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Abstract Educational technology terminology is messy. The same meaning
is often expressed using several terms. More confusingly, some terms are used
with several meanings. This state is unfortunate, as it makes both research and
development more difficult. Terminology is particularly important in the case
of personalization techniques, where the nuances of meaning are often crucial.
We discuss the current state of the used terminology, highlighting specific
cases of potential confusion. In the near future, any significant unification of
terminology does not seem feasible. A realistic and still very useful step forward
is to make the terminology used in individual research papers more explicit.

1 Introduction

Terminology in educational technology is far from clear and standardized. For
example, Table 1 lists just some of the widely used general educational tech-
nology terms. These terms often have a specific meaning, but they also have
significant overlaps. In this work, we focus on aspects of educational technology
that are concerned with personalization, adaptation, or other kinds of intel-
ligent behavior. This is a specific area where the terminological situation is
confusing and particularly important since even small nuances of the meaning
of terms can have significant consequences for understanding and reproducibil-
ity of described techniques. Confusing terminology is also a significant hurdle
for the practical development of learning tools.

The messy state of terminology is not very surprising since educational
technology is an interdisciplinary endeavor. Even when we restrict our atten-
tion to personalization and adaptation, there are several communities study-
ing similar questions: educational technology, learning analytics, educational
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Table 1 A sample of general educational technology terms (all these terms have their own
Wikipedia page and Google Scholar returns for them over 10000 results)

Adaptive learning Intelligent tutoring system

Computer-assisted language learning Interactive learning

Computer-supported collaborative learning Learning management system

Computerized adaptive testing Massive open online course

Digital learning Personalized learning

E-learning Programmed learning

Educational game Virtual learning environment

Educational software

Educational technology

data mining, artificial intelligence in education, learning engineering. More-
over, researchers often have a primary background in other disciplines, e.g.,
psychometrics, instructional design, cognitive science, the science of learning,
statistics, machine learning, game design, or computer science. Each of these
areas has slightly different terminology, customs, and implicit meanings that
researchers often carry over.

The goal of this paper is not to clear the mess and provide the correct
terminology that everybody should use. Such a goal is currently infeasible.
The paper has more modest yet still useful goals.

Firstly, we provide discussions of terms used with similar meanings, e.g.,
item, problem, task, question; or skill, ability, knowledge. Such listings of re-
lated terms provide quick orientation for newcomers to the field. Even for se-
nior researchers, they can be a useful tool when searching for related research.
A readily available list of alternatives to choose from can also lead to a better
choice of terms and a better description of terminology in papers—awareness
of alternative terms naturally leads to the need to explain the choice of terms;
it is also useful to mention related terms for readers accustomed to different
terminology.

Secondly, we discuss terms with multiple meanings, e.g., skill, domain
model, or stratification. For these terms, we discuss their different meanings
and show how the current practice of term usage can easily lead to confusion
and misunderstanding.

The overall aim of the paper is to raise awareness of terminological issues in
the area of adaptive learning systems and to call for more explicit discussion of
used terminology in research papers. This should lead to better intelligibility
and reproducibility of research papers and, in the long run, to the development
of better learning systems.

The selection of discussed terms, together with their grouping and orga-
nization, was done based on an analysis of the following sources: keywords
and terms used in highly cited and recent papers at relevant journals and
conferences (particularly AIED, EDM, LAK), glossaries of related fields (e.g.,
psychometrics, pedagogy, cognitive science), e-learning standards (e.g., xAPI,
IMS Global learning tools interoperability). The final presentation is also based
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on the author’s experience with the design and development of learning sys-
tems and consultations with colleagues. As the goal of the paper is raising
awareness and starting a discussion, the focus of the text is not on complete-
ness but rather on readability and clear illustration of potential terminological
problems on selected examples. The paper covers a wide range of terms, and
most of these terms are discussed in many research papers. In the choice of
literature references, priority was given to recent overview papers and typical
applications, not to the original usage of terms.

2 Multiple Terms with Similar Meanings

We start with the less serious terminological problem: cases where multiple
terms are used with similar meanings. In some cases, the terms are nearly
complete synonyms; in other cases, they may have different but overlapping
meanings. The fact that there are many related terms is not a fundamental
obstacle for understanding research reports. It can, however, be an unneces-
sary hurdle in communication. The awareness of various terms is definitely
advantageous: it can help to clarify potentially important nuances of meaning,
to notice similarities between strands of research that differ on a superficial
level, or to find relevant related research.

2.1 System Description

Table 1 shows over 15 terms for describing educational technology, and these
are just the most mainstream terms. Many others are used in research pa-
pers. These descriptions often fit the pattern shown in Figure 1: an adjective
word (which describes the specific focus of the particular technology), a pro-
cess word, and a technology word. The individual words can be combined
in a nearly arbitrary way; many combinations are actually used by at least
some authors. Some of the resulting phrases are quite standardized and have a
clear meaning (e.g., computerized adaptive practice or intelligent tutoring sys-
tem). Many terms are used, however, quite freely and with highly overlapping
meanings.

