which are not based on the use of zones,
e.g., symbolic representation of sets of valuations using decision diagrams (BDDs

134

8.3. Future Work

and similar structures) or SAT techniques based on bounded model checking ideas.
An interesting question is whether these other approaches can also benefit from
distinguishing between lower and upper bounds.

135

Bibliography

[1] FDIV replacement program. Intel White Paper, November 1994.
[2] Y. Abdeddaim and O. Maler. Job-shop scheduling using timed automata.

In Proc. of Computer Aided Verification (CAV 2001), volume 2102 of LNCS,
pages 478–492. Springer, 2001.

[3] Y. Abdeddäım and O. Maler. Preemptive job-shop scheduling using stopwatch
automata. In Proc. of Tools and Algorithms for Construction and Analysis of
Systems (TACAS02), volume 2280 of LNCS, pages 113–126. Springer, 2002.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[5] R. Alur and P. Madhusudan. Decision problems for timed automata: A sur-
vey. In Formal Methods for the Design of Real-Time Systems, volume 3185 of
LNCS, pages 1–24. Springer, 2004.

[6] R. Alur and B.-Y. Wang. “Next” heuristic for on-the-fly model checking.
In International Conference on Concurrency Theory, volume 1664 of LNCS,
pages 98–113. Springer, 1999.

[7] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David,
A. Fehnker, T. Hune, B. Jeannet, Kim g. Larsen, O. Mller, P. Pettersson,
C. Weise, and W. Yi. Uppaal – now, next, and future. In Proc. Modelling and
Verification of Parallel Processes (Movep2k), volume 2067 of LNCS, pages
99–124. Springer, 2001.

[8] G. R. Andrews. Concurrent Programming, Principles and Practice. Addison-
Wesley Publishing Company, 1991.

[9] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data-
structures for the verification of timed automata. In Proc. of Hybrid and Real-
Time Systems (HART’97), volume 1201 of LNCS, pages 346–360. Springer,
1997.

[10] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed
automata and digital circuits. In Proc. of Conference on Concurrency Theory
(CONCUR’98), volume 1466 of LNCS, pages 470–484. Springer, 1998.

[11] T. Ball. A theory of predicate-complete test coverage and generation. In Proc.
Formal Methods for Components and Objects (FMCO 2004), volume 3188 of
LNCS. Springer, 2004.

[12] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem
proving for predicate abstraction refinement. In Proc. of Computer Aided
Verification (CAV’04), volume 3114 of LNCS, pages 457–461. Springer, 2004.

137

Bibliography

[13] T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. In Proc.
of Computer Aided Verification (CAV 2005), LNCS. Springer, 2005.

[14] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic pred-
icate abstraction of c programs. In Proc. of Programming Language Design
and Implementation (PLDI 2001), pages 203–213. ACM Press, 2001.

[15] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstrac-
tion for model checking C programs. In Proc. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2001), volume 2031 of LNCS,
pages 268–283. Springer, 2001.

[16] T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction
refinement for software model checking. In Proc. of Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’02), number 2280 in
LNCS, pages 158–172. Springer, 2002.

[17] T. Ball and S. K. Rajamani. Automatically validating temporal safety prop-
erties of interfaces. In Proc. of SPIN workshop, volume 2057 of LNCS, pages
103–122. Springer, 2001.

[18] T. Basten, D. Bosnacki, and M.C.W. Geilen. Cluster-based partial-order re-
duction. Automated Software Engineering, 11(4):365–402, 2004.

[19] J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. Model checking the IBM
gigahertz processor: An abstraction algorithm for high-performance netlists.
In Proc. of Computer Aided Verification (CAV 1999), volume 1633 of LNCS,
pages 72–83. Springer, 1999.

[20] G. Behrmann, P. Bouyer, E. Fleury, and Kim G. Larsen. Static guard anal-
ysis in timed automata verification. In Proc. of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2003), volume 2619 of LNCS,
pages 254–277. Springer, 2003.

[21] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek. Lower and upper
bounds in zone based abstractions of timed automata. In Proc. of Tools and
Algorithms for Construction and Analysis of Systems (TACAS 2004), volume
2988 of LNCS, pages 312–326. Springer, 2004.

[22] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek. Lower and upper
bounds in zone-based abstractions of timed automata. International Journal
on Software Tools for Technology Transfer, 2005.

[23] G. Behrmann, K. G. Larsen, and R. Pelánek. To store or not to store. In Proc.
of Computer Aided Verification (CAV 2003), volume 2725 of LNCS. Springer,
2003.

[24] J. Bengtsson. Clocks, DBMs ans States in Timed Systems. PhD thesis, De-
partment of Information Technology, Uppsala University, Uppsala, Sweden,
2002.

[25] J. Bengtsson and W. Yi. On clock difference constraints and termination in
reachability analysis of timed automata. In Proc. of International Confer-
ence on Formal Engineering Methods (ICFEM’03), number 2885 in LNCS.
Springer, 2003.

138

Bibliography

[26] C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Mongardi, and D. Ro-
mano. A formal verification environment for railway signaling system design.
Formal Methods in System Design: An International Journal, 12(2):139–161,
March 1998.

[27] D. Beyer. Improvements in BDD-based reachability analysis of timed au-
tomata. In Proc. of Formal Methods Europe (FME 2001), volume 2021 of
LNCS, pages 318–343. Springer, 2001.

[28] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. of Tools and Algorithms for Construction and Analysis of
Systems (TACAS 1999), volume 1579 of LNSC, pages 193–207. Springer, 1999.

[29] S. Blom and J. van de Pol. State space reduction by proving confluence. In
Proc. of Computer Aided Verification (CAV 2002), number 2404 in LNCS,
pages 596–609. Springer, 2002.

