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Abstract

We discuss and evaluate metrics for difficulty rating of Sudoku puzzles. The cor-

relation coefficient with human performance for our best metric is 0.95. The data

on human performance were obtained from three web portals and they comprise

thousands of hours of human solving over 2000 problems. We provide a simple

computational model of human solving activity and evaluate it over collected data.

Using the model we show that there are two sources of problem difficulty: com-

plexity of individual steps (logic operations) and structure of dependency among

steps. Beside providing a very good Sudoku-tuned metric, we also discuss a metric

with few Sudoku-specific details, which still provides good results (correlation coef-

ficient is 0.88). Hence we believe that the approach should be applicable to difficulty

rating of other constraint satisfaction problems.

This technical report is a full version of a paper presented at the 24th Florida

Artificial Intelligence Research Society Conference.

1 Introduction

The general theme of this work is human problem solving [19]. Particularly, we focus

on the study of problem difficulty: What determines which problems are difficult for

humans? Beside giving us insight into human cognition and thinking, the study of

this issue has important applications in human-computer collaboration and training of

problem solving skills, e.g., for developing intelligent tutoring systems [1, 2, 3].

∗This work is supported by GA ČR grant no. P202/10/0334.
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1.1 Difficulty of Problem Solving

We study problem difficulty of one particular problem – Sudoku puzzle. Our specific

goal is the following: Provide a difficulty rating metric for Sudoku puzzle, that achieves as

high correlation with human performance (measured by time) as possible. This goal has direct

applications – such metrics are heavily used since Sudoku is currently very popular

and even commercially important [12], and difficulty rating of puzzles is one of the key

things which influence user’s experience of puzzle solving.

Despite the straightforwardness of our goal and its direct applicability, there is no

easily applicable theory that could be used to guide the development of difficulty rating

metrics. Currently used Sudoku metrics are usually built in an ad-hoc manner, they are

not properly evaluated and their merits are not clear. In general there has been only

little research dealing with the issue of problem difficulty; results are available only for

few specific puzzles, e.g., Tower of Hanoi (and its izomorphs) [10], Chinese rings [11],

15-puzzle [18], traveling salesman problem [4], and Sokoban puzzle [8].

The aim of this work goes beyond the specific study of Sudoku puzzle. We would

like to raise the interest in the study of problem difficulty, for example by showing that

extensive and robust data for study are easily available on the Internet. In this way we

would like to contribute towards a theory of difficulty in human problem solving.

1.2 Sudoku and Constraint Satisfaction Problems

Sudoku is a well-known number placement puzzle: for a partially filled 9 × 9 grid, the

goal is to place numbers 1 to 9 to each cell in such a way that in each row, column, and

3 × 3 sub-grid, each number occurs exactly once. Sudoku has been subject to many re-

search studies, particularly with respect to its mathematical and algorithmic properties,

e.g., enumerating possible Sudoku grid [5], NP-completeness of generalized version of

Sudoku [21], use of constraint propagation [20, 15] or genetic algorithms [16] for solv-

ing the puzzle, or algorithms for generating puzzles [17, 6]. Recently, also psychological

aspects of the puzzle has been studied [13].

We focus on the Sudoku puzzle for several reasons. The Sudoku puzzle has very

simple rules, which makes it amenable to analysis. Thanks to its current popularity we

can easily obtain large scale data on human solving activity. Sudoku is also a member

of an important class of constraint satisfaction problems (CSP). The class of constraint

satisfaction problems contains many other puzzles and also many real life problems
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(e.g., timetabling, scheduling). Although we use data for the Sudoku puzzle, our goal

is to make the analysis and difficulty metrics as general as possible, so that the results

are potentially applicable to other CSPs.

1.3 Data from Internet

Due to the popularity of the Sudoku puzzle we have been able to obtain data capturing

hundreds of thousands hours of human problem solving activity (approximately 2000

puzzles, hundreds of human solvers for each puzzle). This means that we have data

several orders of magnitude more extensive than the usual data used in study of human

problem solving – most previous research is based on data based on tens or hundreds of

hours of human problem solving activity (usually about 20 people and 5 puzzles). Even

though this way of data collection has its disadvantages (e.g., lack of direct control over

participants), we show that thanks to the scale of the “experiment”, the data are robust

and applicable for research purposes.