2.2 People

Many people are involved in the learning process; Table 2 provides an overview
of terms used to denote them. There are several basic types of roles, and each
of them can be expressed by several terms. Each of them carries a specific
meaning, but often they are used as synonyms, and their usage is given by
customs of a specific research community. However, the choice between these
terms is mostly stylistic and does not significantly influence the understanding
of research.
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adaptive
automated
computerized
digital
game-based
gamified
individualized
intelligent
interactive
massive
online
open
personalized
programmed
recommender
technology-enhanced
virtual

assessment
education
instruction
learning
practice
testing
tutoring

environment
course
hypermedia
platform
software
system
technology
tool

Fig. 1 Template for system description; the star over adjective words denotes that several
of these words can be potentially combined

Table 2 Terms used to denote people involved in the learning process

somebody who is learning student, learner, pupil, tutee, trainee, novice, beginner,
user, participant

somebody who is guiding
the learning

teacher, tutor, instructor, parent, teaching assistant,
lecturer, mentor, coach, trainer, faculty member, su-
pervisor, facilitator

somebody who is indirectly
organizing the learning

administrator, manager, officer, staff member, policy-
maker, stakeholder, observer, auditor, advisor

somebody who is creating
learning materials

developer, designer, analyst, expert, content author,
content writer, content developer, content creator

a group of people team, group, crowd, cohort, class, grade, cluster

As a specific example, consider the key person in our area: somebody who
is learning. This person is most commonly denoted as a student or a learner. In
general usage, the term student tends to imply a formal educational setting,
whereas the term learner is more general. In the context of computerized
learning systems, most research is relevant in a general learning setting and
does not necessarily require a formal educational setting. Therefore, strictly
speaking, the term learner is often more appropriate. However, in practice,
the usage of the term student is more common1.

2.3 Learning Resources and Support

As a next step, let us consider the content of learning systems, i.e., the mate-
rials that the learner interacts with. On a general level, these materials may

1 For example, according to Google Scholar search statistics, student modeling is twice
more common phrase than learner modeling.
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be called learning objects (Churchill, 2007) or educational resources (Hylén,
2006). These materials and related terms can be organized in many ways, e.g.,
Churchill (2007) provides one classification of learning objects. Table 3 gives
an overview of terms with a focus on the manner of interaction.

Many of the terms are used as synonymous, often based on customs of
a specific community, e.g., in psychometrics, a key tool is the item response
theory, and thus the commonly used term is item. Particularly for the “re-
source that is studied” and “a group of resources,” the choice of a specific
term is mostly stylistic and reflects the specific educational setting and is not
fundamental from the point of understanding the discussed ideas.

In the case of learning support, the terms often have distinct meanings and
these differences can have important consequences for the design of learning
environments. For example, the same type of explanatory message can be used
either as a hint (shown during a solution process) or as a part of feedback
(shown after an answer is submitted); hints are sometimes abused by students
(Roll et al., 2014) and this should be taken into account in the design of
the system; for feedback messages, this issue is not relevant. The timing and
sequencing of learning support is often an important and nuanced issue, which
depends on the exact meaning of terms; see, e.g., a discussion of feedback by
Hattie and Timperley (2007). At the same time, the meaning of terms for
learning support is not completely distinct; there are often significant overlaps
among them. This part of the terminology would clearly benefit from a detailed
clarification.

One important distinction among terms in Table 3 is that they are often
used to refer to notions of different granularity. This distinction may be nec-
essary for understanding, particularly when several of these terms are used
together. For example, a task typically consists of several steps, but an item
can be in certain contexts used as a synonym for both a step and a task. This
type of relation between terms is often used implicitly by authors and may
not be completely clear to readers with a different background. This is one of
the cases where explicit clarification of terminology would be beneficial.

The structure of materials is probably terminologically most confusing.
The same structure can be described by different authors as a domain model,
knowledge graph, or ontology. More confusingly, terms like domain model can
be used in several different meanings. We discuss this important topic in more
detail in Section 3.1.

2.4 Types of Interaction

We now look in more detail at the category of “resource that is solved” since
this category is a key one for adaptation. Table 3 provides an overview of
terms that denote the complete resource. The interaction with the resource
(“solving”) can be realized in many ways, and this type of interaction is, in
most cases, not implied by the term for the resource.
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Table 3 Terms used to describe learning resources and their structure

resource that is solved item, question, problem, exercise, activity, task, step, quiz,
assessment event, flashcard, (serious) game, puzzle, home-
work, assessment, assignment, challenge

resource that is explored simulation, model, microworld, multimedia, tutorial

resource that is studied book, textbook, paper, instruction, lecture, lesson, text, au-
dio, video, presentation, slides, animation, resource, mate-
rial, media, chapter, document

learning support scaffoldings, hints, help, feedback, cues, signalings, guid-
ance, prompts, analogies, summaries, worked-out exam-
ples, step-by-step solutions, fading, faded examples, expla-
nations, prompted self-explanations, (highlighted) text an-
notations

a group of resources skill, knowledge component, concept, rule, schema, proce-
dure, category, problem set, item set, level, topic, course, se-
quence, chunk, module, chapter, unit, battery, testlet, learn-
ing path, syllabus, collection, tag

structure of materials domain model, skill model, knowledge structure, knowledge
graph, curriculum, ontology, taxonomy, folksonomy

Table 4 Types of interaction for resources that are solved

user interface menu, drag-and-drop, drop-down

selected response multiple-choice questions, alternate-choice question, true/false,
cloze (with menu)

multiple selections matching, ordering, sequencing, categorization, tagging

constructed response written answer, completion, fill-in-the-blank, open response,
short answer, extended response, free-form question, open-ended
question, essay

problem solving interactive exercise, multi-step problem, performance test

Table 4 provides an overview of terms used to describe the type of inter-
action. The table uses categories based on the classification of exercise types
(Pelánek, 2020a). However, for the displayed terms, the classification provides
only a basic overview as the terms are used with different types of meanings.
Terms like drag-and-drop focus on the user interface aspect of the interaction.
The term fill-in-the-blank, on the other hand, describes the basic pedagogical
principle (filling missing information into the given context) and can be real-
ized in many ways: the basic one is written answer into the blank, but it can
also be done by different forms of selected response from provided options. The
relations between these terms are complex, including subsumption, synonyms,
and partial overlap.