[30] B. Boigelot and P. Godefroid. Symbolic verification of communication pro-
tocols with infinite state spaces using QDDs. In Proc. of Computer Aided
Verification (CAV 1996), volume 1102 of LNCS, pages 1–12. Springer, 1996.

[31] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc. of
Computer Aided Verification (CAV 1994), volume 818 of LNCS, pages 55–67.
Springer, 1994.

[32] D. Bosnacki. Digitization of timed automata. In Proc. of Formal Methods for
Industrial Critical Systems (FMICS’99), pages 283–302, 1999.

[33] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. In Proc. of SPIN
Workshop, volume 1885 of LNCS, pages 1–19. Springer, 2000.

[34] P. Bouyer. Timed automata may cause some troubles. Research Report LSV–
02–9, Laboratoire Specification et Verification, ENS de Cachan, France, 2002.

[35] P. Bouyer. Untameable timed automata! In Proc. of Symposium on Theoretical
Aspects of Computer Science (STACS’03), volume 2607 of LNCS, pages 620–
631. Springer, 2003.

[36] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updat-
able? In Proc. of Computer Aided Verification (CAV 2000), volume 1855 of
LNCS, pages 464–479. Springer, 2000.

[37] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kro-
nos: a model-checking tool for real-time systems. In Proc. of Computer Aided
Verification (CAV’98), volume 1427 of LNCS, pages 546–550. Springer, 1998.

[38] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some Progress in the Symbolic
Verification of Timed Automata. In Proc. of Computer Aided Verification
(CAV’97), volume 1254 of LNCS, pages 179–190. Springer, 1997.

[39] M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata
using dense and discrete time semantics. In Proc. of Correct Hardware Design
and Verification Methods (CHARME’99), volume 1703 of LNCS, pages 125–
141. Springer, 1999.

[40] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model checking
based on negative cycle detection. In Proc. Foundations of Software Technology

139

Bibliography

and Theoretical Computer Science (FST TCS 2001), volume 2245 of LNCS,
pages 96–107. Springer, 2001.

[41] L. Brim, I. Černá, P. Krčál, and R. Pelánek. How to employ reverse search in
distributed single-source shortest paths. In Proc. SOFSEM’01, volume 2234
of LNCS, pages 191–200. Springer, 2001.

[42] L. Brim, I. Černá, P. Moravec, and J. Šimša. Under-approximation generation
using partial order reduction. Technical Report FIMU-RS-2005-04, Masaryk
University Brno, 2005.

[43] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theor. Comput. Sci., 59(1-2):115–
131, 1988.

[44] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state
systems using presburger arithmetic. In Proc. of Computer Aided Verification
(CAV’97), volume 1254 of LNCS, pages 400–411. Springer, 1997.

[45] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170, 1992.

[46] R. Cardell-Oliver. Conformance test experiments for distributed real-time
systems. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, pages 159–163, New York, NY,
USA, 2002. ACM Press.

[47] L. Carroll. Alice in Wonderland and Through the Looking Glass. 1865.
[48] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control prob-

lems for timed and hybrid systems. In Proc. of the Hybrid Systems: Compu-
tation and Control, volume 2289 of LNCS, pages 134–148. Springer, 2002.

[49] F. Cassez and K. G. Larsen. The impressive power of stopwatches. In Proc. of
Conference on Concurrency Theory (CONCUR 2000), number 1877 in LNCS,
pages 138–152. Springer, 2000.

[50] I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In Proc.
SPIN workshop, volume 2648 of LNCS, pages 49–73. Springer, 2003.

[51] I. Černá and R. Pelánek. Relating hierarchy of temporal properties to model
checking. In Proc. of Mathematical Foundations of Computer Science (MFCS
2003), volume 2747 of LNCS, pages 318–327. Springer, 2003.

[52] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. ACM Trans. Computer Systems, 30(6):388–402,
2004.

[53] S. Chaki, E. Clarke, A. Groce, and O. Strichman. Predicate abstraction with
minimum predicates. In Proc. Correct Hardware Design and Verification Meth-
ods (CHARME 2003), volume 2860 of LNCS. Springer, 2003.

[54] S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for
State Space Exploration. In Proc. of Tools and Algorithms for Construction
and Analysis of Systems (TACAS 2001), volume 2031 of LNCS, pages 450–464.
Springer, 2001.

140

Bibliography

[55] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Proc. of Computer Aided Verification (CAV
2000), volume 1855 of LNCS, pages 154–169. Springer, 2000.

[56] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[57] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[58] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction
using partial order techniques. International Journal on Software Tools for
Technology Transfer (STTT), 2(3):279–287, November 1999.

[59] H. Comon and Y. Jurski. Timed automata and the theory of real numbers.
In Proc. of Conference on Concurrency Theory (CONCUR’99), volume 1664
of LNCS, pages 242–257. Springer, 1999.

[60] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem proving
for program verification. In Proc. of Computer Aided Verification (CAV’05),
volume 3576 of LNCS, pages 296–300. Springer, 2005.

[61] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, Corina S. Păsăreanu,
Robby, and H. Zheng. Bandera: extracting finite-state models from java source
code. In Proc. of International Conference on Software Engineering (ICSE
2000), pages 439–448. ACM Press, 2000.

[62] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Proc. of Principles of Programs Languages (POPL 1977), pages 238–252,
1977.

[63] D. Dams. Comparing abstraction refinement algorithms. In Proc. of Workshop
on Software Model Checking, volume 89(3) of ENTCS. Elsevier, 2003.

[64] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[65] D. Dams and K. S. Namjoshi. The existence of finite abstractions for branching
time model checking. In Proc. of Logic in Computer Science (LICS 2004),
pages 335–344. IEEE Computer Society, 2004.