1.4 Contributions

Difficulty rating of Sudoku puzzles is, of course, not a novel problem. The issue of Su-

doku difficulty rating is widely discussed among Sudoku players and developers, but it

has not been subject to serious scientific evaluation. Current rating algorithms are based

mainly on personal experiences and ad-hoc tuning. There are several research papers

which discuss methods for difficulty rating [20, 16, 7]; however, these works study the

correlation of proposed metric with the difficulty rating provided by the puzzle source

(usually a newspaper), not with the data on human performance. Such analysis is not

very meaningful since the rating provided in puzzle sources is just another rating pro-

vided by a computer program (nearly all published puzzles are generated and rated by

a computer). The only work that we are aware of and that uses data on real human

performance is the brief report by Leone et al. [14].

The results of our study show that there are two main aspects of problem difficulty.

The first is the complexity of individual steps (logic operations) involved in solving the

problem – this is the usual approach used for rating Sudoku puzzles. We show that

there is also a second aspect that has not yet been utilized for difficulty rating – the

structure of dependency among individual steps, i.e., whether steps are independent

(can be applied in parallel) or whether there are dependent (must be applied sequen-
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tially). We provide a simple general model that captures both of these aspects. We

show that even with rather simple rating metric with little Sudoku-specific details we

can obtain correlation coefficient with human performance 0.88. By combination with

previously proposed Sudoku-specific metrics we can obtain correlation coefficient 0.95.

2 Sudoku and Constraint Satisfaction Problems

The Sudoku puzzle is a special case of a more general type of problems called constraint

satisfaction problems (CSP). In this section we describe both the general CSP and spe-

cific Sudoku problem. We also discuss basic techniques for solving these problems.

2.1 Constraint Satisfaction Problems

Constraint satisfaction problem is given by a set of variables X = {x1, . . . , xn}, a set

of domains of variables {D1, . . . , Dn} (we consider only finite domains), and a set of

constraints {C1, . . . , Cm}. Each constraint involves some subset of variables and specifies

allowed combinations of variable values (usually given in a symbolic form, e.g., x1 6=
x2).

A solution of a constraint satisfaction problem is an assignment of values to all vari-

ables such that all constraints are satisfied. The class of CSPs contains many puzzles

(e.g., eight queen problem, cryptarithmetic puzzle) as well as many important practical

problems (map coloring problems, timetabling problems, transportation scheduling).

The general CSP is NP-complete.

2.2 Sudoku Puzzle

Sudoku puzzle is a grid of 9 × 9 cells, which are divided into nine 3 × 3 sub-grids,

partially filled with numbers 1 to 9. The solution of the puzzle is a complete assignment

of numbers 1 to 9 to all cells in the grid such that each row, column and sub-grid contains

exactly one occurrence of each number from the set {1, . . . , 9}. Sudoku puzzle is well

posed, if it admits exactly one solution. We study only well-posed puzzles.

Sudoku puzzle can be easily generalized for any grid size of n2 × n2 and values

from 1 to n2 [20]. Moreover, there are many variants of Sudoku which use non-regular

sub-grids (e.g, pentomino), or additional constraint (e.g., arithmetic comparison of val-
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Figure 1: Example of a 4× 4 Sudoku puzzle, empty cells are denoted as variables.

ues). In this work we use 4 × 4 Sudoku puzzle (Figure 1) as a small running example,

otherwise we consider solely the classical 9× 9 Sudoku puzzles.

Sudoku can be easily expressed as a constraint satisfaction problem [20]. Consider

an example of a 4 × 4 Sudoku given in Figure 1; each cell corresponds to one variable,

the domain of each variable is a set {1, 2, 3, 4} and the constraints express non-equality

of variables and constants in same row, column or sub-grid, e.g., for variable j we have

the following constraints: j 6= b, j 6= h, j 6= i, j 6= k, j 6= 3, j 6= 1. The constraints can be

expressed more compactly using “all different” constraint, which is an often used type

of constraint even in many practical applications [20].

2.3 Backtracking

The brute-force approach to solving CSP is called backtracking. The backtracking search

starts with an empty variable assignment and tries to find a solution by assigning values

to variables one by one. Whenever it finds a violation of a constraint, it backtracks. In

this way the search explores the tree of feasible partial assignments. Figure 2 shows the

search tree for a sample 4× 4 Sudoku.

The run time of a backtracking algorithm grows exponentially with the number of

variables. Nevertheless, classical 9× 9 Sudoku can be easily solved by computer using

the backtracking search. For humans, however, this is not a favoured approach. As can

be seen in Figure 2, even for a small 4 × 4 Sudoku, some branches in the search can be

quite long. For humans, systematic search is laborious, error-prone, and definitely not

entertaining.
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Figure 2: Comprised version of a search tree of a backtracking algorithm on a 4× 4 Su-

doku puzzle. Numbers over arrows indicate number of steps (filled numbers) without

branching.