In this case, there is also an issue with multiple meanings per term, particu-
larly concerning the distinction between “instance” and “type of” with respect
to exercises, problems, or questions. Suppose that a model description states
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that “one input to the student model is exercise identification.” What exactly
does it mean? One possibility is that the model uses the identification of the
type of exercise, e.g., whether the answer was to a multiple-choice question
or constructed response question. Another possibility is that the model uses
the identification of a specific instance, e.g., “3+8= ”. There are also other
possibilities in between these extremes, e.g., “constructed response for one-
digit addition.” These different interpretations have significant consequences
for understanding and using student models.

2.5 Personalization Algorithms

One of the key goals of educational technology is to make learning person-
alized, i.e., to adapt the learning process to the needs and preferences of a
particular learner. Several general terms are used for this type of personaliza-
tion algorithms, e.g., tutor model (Sottilare et al., 2013), instructional policy
(Käser et al., 2016), pedagogical policy (Iglesias et al., 2009), recommendation
system (Manouselis et al., 2011), adaptive navigation (Brusilovsky and Pesin,
1998), or mastery learning (Pelánek and Řihák, 2018).

2.5.1 Level of Adaptivity

Adaptivity can be achieved at different granularities. Although there is a rather
continuous spectrum of adaptivity approaches, there are three main granular-
ity steps typically discussed in the literature:

– Adaptivity within solving one item, task, or problem, which can contain
several steps. This typically involves personalizing various forms of learning
support (hints, scaffoldings, feedback, explanations). This form of adaptive
behavior can manifest several times per minute.

– Adaptation within larger steps, e.g., the choice or recommendation of exer-
cises and topics to study. This type of adaptation typically manifests once
every few minutes.

– Adapting the system, e.g., adding or removing items and knowledge com-
ponents or changing the setting of used algorithms. This adaptation is
based on data about student performance. It can be fully automated but
often is supervised by a human. It takes place at the timeframe of days or
months.

Table 5 lists the terms used for these types of adaptivity. The inner loop,
outer loop terminology was introduced by Vanlehn (2006), who later proposed
a more general framework of regulative loops (VanLehn, 2016). Aleven et al.
(2016) provides a comprehensive discussion of this topic; they propose an
“adaptivity grid” and use the terminology step loop, task loop, design loop.
The terms micro-adaptation and macro-adaptation are used, for example, by
Essa (2016).

The design loop adaptation is probably terminologically the least stan-
dardized. It is also denoted as closing the loop (Liu and Koedinger, 2017) or
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Table 5 Terms used to describe different adaptivity levels

adaptation within one item inner loop, micro-adaptation, step loop

adaptation within larger
steps

outer loop, macro-adaptation, task loop

adapting the system by a
human

design loop, closing-the-loop, human-in-the-loop

human-in-the-loop (Pelánek, 2017). It is often discussed in the literature as a
research result without any specific title.

2.5.2 Spaced Repetition

One of the learning principles best supported by research evidence is the spac-
ing effect, i.e., people remember better when using short study periods spread
over time as opposed to the massed practice (Kang, 2016; Settles and Meeder,
2016).

This principle and its realization in educational technology are described
in the literature using many terms with overlapping meaning:

– spaced repetition (Kang, 2016; Settles and Meeder, 2016),
– distributed practice (Rohrer, 2015),
– spacing, practice, forgetting effects (Pavlik Jr and Anderson, 2005),
– optimal schedule of practice (Pavlik and Anderson, 2008), optimal gap

(Cepeda et al., 2008),
– flashcards (Kornell, 2009), Leitner system (Reddy et al., 2016; Settles and

Meeder, 2016).

Moreover, the spacing effect has connections and interactions with other
terms. It is a special case of desirable difficulty, i.e., a task that causes short-
term difficulties but increases long-term performance (Bjork et al., 2011). The
benefits of the spacing effect are typically combined with the testing effect and
retrieval practice, i.e., trying to remember information instead of restudying
(Roediger III and Butler, 2011). The spacing effect can also interact with inter-
leaved practice, where the practice of different topics is done in an interleaved
manner (Taylor and Rohrer, 2010).