[66] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In Proc.
of Computer Aided Verification (CAV ’99), pages 160–171. Springer, 1999.

[67] C. Daws and S. Tripakis. Model-checking of real-time reachability properties
using abstractions. In Proc. of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), volume 1384 of LNCS, pages 313–329.
Springer, 1998.

[68] C. Daws and S. Yovine. Reducing the number of clock variables of timed
automata. In Proc. of Real-Time Systems Symposium (RTSS ’96), pages 73–
81. IEEE Computer Society, 1996.

[69] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of
games: Uncertainty, but with precision. In Proc. of Logic in Computer Science
(LICS 2004), pages 170–179. IEEE Computer Society, 2004.

141

Bibliography

[70] L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Detecting errors before
reaching them. In Proc. of Computer Aided Verification (CAV 2000), volume
1855 of LNCS, pages 186–201, 2000.

[71] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static
checking. Research Report 159, Compaq Systems Research Center, 1998.

[72] D. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proc. of Automatic Verification Methods for Finite State Systems, volume
407 of LNCS, pages 197–212. Springer, 1989.

[73] C. Dima. Computing reachability relations in timed automata. In Proc. of
Symp. on Logic in Computer Science (LICS 2002). IEEE Computer Society
Press, 2002.

[74] Y. Dong and C. R. Ramakrishnan. An optimizing compiler for efficient model
checking. In Proc. of Formal Description Techniques for Distributed Systems
and Communication Protocols (FORTE XII) and Protocol Specification, Test-
ing and Verification (PSTV XIX), pages 241–256. Kluwer, B.V., 1999.

[75] A. Dovier, R. Gentilini, C. Piazza, and A. Policriti. Rank-based symbolic
bisimulation (and model checking). In Proc. of Workshop on Logic, Language,
Information and Computation (WoLLIC 2002), volume 67 of ENTCS. Else-
vier, 2002.

[76] A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. In Proc.
of Computer Aided Verification (CAV’01), volume 2102 of LNCS, pages 79–90.
Springer, 2001.

[77] B. Dutertre and V. Stavridou. Formal requirements analysis of an avionics
control system. Software Engineering, 23(5):267–278, 1997.

[78] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detect-
ing relevant program invariants. In Proc. 22nd International Conference on
Software Engineering (ICSE’00), pages 449–458. ACM Press, 2000.

[79] J. C. Fernandez, M. Bozga, and L. Ghirvu. State space reduction based on
live variables analysis. Journal of Science of Computer Programming (SCP),
47(2-3):203–220, 2003.

[80] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In Proc. of Principles of programming languages
(POPL’05), pages 110–121. ACM Press, 2005.

[81] C. Flanagan and S. Qadeer. Thread-modular model checking. In Proc. of
SPIN Workshop, volume 2648 of LNCS. Springer, 2003.

[82] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construc-
tion for model-checking. In Proc. SPIN Workshop, volume 2057 of LNCS,
pages 217–234. Springer, 2001.

[83] J. Geldenhuys. State caching reconsidered. In Proc. of SPIN Workshop, vol-
ume 2989 of LNCS, pages 23–39. Springer, 2004.

[84] J. Geldenhuys and P. J. A. de Villiers. Runtime efficient state compaction
in SPIN. In Proc. of SPIN Workshop, volume 1680 of LNCS, pages 12–21.
Springer, 1999.

142

Bibliography

[85] R. Gerth. Model checking if your life depends on it: A view from Intel’s
trenches. In Proc. SPIN workshop, volume 2057 of LNCS. Springer, 2001.

[86] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to
branching time model checking. Information and Computation, 150(2):132–
152, 1999.

[87] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and re-
finements in abstract model checking. In Proc. 8th Static Analysis Symposium
(SAS’01), volume 2126 of LNCS, pages 356–373. Springer, 2001.

[88] J. Gleick. A bug and a crash - sometimes a bug is more than a nuisance. New
York Times Magazine, December 1996.

[89] P. Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem, volume 1032 of LNCS. Springer,
1996.

[90] P. Godefroid. Software model checking: The VeriSoft approach. Technical
Memorandum ITD-03-44189G, Bell Labs, March 2004.

[91] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited.
In Proc. of Computer Aided Verification (CAV 1992), volume 663 of LNCS,
pages 178–191. Springer, 1992.

[92] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking
using modal transition systems. In Proc. of Conference on Concurrency Theory
(CONCUR ’01), pages 426–440. Springer, 2001.

[93] P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic
algorithms. In Proc. of Tools and Algorithms for Construction and Analysis
of Systems (TACAS 2002), volume 2280 of LNCS, pages 266–280. Springer,
2002.

[94] A. Gollu, A. Puri, and P. Varaiya. Discretization of timed automata. In
Proc. of Conference on Decision and Control, pages 957–958. IEEE Computer
Society, 1994.

[95] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Proc.
of Computer Aided Verification (CAV 1997), pages 72–83. Springer, 1997.

[96] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite
state machines from abstract state machines. In Proc. of International sym-
posium on Software testing and analysis (ISSTA’02), pages 112–122. ACM
Press, 2002.

[97] A. Groce and W. Visser. Heuristics for model checking Java programs. Software
Tools for Technology Transfer (STTT), 6(4):260–276, 2004.

[98] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In Proc. of Prin-
ciples of programming languages (POPL ’05), pages 122–131, New York, NY,
USA, 2005. ACM Press.

[99] O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

[100] P. Haslum. Model checking by random walk. In Proc. of ECSEL Workshop,
1999.

143

Bibliography

[101] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construc-
tion. Higher-Order and Symbolic Computation, 13(4):315–353, 2000.