2.4 Constraint Propagation

Another approach to solving CSP is to find the value of (some) variables by reasoning

about constraints. For each variable xi we define a current candidate set – a set of such

values that do not lead to direct violation of any constraint (see Figure 3). By reasoning

about candidate sets and constraints we can often derive solution without any search.

For our example from Figure 1, it is easy to see that the value of variable i must be 2,

because other constraints restrict the domain of the variable to a single value. Thus we

can assign the value to the variable without any search. Using this partial assignment

we can straighten constraints on other variables (and show, for example, that also h has

to be 2).

Constraint propagation is not guaranteed to find a solution, but it may be more ef-

ficient than backtracking search and can also be combined combined with backtracking

search to produce superior results. We are interested in constraint propagation particu-

larly because this is the natural way how humans try to solve CSPs.
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Figure 3: A sample 4× 4 Sudoku puzzle with enumerated candidate sets. Circle marks

naked single, rectangle marks hidden single.

Let us consider specifically the case of Sudoku puzzle. Human solving of Sudoku

proceeds by sequence of steps in which (correct) values are filled into cells. Two basic

techniques directly correspond to the rules of the puzzle (see also Figure 3).

Naked single technique (also called singleton, single value, forced value, exclusion

principle): For a given cell there is only one value that can go into the cell, because

all other values occur in row, column or sub-grid of the cell (any other number

would lead to a direct violation of rules).

Hidden single technique (also called naked value, inclusion principle): For a given

unit (row, column or sub-grid) there exists only one cell which can contain a given

value (all other placements would lead to a direct violation of rules).

Sudoku problems solvable by iteration of these two techniques are further denoted

as “simple Sudoku”. Most of the publicly used puzzles which are ranked as easy or mild

are simple Sudokus. There exists many advanced techniques, such as pointing, chain-

ing, naked and hidden pairs (see, e.g., Sudoku Explainer [9]), but we do not elaborate

on these techniques in order to keep Sudoku-specific details minimized.

3 Data on Human Sudoku Solving

In this section we describe the data on human problem solving activity that we use for

evaluation of difficulty metrics.
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3.1 Data Sources

For obtaining data on human problem solving we exploited the current popularity of

on-line puzzle solving and particularly the popularity of Sudoku puzzle. The data were

obtained from three Sudoku web portals. The individual data entries obtained from

such a source are of worse quality than data from controlled laboratory experiments

(e.g., it is probable that some solvers where distracted while solving a puzzle). However,

in this way we can obtain significantly more data (by several orders of magnitude) than

is feasible from any laboratory experiment. As we demonstrate, the data are very robust

and thus can be used for evaluation.

The first dataset is from the web portal fed-sudoku.eu (all puzzles from the year

2008). We have in total 1089 puzzles, the mean number of solvers is 131 per puzzle.

For each solution we have the total time taken to complete the puzzle. Each solution

is identified by a user login, i.e., we can pair solutions by the same user. Most users

solved many puzzles, i.e., the data reflect puzzle solving by experienced solvers. The

server provides listings of results and hall of fame. Thus although there is no control

over the users and no monetary incentives to perform well, users are well motivated.

The second dataset is from the web portal sudoku.org.uk. The data are from years

2006-2009; there was one puzzle per day. In this case we have only summary data pro-

vided by the server: total number of solvers (the mean is 1307 solvers per puzzle) and

the mean time to solve the puzzle (no data on individual solvers). We have data about

1331 puzzles, but because of the significant improvement of human solvers during years

2006 and 2007 we have used for the evaluation only 731 puzzles (see the discussion bel-

low).

The third dataset is from the web portal czech-sudoku.com. This web portal was

used in a different way from the other two. The portal provides not just the time to

solve the puzzle, but also the data record of each play. More specifically, each move

(filling a number) and time to make the move are stored. From this portal we analyzed

these detailed records for about 60 users and 15 puzzles.