2.5.3 Appropriate Challenge

A typical goal of personalization algorithms is to achieve an appropriate chal-
lenge for learners, i.e., to confront them with problems that are neither too easy
nor too difficult. This approach is grounded in pedagogical and psychological
concepts and theories, e.g., the zone of proximal development, the concept of
flow (Nakamura and Csikszentmihalyi, 2014), inverted-U hypothesis (Lomas
et al., 2013), or instructional scaffolding (Jumaat and Tasir, 2014).
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One approach to achieve an appropriate challenge is to adaptively pick
items from a large pool of options. This approach is used widely in adaptive
systems but lacks a clear and distinct descriptive term. It is discussed under
many different names, e.g., adaptive choice of questions (Pelánek et al., 2017)
or item selection (Klinkenberg et al., 2011). These techniques mimic the use
of techniques from computerized adaptive testing. In testing, a common ap-
proach is to use item response theory (De Ayala, 2008) to find questions where
the predicted probability of correct answer is near 50% since these questions
provide the most information about student state. In the case of adaptive prac-
tice, tools typically aim at a higher target success rate (e.g., 75%) in order to
not frustrate learners.

In the knowledge space literature, the idea of an appropriate challenge
is captured under the term outer fringe, which is the most advanced part
of knowledge space for which the learner has sufficient knowledge (Falmagne
et al., 2013; Doignon and Falmagne, 2016; Doble et al., 2019).

The aim of an appropriate challenge is widely used in computer games,
and it is often achieved using techniques similar to these used in learning
environments. The terms used to describe these techniques are, however, quite
different, e.g., dynamic difficulty adjustment (Hunicke, 2005) or difficulty curve
(Sarkar and Cooper, 2019).

2.6 Student State

To achieve personalization, a learning system typically uses some kind of stu-
dent personal data and state estimates. Personal data typically consist of de-
mographic information; in this case, the terminology is relatively standardized
and unproblematic. Student states, properties, and behaviors are more termi-
nologically challenging. As Table 6 shows, there are several basic dimensions
of student state, and each of these can be expressed using different terms.

For the cognitive state, the listed terms are often used as synonyms based
on customs in different communities. There are differences in the granularity
of learning units with respect to which the terms are used. The term skill is
typically used for fine-grained units (e.g., the addition of fractions), whereas
competency is used for coarser units (e.g., using fractions to solve practical
problems). Research and development in AIED typically deal with fine-grained
units. The main terminological issues with terms for cognitive states is that
each of them can be used with several different meanings; we discuss this topic
in more detail in Section 3.3.

For affect, emotion, meta-cognition, and long-term traits, the landscape of
terms is much broader and more complex. In addition to general terms used
to describe them, there are many specific states and properties. In learning
environments, a focus is mainly on emotions and affective states related to
how interested, engaged, and concentrated the student is; this can be expressed
using several terms with overlapping meaning.
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Table 6 Terms used to describe student states, properties, and behaviors

cognitive state skill, ability, knowledge, proficiency, competence

affect: general affect, emotion, valence, arousal

affect: engagement motivation, engagement, concentration, boredom, flow, engaged
concentration, immersion

affect: other confusion, frustration, confidence, fatigue, delight, joy

long term traits grit, drive, growth mindset, goal orientation, self-efficacy, compe-
tence, connection, autonomy, agency, attribution, self-regulation,
help-seeking, interests, attitudes

counterproductive
behaviors

gaming the system, systematic guessing, hint abuse, help
abuse, off-task behaviour, wheel-spinning, cheating, plagiarism,
multiple-account cheating, procrastination, drop out

Student affect is interlinked with the occurrence of various forms of counter-
productive behaviors. For these, there is again a wide range of specific terms.
These often have some specific meaning explicitly described by authors, e.g.,
gaming the system (Baker et al., 2008), off-task behavior (Baker, 2007), wheel-
spinning (Beck and Gong, 2013). However, the meaning of these terms often
overlaps, e.g., systematic guessing may be seen as a form of gaming the system
(but only when the learning environment does not penalize it).

2.7 Modeling

The adaptive behavior of educational technology is based on modeling, par-
ticularly modeling of the learning domain and student states. In this area, the
terminology is important and unclear since terms often have several possible
meanings. We discuss these topics in more detail in the next section. Here,
we go briefly over cases where we have several modeling terms with similar
meanings.

2.7.1 Student Performance Data

A key input to student models are data about student performance. Models
also often predict future performance, and these predictions are used to eval-
uate and compare models. It is thus very important what aspects of student
performance are incorporated into student modeling and what terms we use
to describe them.

Table 7 lists some terms used for this purpose. These terms and their com-
binations typically carry specific meaning, which is, however, often assumed
implicitly. For illustration, consider the phrases unsolved task, unfinished at-
tempt, and incorrect answer. A typical meaning behind these phrases could
be:

– unsolved task = student did not yet try to solve the task,
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Table 7 Terms used to describe the evaluation of student performance

what is evaluated answer, solution, step, task, attempt, submission, session

evaluation is called result, score, grade, performance, classification

positive evaluation correct, right, solved, finished, successful, completed, tackled

negative evaluation incorrect, wrong, unsolved, unfinished, unsuccessful, failed, error,
erroneous, mistake, misconception, missed, skipped

– unfinished attempt = student tried, did not yet succeed, but can possibly
succeed on his own in future (the solution was not shown to him),

– incorrect answer = student did try, did not succeed and another chance
in the future is not meaningful, since he was informed about the correct
choice.

These meanings are definitely not fixed. There can be many other shades of
their meaning, the boundary between them is quite fuzzy, and their usage
by authors differs. However, a subtle difference in meaning can have quite a
significant impact on student modeling. Should an unfinished attempt be used
as evidence of weak cognitive skill or rather low engagement? That depends
on the exact meaning of the term.