[102] M. Hendriks and K. G. Larsen. Exact acceleration of real-time model checking.
In Workshop on Theory and Practice of Timed Systems (TPTS’02), volume 65
of ENTCS. Elsevier, 2002.

[103] T. A. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions from
proofs. In Proc. 31st Symposium on Principles of Programming Languages
(POPL’04), pages 232–244. ACM Press, 2004.

[104] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proc. of Principles of Programming Languages (POPL 2002), pages pp. 58–70.
ACM Press, 2002.

[105] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proc. of ACM symposium on Theory of computing
(STOC’95), pages 373–382. ACM Press, 1995.

[106] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Proc. of Colloquium on Automata, Languages and Programming (ICALP’92),
volume 623 of LNCS, pages 545–558. Springer, 1992.

[107] G. J. Holzmann. Algorithms for automated protocol verification. AT&T Tech-
nical Journal, 69(2):32–44, 1990.

[108] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

[109] G. J. Holzmann. An analysis of bitstate hashing. In Proc. of Protocol Specifi-
cation, Testing, and Verification, pages 301–314. Chapman & Hall, 1995.

[110] G. J. Holzmann. The engineering of a model checker: the GNU i-protocol case
study revisited. In Proc. of SPIN Workshop, volume 1680 of LNCS. Springer,
1999.

[111] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Proc. of Protocol Specification, Testing,
and Verification, 1992.

[112] G. J. Holzmann and D. Peled. An improvement in formal verification. In Proc.
of Formal Description Techniques VII, pages 197–211. Chapman & Hall, Ltd.,
1995.

[113] G. J. Holzmann and A. Puri. A minimized automaton representation of reach-
able states. Software Tools for Technology Transfer (STTT), 3(1):270–278,
1998.

[114] G.J. Holzmann and R. Joshi. Model-driven software verification. In Proc. of
SPIN Workshop, volume 2989 of LNCS, pages 77–92. Springer, 2004.

[115] R. Iosif. Symmetric model checking for object-based programs. Technical
Report TR 2001-5, Kansas State University, 2001.

[116] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods
in System Design, 9(1–2):41–75, 1996.

[117] T. K. Iversen, M. J. Kristoffersen, K. J., Larsen, K. G., M. Laursen, R. G.
Madsen, S. K. Mortensen, P. Pettersson, and C. B. Thomasen. Model-checking

144

Bibliography

real-time control programs — Verifying Lego mindstorms systems using Up-
paal. In Proc. of 12th Euromicro Conference on Real-Time Systems, pages
147–155. IEEE Computer Society Press, June 2000.

[118] H. Jain, F. Ivancic, A. Gupta, and M. K. Ganai. Localization and register
sharing for predicate abstraction. In Proc. of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05), volume 3440 of LNCS,
pages 397–412. Springer, 2005.

[119] M.D. Jones and J.Sorber. Parallel random walk search for LTL violations. In
Proc. of Parallel and Distributed Model Checking (PDMC 2002), volume 68 of
ENTCS, pages 156–161. Elsevier, 2002.

[120] J.P. Krimm and L. Mounier. Compositional state space generation from Lotos
programs. In Proc. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 1997), volume 1217 of LNCS, pages 239–258. Springer,
1997.

[121] P. Krčál and R. Pelánek. Reachability relations and sampled semantics of
timed systems. Technical Report FIMU-RS-2005-09, Masaryk University Brno,
2005.

[122] P. Krčál and W. Yi. Decidable and undecidable problems in schedulability
analysis using timed automata. In Proc. of Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’04), volume 2988 of LNCS, pages
236–250. Springer, 2004.

[123] A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Probabilistic state space
search. In Proc. of Computer-Aided Design (CAD 1999), pages 574–579. IEEE
Press, 1999.

[124] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigun. Static partial
order reduction. In Proc. Tools and Algorithms for Construction and Analysis
of Systems (TACAS 1998), volume 1384 of LNCS, pages 345 – 357. Springer,
1998.

[125] R. P. Kurshan, V. Levin, and H. Yenigün. Compressing transitions for model
checking. In Proc. of Computer Aided Verification (CAV 2002), volume 2404
of LNCS, pages 569–581. Springer, 2002.

[126] S. K. Lahiri, T. Ball, and B. Cook. Predicate abstraction via symbolic decision
procedures. In Proc. of Computer Aided Verification (CAV’05), volume 3576
of LNCS, pages 24–38. Springer, 2005.

[127] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verifica-
tion by abstraction. In Proc. of Tools and Algorithms for the Construction
and Analysis of Systems TACAS 2001, volume 2031 of LNCS, pages 98–112.
Springer, 2001.

[128] K. G. Larsen and W. Yi. Time-abstracted bisimulation: Implicit specifications
and decidability. Information and Computation, 134(2):75–101, 1997.

[129] Kim G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of
real-time systems: Compact data structure and state-space reduction. In Proc.
of Real-Time Systems Symposium (RTSS’97), pages 14–24. IEEE Computer
Society Press, 1997.

145

Bibliography

[130] M. Laursen, R. Madsen, and S. Mortensen. Verifying distributed Lego RCX
programs using Uppaal, 1999. Technical report, Institute of Computer Science,
Aalborg University.

[131] D. Lee and M. Yannakakis. Online minimization of transition systems. In
Proc. of Symposium on Theory of Computing (STOC 1992), pages 264–274.
ACM Press, 1992.

[132] F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In
Proc. of SPIN workshop, volume 1680 of LNCS. Springer, 1999.

[133] F. Lerda and W. Visser. Addressing dynamic issues of program model checking.
In Proc. of SPIN Workshop, volume 2057 of LNCS, pages 80–102. Springer,
2001.