2.7.2 Difficulty and Complexity

One common goal of adaptive educational technology is to appropriately tune
the difficulty of learning. In order to do so, we need to quantify the difficulty of
learning resources and capture it in models. Here the primary term is difficulty.
Alternatively, some authors use easiness, which is usually just an inverse of
difficulty. A closely related but distinct term is discrimination, which is a
measure of how well an item distinguishes between learners of different abilities
(De Ayala, 2008). Additional terms describe specific difficulty measures or
specific aspects of difficulty, e.g., success rate, failure rate, response time, time
intensity, cognitive load, workload.

A more nuanced distinction is between difficulty and complexity. These
terms are sometimes used in similar meaning, but authors that explicitly dis-
cuss them mostly agree on their distinct meaning (Liu and Li, 2012; Beckmann
et al., 2017): complexity is an intrinsic property of a task and is given by
its internal structure, whereas difficulty is related to student-task interaction
(performance of students).

2.7.3 Modeling Terms

Table 8 lists several other cases where we have multiple modeling terms with
similar or overlapping meanings.

The terms used to describe model elements are mostly synonymous; they
are just used by different communities, e.g., feature in machine learning, co-
variate in statistics, construct in psychology.
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Table 8 Modeling terms

model element parameter, feature, construct, factor, attribute, covariate,
variable, predictor

setting model parame-
ters

parameter fitting, parameter estimation, learning, calibration,
normalization, standardization, equating, scaling

visualization of model
elements

dashboard, open learner model, activity visualization,
progress bar, skillometer, badge, leaderboard, achievement,
homework statistics

desirable model proper-
ties

accuracy, reliability, validity, generalizability, portability, ro-
bustness, resolution, interpretability, explainability, identifia-
bility, group invariance

The model parameters, whatever they are called, need to be set somehow,
i.e., we need some procedure to find good values of parameters. This is a cen-
tral step in model building and there are multiple terms to describe such a
procedure. Some of these terms have very close meaning (e.g., parameter esti-
mation and parameter fitting), some are used with rather specific and distinct
meaning (e.g., equating in item response theory).

Once we have the model parameters, we often want to display some of
them to users in the form of a suitable visualization. This type of visualization
is again described by a variety of terms, each with a specific meaning but with
significant overlaps.

Models have many desirable properties that we would like to achieve. Most
of the terms used to describe these properties have a quite clear and distinct
technical meaning. Nevertheless, there are many nuances concerning their ex-
act meaning and relations, and these nuances can be quite important since they
have a significant impact on the way we perform evaluation and comparison of
models, which subsequently influence the behavior of learning environments.
In fact, the exact meaning of these terms is often a topic of a separate dis-
cussion, e.g., see Cook and Beckman (2006) for discussion of reliability and
validity or Rudin (2019) for discussion of interpretability and explainability.

3 Multiple Meanings for the Same Term

Now we discuss cases where the same term is used with multiple meanings.
This is a more serious terminological problem since it can be the cause of
confusion and misunderstanding.

In current educational technology, one common source of multiple mean-
ings for a single term is the usage of the same terms for describing human
learning and machine learning, e.g., transfer, transfer learning, active learn-
ing, supervised learning, feedback, bias, long term memory. These terms often
have quite specific, technical meaning in machine learning literature, whereas
in pedagogy, they are used with a meaning that is quite different and more
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general. However, the basic context of their usage is typically quite clear, and
thus in practice, they do not cause significant problems for understanding.

In our discussion, we focus on terms that, even within a very specific con-
text, can have several meanings, and the differences between these meanings
may be quite fundamental for understanding. The discussed terms are related
to modeling and evaluation.

3.1 Domain Model

Any educational technology needs to have some representation of the domain
that it is trying to teach its users. This representation is often called domain
model, although other terms are also used, e.g., skill model or knowledge struc-
ture. Although the domain model is a key component of any educational tech-
nology and its development and improvement is the subject of many research
papers, it is seldomly explicitly defined or even described2.

Unfortunately, the term can have many specific meanings, and the absence
of a clear description can lead to confusion. The domain model can be con-
cerned with the following aspects:

– definition of knowledge components, the choice of their granularity,
– mapping of items to knowledge components,
– relations among knowledge components, particularly prerequisite relations

and subsumption relations, but potentially even more complex relations
captured by a general ontology,

– description of cognitive processes, e.g., using production rules or constraints,
possibly including also misconceptions (“buggy rules”).

We discuss individual types of domain models in more detail. To make the
discussion clearer, we illustrate all types of domain models on the example of
fractions, specifically using the addition of fractions as the main illustration
(Fig. 2).

Note that below we discuss only different conceptual views of domain mod-
eling. In addition to these, the term domain modeling is also relevant from the
software engineering perspective (Evans, 2004). The developers who imple-
ment learning systems often use the term domain modeling with a specific,
technical focus, e.g., to describe the representation of relations in a database.
This is an additional source of confusion.