[134] N. G. Leveson and C. S. Turner. Investigation of the Therac-25 accidents.
IEEE Computer, 26(7):18–41, 1993.

[135] F. Lin, P. Chu, and M. Liu. Protocol verification using reachability analysis:
the state space explosion problem and relief strategies. Computer Communi-
cation Review, 17(5):126–134, 1987.

[136] M. R. Lowry. Software construction and analysis tools for future space mis-
sions. In Proc. Tools and Algorithms for Construction and Analysis of Systems
(TACAS 2002), volume 2280 of LNCS, pages 1–19. Springer, 2002.

[137] M. Mihail and C. H. Papadimitriou. On the random walk method for protocol
testing. In Proc. Computer Aided Verification (CAV 1994), volume 818 of
LNCS, pages 132–141. Springer, 1994.

[138] K. L. McMillan. A technique of state space search based on unfolding. Formal
Methods in System Design: An International Journal, 6(1):45–65, 1995.

[139] A. A. Milne. Winnie-the-Pooh. 1926.
[140] M. O. Möller. Parking can get you there faster - model augmentation to speed

up real-time model-checking. In Electronic Notes in Theoretical Computer
Science, volume 65. Elsevier, 2002.

[141] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC:
A pragmatic approach to model checking real code. In Proc. of Symposium on
Operating Systems Design and Implementation (OSDI’02), 2002.

[142] K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for
automatic abstraction. In Proc. of Computer Aided Verification (CAV 2000),
pages 435–449. Springer, 2000.

[143] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decid-
ability for timed automata. In Proc. of IEEE Symp. on Logic in Computer
Science (LICS 2003), pages 198–207. IEEE Computer Society Press, 2003.

[144] K. Ozdemir and H. Ural. Protocol validation by simultaneous reachability
analysis. Computer Communications, 20:772–788, 1997.

[145] G. J. Pace, F. Lang, and R. Mateescu. Calculating tau-confluence composi-
tionally. In Proc. Computer Aided Verification (CAV 2003), volume 2725 of
LNCS, pages 446 – 459. Springer, 2003.

[146] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM
Journal of Computing, 16(6):973–989, 1987.

146

Bibliography

[147] C. Pasareanu, R. Pelánek, and W. Visser. Concrete search with abstract
matching and refinement. In Proc. of Computer Aided Verification (CAV
2005), volume 3576 of LNCS, pages 52–66. Springer, 2005.

[148] C. Pasareanu, R. Pelánek, and W. Visser. State matching for efficient test
input generation. In Proc. of Automated Software Engineering (ASE’05), pages
414–417. ACM Press, 2005.

[149] C. Pasareanu and W. Visser. Verification of java programs using symbolic
execution and invariant generation. In Proc. of SPIN Workshop 2004, volume
2989 of LNCS. Springer, 2004.

[150] R. Pelánek. Typical structural properties of state spaces. In Proc. of SPIN
Workshop, volume 2989 of LNCS, pages 5–22. Springer, 2004.

[151] R. Pelánek. On-the-fly state space reductions. Technical Report FIMU-RS-
2005-03, Masaryk University Brno, 2005.

[152] R. Pelánek, T. Hanžl, I. Černá, and L. Brim. Enhancing random walk state
space exploration. In Proc. of Formal Methods for Industrial Critical Systems
(FMICS’05), pages 98–105. ACM Press, 2005.

[153] R. Pelánek and J. Strejček. Deeper connections between LTL and alternat-
ing automata. In Proc. of Conference on Implementation and Application of
Automata(CIAA 2005), volume 3845 of LNCS, pages 241–252. Springer, 2005.

[154] D. Peled. Combining partial order reductions with on-the-fly model-checking.
In Proc. of Computer Aided Verification (CAV 1994), volume 818 of LNCS,
pages 377–390. Springer, 1994.

[155] W. Penczek, R. Gerth, R. Kuiper, and M. Szreter. Partial order reductions
preserving simulations. In Proc. of CSP’99 Workshop, pages 153–171, 1999.

[156] W. Penczek, M. Szreter, R. Gerth, and R. Kuiper. Improving partial order
reductions for universal branching time properties. Fundamenta Informaticae,
43(1-4):245–267, 2000.

[157] G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli. Exploiting
transition locality in automatic verification of finite state concurrent systems.
Software Tools for Technology Transfer (STTT), 6(4):320–341, 2004.

[158] A. Pnueli. In transition from global to modular temporal reasoning about
programs. Logics and models of concurrent systems, pages 123–144, 1985.

[159] C. S. Păsăreanu, M. B. Dwyer, and W. Visser. Finding feasible abstract
counter-examples. Software Tools for Technology Transfer (STTT), 5(1):34–
48, 2003.

[160] A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic
Systems, 10(1-2):87–113, 2000.

[161] K. Qian and A. Nymeyer. Guided invariant model checking based on abstrac-
tion and symbolic pattern databases. In Proc. of Tools and Algorithms for
Construction and Analysis of Systems (TACAS 2004), number 2988 in LNCS,
pages 487–511. Springer, 2004.

[162] T. Rokicki. Representing and Modeling Digital Circuits. PhD thesis, Stanford
University, Stanford, USA, 1993.

147

Bibliography

[163] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL.
In Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004), volume 2988 of LNCS, pages 546–560. Springer, 2004.

[164] U. Stern and D. L. Dill. Parallelizing the Murϕ verifier. In Proc. of Com-
puter Aided Verification (CAV 1997), volume 1254 of LNCS, pages 256–267.
Springer, 1997.

[165] U. Stern and D. L. Dill. Using magnetic disk instead of main memory in the
Murphi verifier. In Proc. of Computer Aided Verification (CAV’98), volume
1427 of LNCS, pages 172–183. Springer, 1998.