3.1.1 Mapping Items to Knowledge Components

One approach to domain modeling is to focus on the definition of knowl-
edge components and the mapping of items to knowledge components. This

2 One example of an explicit definition is by Sottilare et al. (2016): “The domain model
contains the set of skills, knowledge, and strategies/tactics of the topic being tutored. It nor-
mally contains the ideal expert knowledge and also the bugs, mal-rules, and misconceptions
that students periodically exhibit.”
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+
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b = d add a + c

b ≠ d find LCM(b, d),
multiply both fractions

a
b

+
c
d

correct:

buggy:
a + c
b + d

Fig. 2 Illustration of different approaches to domain modeling on the example of fractions

mapping can take the form of disjoint sets, or it can be a more general N:M
mapping, which is commonly called Q-matrix (Tatsuoka, 1983; Barnes, 2005).
Fig. 2 gives examples for the case of fractions.

An important part of this approach to domain modeling is the definition of
suitable knowledge components and the choice of their granularity (Koedinger
et al., 2012; Pelánek, 2020b). In the case of fractions, this leads to questions
like: Should adding fractions with the same and unlike denominators be two
separate knowledge components? Should the addition and subtraction of frac-
tions be two separate knowledge components?

This approach to domain modeling is used, for example, by John et al.
(2015): “a domain model captures relationships between the learning objects
and the knowledge components or skills they exercise.”

3.1.2 Relations among Knowledge Components

Another possible focus of domain modeling is on the relations among knowl-
edge components. Two major relations are subsumption (more/less general)
and prerequisite relations. Fig. 2 provides an illustration of these kinds of
relations for several knowledge components involving fractions.

This approach to domain modeling is closely related to taxonomies and
ontologies and to the terminology used in these fields3. It is also used in knowl-
edge space theory (Falmagne et al., 2013; Doignon and Falmagne, 2016), which
focuses particularly on the prerequisite relation.

3 Wikipedia page for domain model has the definition “In ontology engineering, a domain
model is a formal representation of a knowledge domain with concepts, roles, datatypes,
individuals, and rules, typically grounded in a description logic.”
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3.1.3 Rules, Constraints, Principles

The previous approaches to domain modeling treat individual knowledge com-
ponents basically as elementary units (represented by atomic identificators)—
they describe their relations, but not any principles behind them. A signifi-
cantly different understanding of domain modeling is to focus on just these
internal principles.

These principles can be described as rules for solving items belonging to
a knowledge component (as illustrated in Fig. 2). With this approach, it is
often useful to describe not just the correct rules but also “buggy” rules and
common misconceptions. This rule-based approach to domain modeling (some-
times called cognitive modeling) is often used in intelligent tutoring systems
(specifically cognitive tutors) and allows them to provide personalized hints
and feedback during the problem-solving process (Aleven, 2010).

Instead of rules, the principles behind a domain can also be described using
constraints. In this case, a domain model is a set of constraints (Martin and
Mitrovic, 2003). For specific examples, including fractions, see Mitrovic (2010).

A less typical example of this approach to domain modeling is provided by
Wang et al. (2005), who study creative problem solving and describe a domain
model as “simply a special case of user model summarized from domain experts
with a different building process.”

3.2 Student Modeling

In general, the goal of student modeling is to estimate the state of a student.
However, there are many aspects of student state that can be modeled, e.g.,
cognitive, affective, or motivational (Pelánek, 2017; Chrysafiadi and Virvou,
2013). Very different models can thus be described by the same label student
model.

A specific term that is used very often in student modeling and that can be
potentially confusing is knowledge tracing. This term is used with two different
meanings:

1. as a general term for any model that tries to estimate dynamically changing
knowledge of students, i.e., tracing knowledge as it changes through time,

2. as a term denoting a very specific type of model (also called Bayesian
knowledge tracing, BKT), which makes very specific assumptions about
learning, e.g., that the latent knowledge state is binary (van De Sande,
2013; Pelánek, 2017).

3.2.1 Student and Domain Model

In the case of modeling knowledge (cognitive state), student modeling is in-
herently interconnected with domain modeling—the knowledge is always with
respect to some subset of the domain. A student model thus must be based
in some way on a domain model. However, it is often not clear where one
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ends, and the other begins. For example, knowledge tracing models contain
parameters like learning rate and slip rate, which are specific for each knowl-
edge component. In the commonly used version of the model, these parameters
are not individualized, i.e., they are parameters of knowledge components and
model some aspect of a domain, so they should be part of a domain model.
At the same time, they may be influenced by a specific student population
and are used to estimate student knowledge; in practice, they are typically
included in the student model. Sometimes, the student and domain models
may not be explicitly distinguished, and domain modeling is hidden under the
term student modeling.

3.2.2 Different Perspectives on the Nature of the Model

The term student model, even when referring to one precisely defined type of
model (like Bayesian knowledge tracing), can be used with several different
meanings depending on the perspective in which it is used:

– A teacher’s perspective: The reality that we are modeling are the real
skills of students. The model is a simplification of this reality, i.e., the skill
estimates for individual students. This perspective is not much concerned
with how these estimates are obtained.

– A researcher’s perspective: The reality that we are modeling is the learning
process in a particular domain. The model is a simplification of this reality,
i.e., the assumptions that the model makes and its basic functional form.
This perspective is not much concerned with specific parameter values or
a parameter fitting procedure.

– A developer’s perspective: The model is what needs to be implemented, i.e.,
the specific data attributes, equations, and parameter fitting procedures.

These perspectives are often implicit in discussions of models; making them
explicit would often help to simplify communication and clarify expectations.
In the current state, developers may find many research papers disappoint-
ing since their description of student models is far from sufficient from the
developer’s perspective.