[166] C. Stirling. Local model checking games. In Proc. of Conference on Con-
currency Theory (CONCUR’95), volume 962 of LNCS, pages 1–11. Springer,
1995.

[167] A. Valmari. A stubborn attack on state explosion. In Proc. of Computer Aided
Verification (CAV’91), volume 531 of LNCS, pages 156–165. Springer, 1991.

[168] H. van der Schoot. Partial-order verification in spin can be more efficient. In
Proc. of SPIN Workshop. Twente University, 1997.

[169] W. Visser. Memory efficient state storage in SPIN. In Proc. of SPIN Workshop,
pages 21–35, 1996.

[170] W. Visser, S. Park, and J. Penix. Applying predicate abstraction to model
check object-oriented programs. In Proc. of Workshop on Formal Methods in
Software Practice. ACM Press, 2000.

[171] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed
models to timed implementations. In Proc. of Hybrid Systems: Computation
and Control (HSCC’04), volume 2993 of LNCS, pages 296–310. Springer, 2004.

[172] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redun-
dant object-oriented unit tests. In Proc. 19th Automated Software Engineering,
2004.

[173] K. Yorav. Exploiting Syntactic Structure for Automatic Verification. PhD
thesis, The Technion – Israel Institute of Technology, 2002.

148

Index

[s]R, 19
∼=k, 99
∼k, 24, 99
αSearch, 33, 55
αSearchCheck, 78, 88

A, 60, 61, 83
abstract

domain, 62
interpretation, 72, 78

abstraction, 5
automatic, 57
complete, 13
dictionary definition, 12
effectively computable, 21
exact, 34, 37, 76–78
may, 60, 95
must, 60, 83, 95
predicate, 12, 57, 72

definition, 62
reduction of acyclic state

spaces, 47
under-approximation refine-

ment, 38, 76
sound, 13

actions
independent, 38
invisible, 20, 38

αSearchCheck, 133
approximation, 57

convex hull, 126
dictionary definition, 10
over, 75, 94
over-, 11, 85, 95, 133

under-, 11, 61, 75–96, 133
Ariane 5, 1
automorphism, 36

bisimulation, 8, 24
k-bisimulation, 24
alternative characterization, 44
class, 80
game, 103
minimization, 55
quotient, 25, 68, 71, 80, 94
weak, 24

bitstate hashing, 7, 37

caching, 6
canonization, 35–37
CEGAR, 11, 70, 75
clock difference relations, 105
completeness

of RefinementSearch, 79
of refinement algorithms, 71

compositional methods, 6
counterexample, 4

-guided refinement, see CEGAR
spurious, 70

cycle detection, 15, 23, 106

deadlock, 20
decision diagrams, 6, 46
difference bound matrix, 112, 117, 126
discretization, 97, 110

of space, 28
distributed computation, 7, 15
DiVinE, 48

149

Index

equivalence, 19
bisimulation, see bisimulation
checking, 9
class, 19
dictionary definition, 8
reachability, 24
simulation, see simulation
stutter, 20
trace, 8, 24

infinite, 24
weak, 24

untimed, 99
weak, 8

extrapolation, 108, 114, 117–120, 126

FDIV bug, 1

Galois connection, 19, 60, 62, 64
guarded command language, 21, 86,

88, 157
semantics, 21

heuristics, 7, 85
hybrid automata, 110
hyper-transitions, 73

is valid , 62, 64, 65, 78

jobshop scheduling, 127

Kripke structure, 20
Kronos, 118

labeled transition system, see LTS
language, 20
Lego c© Mindstorms, 25
LTL, 4, 15
LTS, 20

finite, 20

may , 60
model checking, 3, 23, 129
monotonicity, 83
Murphi, 48, 55
must , 60
must−, 61

non-emptiness problem, 23, 106–109,
134

normalisation, 114
NQC, 26, 155

partial order, 19
poset, 19
post , 21
postcondition

strongest, 21
pre, 20
Pre, 68
precondition

weakest, 20, 68
preorder, 10, 19

LU, 115
property, 4

safety, 29
protocol

bakery, 91
ticket, 89

RA, 20
random walk, 7, 15
randomization, 7
RAX (Remote Agent Experiment), 91
reachability, 23, 106
reachability relations, 98, 104, 110
reduction

active clock, 36
based on equivalences, 5
cone of inluence, 35
confluence, 41
next heuristics, 40
on-the-fly, 31–55
partial order, 39, 49, 54

dynamic, 44, 55
path, 40
preserving

bisimulation, 33–38
deadlock, 42–43
equivalence, 10
reachability, 42–43
weak equivalence, 38–42

150

Index

simultaneous reachability analy-
sis, 41

slicing, 40
storage size, 6
symmetry, 36, 50
transition merging, 40, 51

refinement
counterexample guided, see CE-

GAR
dictionary definition, 10
exactness-guided, 70, 78
loop, 12
non-guided, 69, 87
of under-approximation, 41, 76,