Let us consider a specific aspect of student models that is unclear and, at
the same time, can be important for understanding and reproducing research
findings: Is parameter fitting considered to be part of a model? In some cases,
it is not. For example, it makes sense to consider Bayesian knowledge tracing
as the same model of learning regardless of whether we use expectation max-
imization or brute force to fit its parameters. In other cases, the parameter
fitting is (implicitly) part of the model. For example, many logistic models take
a very similar functional form (Rasch, Elo, AFM, PFA), and the main differ-
ence is sometimes in the way parameters are computed. A specific example is
the Rasch model and the Elo rating system (Pelánek, 2016).
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3.2.3 Types of Parameters and Parameter Fitting

Another important and terminologically unclear aspect of student models are
parameters. There are different types of parameters and different ways to
obtain the values of these parameters. It is useful to distinguish at least three
types of parameters:

– Online parameters. These parameters are updated after each new obser-
vation (datapoint). In most student models, student skill is this type of
parameter. The computation of these parameters is usually done using a
computationally efficient approach (often using some update equation) and
is not called parameter fitting. These update equations are specific for each
type of model.

– Offline parameters. These parameters are updated automatically, but not
frequently, using a large dataset of observations. In student models, typical
examples of this type of parameter are knowledge component parameters
like students’ learning rate or guess rate. The values of these parameters
are found using some kind of computationally demanding search, which is
called parameter fitting or parameter estimation. The parameter fitting pro-
cedures are often general, e.g., gradient descent, expectation-maximization
algorithm, or grid search.

– Hyperparameters. These parameters are not part of a model itself (they do
not model any aspect of reality); they determine the behavior of a param-
eter fitting procedure. Typical examples are regularization parameters or
the number of iterations. These parameters are typically set manually by
researchers based on intuition, experience, or experimentation.

The boundary between these classes of parameters is blurry. As an example,
consider a model with parameters for the mean and standard deviation of
the prior distribution of student skills. These parameters are on the boundary
between offline parameters and hyperparameters; their treatment depends on
the details of the model and its usage.

The above-given labels for different types of parameters are not standard—
there is currently no clear terminology for distinguishing types of parameters.
This is unfortunate since the distinction between them is quite important both
for practical applications (it has significant consequences for computational
complexity) and for understandability and replicability of the evaluation of
models. For example, item difficulty may be treated both as online and offline
parameters.

3.3 Skill

A term with a particular predisposition to cause confusion is skill. This term
is used with many different meanings. The two basic ones are as a synonym
to ability, i.e., denoting students’ skill, and as a knowledge component, i.e.,
denoting a part of a domain model (Koedinger et al., 2012). These two mean-
ings are significantly different. Even within these basic meanings, we can find
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important distinctions. For our discussion, we group different meanings into
four groups.

3.3.1 Skill as a Latent Construct

One way to understand the term skill is to take the perspective of a teacher or
a researcher in cognitive science. With this perspective, skill is “what is inside
learners head,” i.e., the neural representation of the skill from a biological
point of view or multifaceted cognitive construct from a psychological point of
view. This is the latent construct that we really care about but that we cannot
easily grasp or measure.

This understanding of skill is clearly quite complex even for fine-grained
skills like the addition of fractions. For example, when we consider the teacher’s
perspective of skill, it may be something like “Peter understands the basic
rules for adding fractions, but he is not fluent yet and often makes careless
errors, particularly in the case of unlike denominators.” This complex verbal
formulation is still a simplified abstraction of the real underlying skill.

In this context, the term skill has a similar meaning as ability, proficiency,
or knowledge. However, in certain situations, there may be important nuances
hidden behind the usage of these terms (e.g., skill may be used to denote
procedural knowledge, but not declarative knowledge).

3.3.2 Skill as Model Estimate

In learning systems, we cannot work with the latent construct itself. Thus we
work with some simplified representation of the hidden inner state of students.
This simplification is typically a one-dimensional numerical representation, i.e.,
Peter’s addition of fractions skill becomes something like 0.6.

Even when considering the skill as a student parameter expressed by a
number, it can have different meanings:

1. The number (skill) expresses the uncertainty of the estimate of the underly-
ing concept. Since the skill used in a model is based on limited observation
of the student, it is just a statistical estimate with some uncertainty. With
this understanding, the interpretation of “Peter’s skill is 0.6” is “based
on the observations, there is 60% chance that Peter has already mastered
addition of fractions.”

2. The number (skill) expresses the degree of knowledge, i.e., how large part
of the knowledge component the student already mastered. With this un-
derstanding, the interpretation of “Peter’s skill is 0.6” is “Peter can solve
60% easiest items concerning the addition of fractions.”

The confusion between these two meanings can lead to problems with setting
criteria for mastery learning (Pelánek, 2018a).

In this context, the term skill can often be interchanged with ability, pro-
ficiency, or knowledge; the usage is often given by customs of the specific re-
search area. For example, Bayesian knowledge tracing research typically uses
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the term skill, whereas Item response theory research uses the term ability ;
both models can be used to denote the model estimate of the same (or very
similar) latent construct.

3.3.3 Skill as a Set of Items

The term skill is also used in a domain model perspective where it is indepen-
dent of individual students. Primary usage in this context is as a synonym for
knowledge component or concept, i.e., corresponding to a set of items or to a
column in a Q-matrix (see illustrations in Fig. 2). Note that in this context,
as opposed to the previous one, it is not possible to interchange the term skill
with ability, proficiency, or knowledge.