132, 133
schemes, 66
step, 11
strategy, 69

RefinementSearch, 79, 88
region, 99, 100
region graph, 100–101

search
bounded, 7, 11
exhaustive, 23
order, 34, 43, 78
partial, 7

semantics
concrete, 21
dense, 97
discrete, 98
of guarded command language, 21
of timed automata, 22
rational, 101
sampled, 98, 102
symbolic, 113

set
ample, 39
covering, 42
sleep, 40

Simplify, 88
simulation, 8, 24

weak, 24
SLAM, 73

Sorter example
LTS, 8

Sorter example, 25–29, 57, 91, 129, 155
Spin, 48, 54
state

boring, 43
compression, 6

lossy, 37
doomed, 42

state space, 23
acyclic, 43
explosion, 5, 29, 129
properties, 15

stopwatch automata, 22, 101–104,
108–109

sweep line method, 6
system

closed, 3
embedded, 2, 27, 129
labeled transition, see LTS
modeling, 3, 27
open, 86
safety-critical, 1

termination, 71, 79, 84, 85
testing, 2, 15, 27

systematic, 44
theorem prover, 74, 79, 88
Therac-25, 1
timed automata, 22, 97–127, 159

closed, 22, 101–103
diagonal-free, 22

Uppaal, 114, 118, 124, 126

valuation
clock, 22
equivalence on, 99
variable, 21

value
dominating, 43, 52
equivalent, 36

variable
dead, 35, 47, 49
faith, 35

151

Index

verification, 129
formal, 2

zeno behaviour, 104
zone, 117

152

Appendix A

Notation

M guarded command language model
A timed/stopwatch automaton
C set of clocks of timed automata
V set of variables of guarded command language

model
x, y variables or clocks in a model
l location in timed automaton
ν valuation of clocks
J·K (concrete) semantics of a given entity
T labeled transition system
S set of all states in LTS
s a state in LTS
a, b, c, ai action name

a−→ transition in state space
τ invisible action
∼ bisimulation relation
[s]∼ equivalence class of bisimulation
α abstraction function on states (or set of states)
A abstraction function on transition systems
a state in abstract transition system
φ predicate
Φ set of predicates
~b bitvector
ε sampling period
i, j, k indexes
Wait data structure holding states to be explored dur-

ing the exploration algorithm
States data structure holding visited states during the

exploration algorithm
Transitions data structure holding visited transitions
pre, post weakest precondition, strongest postcondition
RA set of reachable actions

153

Appendix B

Sorter Example

Here we provide some details about our main running example: the NQC source
code of the Lego c© Sorter example and both guarded command language and timed
automata models.

B.1 NQC Source Code

The source code is given in the NQC language1.

#define BELT OUT_A
#define ARM OUT_C
#define BELT2 OUT_B
#define LIGHT SENSOR_1
#define BUTTON SENSOR_3
#define ROTATION SENSOR_2
#define LONG 1
#define SHORT 2
#define LIGHT_TRESHOLD 45

int brick = 0;
int requests = 0;

task main() {
int x=1;
SetSensor(LIGHT, SENSOR_LIGHT);
SetSensor(BUTTON, SENSOR_TOUCH);
SetSensor(ROTATION, SENSOR_ROTATION);
SetPower(BELT, 1);
SetPower(ARM, 1);
Rev(BELT);
Rev(ARM);
On(BELT);
SetPower(BELT2, 3);
start arm_controller;
start light_sensor_controller;
start belt2_controller;
start button_controller;
while (true) {}

}

task light_sensor_controller() {
int x=0;
while (true) {

1http://bricxcc.sourceforge.net/nqc/

155

Appendix B. Sorter Example

if (LIGHT > LIGHT_TRESHOLD) {
PlaySound(SOUND_CLICK);
Wait(30);
x = x + 1;

} else {
if (x>2) {

PlaySound(SOUND_UP);
ClearTimer(0);
brick = LONG;

} else if (x>0) {
PlaySound(SOUND_DOUBLE_BEEP);
ClearTimer(0);
brick = SHORT;

}
x = 0;

}
}

}

task arm_controller() {
while (true) {

if (Timer(0)>15 && brick == LONG) {
ClearSensor(ROTATION);
Off(BELT);
On(ARM);
while (ROTATION < 12) { }
brick = 0;
Off(ARM);
On(BELT);

}
}

}

task belt2_controller() {
while (true) {

if (Timer(0)>25 && brick == SHORT) {
brick = 0;
if (requests > 0) {

OnRev(BELT2);
requests = requests - 1;

} else {
OnFwd(BELT2);

}
Wait(200);
Off(BELT2);

}
}

}

task button_controller() {
while (true) {

if (BUTTON == 1) {
requests = requests + 1;
Wait(100);

}
}

}

156

B.2. Guarded Command Language Model

B.2 Guarded Command Language Model

Now we give a guarded command language model. To make it more readable, we
divide the model into several parts corresponding to different tasks in the source
code and to the environment. Note that this division is artificial and that formally
the guarded command language model is ’monolithic’.

Light Sensor Controller

LC = 0 ∧ token = 3 ∧ LightSensorLevel = 0 7−→ token := 4;
LC = 0 ∧ token = 3 ∧ LightSensorLevel = 1 7−→ LC := 1, x := 1, token := 4;
LC = 1 ∧ token = 3 ∧ LightSensorLevel = 1 7−→ x := x + 1, token := 4;
LC = 1 ∧ token = 3 ∧ LightSensorLevel = 0 7−→ LC := 2, timer := 0;
LC = 2 ∧ x <= 2 7−→ LC := 0, brick := 3, token := 4;
LC = 2 ∧ x > 2 7−→ LC := 0, brick := 4, token := 4;

Arm Controller

AC = 0 ∧ token = 1 ∧ ¬(brick = 4 ∧ timer > 3) 7−→ token := 2;
AC = 0 ∧ token = 1 ∧ brick = 4 ∧ timer > 3 7−→ AC := 1, brick := 0,

token := 2,ArmKicking := 1,
Belt1Moving := 0;

AC = 1 ∧ token = 1 7−→ AC := 0,ArmKicking := 0,
Belt1Moving := 1, token := 2;

Belt2 Controller

BC2 = 0 ∧ token = 2 ∧
¬(brick = 3 ∧ timer > 7) 7−→ token := 3;

BC2 = 0 ∧ token = 2 ∧
(brick = 3 ∧ timer > 7) 7−→ BC2 := 1, t1 := 0;