3.3.4 Skill as a Rule

Correspondingly to multiple usages of domain modeling, the term skill can also
have several meanings from the domain modeling perspective. Another view is
of skill as a set of rules or constraints, which can be either formal or informal.
Fig. 2 shows basic rules for the addition of fractions; these can be elaborated
into a full-fledged formal model, and the term skill can be used to describe
this model. In other cases, it may be unrealistic to fully formally describe
all rules. As an illustration, consider the distinction between continuous and
simple present tense in English. Yet, we may still refer to these implicit rules
as a skill.

3.4 Evaluation

Evaluation is a key part of the development and research in educational tech-
nology. This area is also full of terminological pitfalls. In this case, the issues
are mostly not specific to educational technology—they are often encountered
also in other applications of machine learning or statistics. We thus cover only
briefly some of the important terms with several potential meanings.

Accuracy can be used to talk about general predictive properties of models
or as one specific technique for evaluation of binary classification (the propor-
tion of correct prediction to all predictions). Methods for measuring predic-
tive accuracy are usually called metrics or measures. The term metric has in
mathematics a very specific, technical meaning (a distance function satisfying
several requirements). In the context of the evaluation of predictive accuracy,
however, it is mostly used in a sense of “any function that is used to make
comparisons.”

A common approach to assessing the generalizability of models is to use
cross-validation. This typically involves splitting data into several sets and us-
ing separate data for training and evaluating models. The specific meaning of
cross-validation can, however, significantly differ. Specifically, there is confu-
sion in the usage of terms testing set and validation set, which have a standard
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meaning but are often used in reverse (Ripley, 2007). A division of data into
individual cross-validation sets is often done in some specific way. To describe
this process, researchers sometimes use the term stratification. Unfortunately,
the term is used in at least two very different meanings: to ensure that the
class distribution in each cross-validation set is approximately the same as in
the initial dataset or to ensure that all data for a single student (or item) are
in a single set (Pelánek, 2018b).

Several other evaluation terms are common sources of problems, not just
in the evaluation of educational technology. A typical example is the term
significance. Some occurrences of the term in research papers are with the
common-sense meaning (subjective significance). A standard research mean-
ing is a statistical significance, often with an implicitly implied p-value level
0.05. Recently, however, there has been a backlash against the (over)usage of
statistical significance (McShane et al., 2019). Specifically, in experiments with
educational technology, we often have very large sample sizes, and with large
data, we can often achieve statistical significance without practical significance.
One possible approach to measuring practical significance is the quantification
of effect size, which can be computed in many different ways (Fritz et al., 2012).
Another related, useful, but overloaded term is error bar. Error bars are used
to depict variability of data in graphs; they can, however, be computed in
several different ways, e.g., standard deviation, interquartile range, confidence
intervals computed by a formula based on specific assumptions or by boot-
strapping (Cumming et al., 2007). The exact meaning of terms like effect size
or error bar may be important for understanding and interpreting research
results.

4 Conclusions

Our discussion of educational technology terminology is definitely not com-
plete; completeness is not the aim of the work. The main point is to highlight
specific cases where unclear terminology can lead to confusion. It turns out
that there are many such cases. For example, phrases like “a technique for
improving domain model” or “an algorithm for estimating skill” have several
significantly different meanings.

The inconsistent state of terminology has several negative consequences
that hinder the progress of the field. A multitude of terms with similar mean-
ings complicates finding existing research and can lead to reinventing the
wheel. Multiple meanings of a single term make reading and understanding
research papers more difficult. Unclear terminology is also one of the obstacles
to the reproducibility of research. For example, the details of cross-validation
methodology are seldom described in sufficient detail and with sufficient clarity
of used terms to allow replication of experiments.

Although terminology may seem like an academic topic, it is also very
important for the practical development of learning environments. Clear ter-
minology within the development team is very useful: it simplifies communica-
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tion, prevents bugs in the code, and leads to an easier application of research
results. In fact, the original impulse for this article came from addressing ter-
minological issues in the practical development of a learning environment.

The current state of educational technology terminology has deep roots,
particularly the inherently interdisciplinary nature of the field. It is thus not
realistic to expect that the terminological maze will disappear. Nevertheless,
we can surely do better at the navigation of the maze. The basic step is to dis-
cuss terminology more explicitly in research papers, particularly to specifically
describe the used meaning for overloaded terms like skill, domain model, or
accuracy. In cases of multiple terms with similar meanings (e.g., item, problem,
question, task), it is useful to mention alternative terms and describe reasons
for the particular choice.

For specific cases where the state of terminology is particularly confusing,
it may be fruitful to perform an in-depth analysis of the current state of term
usage or to collect and compare opinions of AIED practitioners with different
backgrounds. Examples of such cases are:

1. Domain modeling, where it would be useful to have further clarification and
clear terminology for different approaches to domain modeling as outlined
in Section 3.1.

2. Student modeling, where it would be particularly useful to further clarify
different meanings of the term skill and relations to related terms like
ability, knowledge component, or concept.

3. Learning support, as expressed by terms like feedback, hint, explanation,
scaffolding, fading, worked-out examples. Terms in this area typically have
distinct but overlapping meanings. Clarification of these terms can be,
among others, very useful for the application of research results into prac-
tical applications.
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