BC2 = 1 ∧ requests > 0 7−→ BC2 := 2,Belt2Moving := 2, token := 3;
BC2 = 1 ∧ requests = 0 7−→ BC2 := 2,Belt2Moving := 1, token := 3;
BC2 = 2 ∧ token = 2 ∧ t1 < 4 7−→ BC2 := 0, t1 := t1 + 1, token := 3;
BC2 = 1 ∧ token = 2 ∧ t1 = 4 7−→ BC2 := 0, token := 3;

Button Controller

token = 0 ∧ ButtonPressed = 0 7−→ token := 1;
token = 0 ∧ ButtonPressed = 1 7−→ ButtonPressed := 0,

requests := requests + 1, token := 1;

Timer

token = 4 ∧ timer < 8 7−→ timer := timer + 1, token := 5;
token = 4 ∧ timer = 8 7−→ token := 5;

User

User = 0 ∧ token = 5 7−→ token := 6;
User = 0 ∧ token = 5 7−→ ButtonPressed := 1, token := 6;
User = 0 ∧ token = 5 7−→ User := 1,PutShortBrick := 1,

t2 := 1, token := 6;
User = 0 ∧ token = 5 7−→ User := 0,PutLongBrick := 1,

t2 := 3, token := 6;
User = 1 ∧ token = 5 ∧ t2 > 0 7−→ t2 := t2 − 1, token := 6;
User = 1 ∧ token = 5 ∧ t2 = 0 7−→ User := 0, token := 6;

157

Appendix B. Sorter Example

Brick

If there are more bricks, we need more (suitably modified) copies of this fragment
of the code.

token = 6 ∧ location1 = 0 ∧ PutShortBrick = 0 7−→ token := 0;
token = 6 ∧ location1 = 0 ∧ PutShortBrick = 1 7−→ PutShortBrick := 0,

location1 := 1,
token := 0;

token = 6 ∧ location1 = 1 ∧
(position1 < 3 ∨ position1 = 4 ∨
(position1 > 5 ∧ position1 < 10)) ∧
Belt1Moving = 1 7−→ position1 := position1 + 1,

token := 0;
token = 6 ∧ location1 = 1 ∧ Belt1Moving = 1 ∧
position1 = 3 7−→ LightSensorLevel := 1,

position1 := position1 + 1,
token := 0;

token = 6 ∧ location1 = 1 ∧ Belt1Moving = 1 ∧
position1 = 5 7−→ LightSensorLevel := 0,

position1 := position1 + 1,
token := 0;

token = 6 ∧ location1 = 1 ∧ position1 = 10 ∧
ArmKicking = 0 ∧ Belt1Moving = 1 7−→ position1 := position1 + 1,

token := 0;
token = 6 ∧ location1 = 1 ∧ position1 = 11 ∧
ArmKicking = 0 ∧ Belt1Moving = 1 7−→ location1 := 2,

position1 := 3,
token := 0;

token = 6 ∧ location1 = 1 ∧ Belt1Moving = 0 ∧
position1 < 10 7−→ token := 0;
token = 6 ∧ location1 = 1 ∧ Belt1Moving = 0 ∧
(position1 = 10 ∨ position1 = 11) ∧
ArmKicking = 0 7−→ token := 0;
token = 6 ∧ location1 = 1 ∧
(position1 = 10 ∨ position1 = 11) ∧
ArmKicking = 1 7−→ location1 := 3,

token := 0;
token = 6 ∧ location1 = 2 ∧ Belt2Moving = 1 ∧
position1 < 5 7−→ position1 := position1 + 1,

token := 0;
token = 6 ∧ location1 = 2 ∧ Belt2Moving = 2 ∧
position1 > 0 7−→ position1 := position1 − 1,

token := 0;
token = 6 ∧ location1 = 2 ∧ Belt2Moving = 0 7−→ token := 0;
token = 6 ∧ location1 = 2 ∧ Belt2Moving = 1 ∧
position1 = 5 7−→ location1 := 4, token := 0;
token = 6 ∧ location1 = 2 ∧ Belt2Moving = 2 ∧
position1 = 0 7−→ location1 := 5, token := 0;
location1 = 5 ∨ location1 = 4 ∨ location1 = 3 7−→ token := 0;

158

B.3. Timed Automata Model

B.3 Timed Automata Model

Finally, we present Uppaal templates of the timed automata model.

Light Sensor Controller

Wait
t <= 10

x >0 && x <2
timer := 0,
brick := 1,
x := 0

x >= 2
timer := 0,
brick := 2,
x := 0

sensor == 1
x := x + 1, t := 0

sensor == 0

t :=0

t == 10

x == 0

Arm Controller

t <= 10
t == 10 &&
timer <30
t := 0

t == 10 &&
timer >20 &&
brick == 2

t :=0

kick!

t == 10 &&
brick != 2
t := 0

Button Controller

requests < 5
pressed?

requests = requests + 1

requests >= 5
pressed?

User

pressed!

put_short_brick! t := 0

put_long_brick! t:=0

t>40

t>20

159

Appendix B. Sorter Example

Long Brick

Ready BeltA
t<5

AtSensor
t < 45

BeltB
t < 25

AtArm
t < 20

Belt2

Kicked

put_long_brick?

t:=0
t>2

t:=0, sensor := 1

t > 42

t := 0, sensor := 0

t >21
t:= 0

t>15

kick?

Short Brick

AtSensor
t <25

Ready

BeltB
t < 45

AtArm
t <22

BeltA
t<22

Kicked

Belt2

put_short_brick?

t := 0 t >18
t:=0, sensor := 1

t>21
t:=0, sensor:=0

t>40
t:=0

kick?

t > 18

160