3.2 Analysis of Data

As a measure of problem difficulty for humans we use the mean solution time. Since

our data do not come from a controlled experiment and mean is susceptible to outlier

values, it is conceivable that this measure of difficulty is distorted. To get confidence
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in this measure of problem difficulty, we analyzed the robustness of the detailed data

from fed-sudoku.eu portal. In addition to mean we also computed median time, me-

dian time for active solvers (those who solved more than 900 puzzles), and mean of

normalized times (normalized time is the ratio of solution time to mean solution time

of the user). All these metrics are highly correlated (in all cases r > 0.93). Thus it seems

that the particular way to choose the measure of human performance is not very im-

portant. In fact, the use of median, which is a more stable metric than mean, leads to

slightly better results for all studied metrics. Nevertheless, for consistency we use as

a difficulty measure the mean (for the sudoku.org.uk we do not have any other data).

Moreover, the relative ordering of techniques is not dependent on this choice.

Another issue that has to be considered is the improvement of human problem solv-

ing capacities during time. Are solvers getting consistently better and thus distorting

our “mean time” metric of puzzle difficulty? In both our datasets there is a correlation

between time to solve the puzzle and the day since start of the “experiment”. This cor-

relation is presumably caused by improvement in users abilities to solve the puzzle. For

fed-sudoku.eu the correlation is r = −0.10 and it is statistically significant; however, it

is not statistically significant within first half of the year and the results for the first half

of the year and the whole year are nearly identical. For the sudoku.org.uk dataset the

correlation is more important and it does distort results. Over the whole set the correla-

tion is r = −0.30, which is caused particularly by the improvement during the first two

years. For the analysis we use only data after 600 days, for these data the correlation is

not statistically significant.

Figure 4 shows histograms of mean time for the two datasets. Solution times for

the fed-sudoku.eu are smaller than for sudoku.org.eu (mean solution time 8 minutes

versus 23 minutes) and have smaller variance. We suppose that the main reason is that

fed-sudoku.eu is used mainly by rather expert puzzle solvers, whereas sudoku.org.eu

by general public, and sudoku.org.eu also seems to include more difficult puzzles (we

can compare the difficulty of puzzles only indirectly via our metrics). This diversity

between the two datasets is an advantage – despite the difference, our main results

(Section 5) are the same over both datasets, and thus we can be quite confident that the

results are not an artifact of a particular dataset.
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Figure 4: Histograms for the two datasets of mean time to solve the puzzle.
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4 Computational Model of Human Solver

In this section we discuss a simple model of a human Sudoku solving. We also provide

evaluation of the model using the data on human problem solving. Although we spec-

ify and evaluate the model only for Sudoku puzzle, the basic model is general, easily

modifiable and applicable to other CSPs.

Our main motivation for developing the model is difficulty rating (Section 5). Nev-

ertheless, the model could be useful in other applications as well, e.g., as a part of a

tutoring system [3] or for detection of cheating in Internet Sudoku competitions (if the

user fills repeatedly cells in wrong order, then it is probable that he did use computer

solver to solve the puzzle).

4.1 General Model

We propose a simple model of human CSP solving, which is based on the following

assumptions1. Humans are not good at performing systematic search, and there are

not willing to do so. Humans rather try to solve CSPs by ‘logic techniques’, i.e., by

constraint propagation. Moreover humans prefer ‘simple’ techniques over ‘difficult’

ones (we elaborate on difficulty of logic techniques bellow).

The model proceeds by repeatedly executing the following steps until the problem

is solved (see Figure 5 for illustration):

1. Let L be the simplest logic technique which yields for the current state some result

(variable assignment, restriction of a candidate set).

2. Let a by an action which can be performed by the technique L. If there are several

possibilities how to apply L in the current state, select one of them randomly.

3. Apply a and obtain new current state.

Note that this model makes two simplifying assumptions: at first that the solver does

not make any mistakes (i.e., no need to backtrack) and that the solver is always able to

make progress using some logic technique, i.e., the solver does not need to perform

search. These assumptions are reasonable for Sudoku puzzle and are supported by our

data on human problem solving. For other CSPs it may be necessary to extend the

model.
1We are not aware of any scientific research which could be used to support these assumptions, but

there is ample support for them in popular books about puzzle solving.
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Figure 5: Example of a model run on a sample 4 × 4 Sudoku puzzle. Grey cells are

cells for which the value can be directly determined using one of the simple techniques

(naked single, hidden single). In each step one of these cells is selected randomly. Only

first three steps of the model run are shown.

Table 1: Difficulty rating of logic techniques as used in the tool Sudoku Explainer [9]

(only 8 simplest techniques are shown). The tool provides classification for more than

20 techniques. Some of the simple techniques can be even further characterized due to

their relational complexity [13].
Technique Rating Technique Rating

Hidden single 1.2 Naked Single 2.3

Direct Pointing 1.7 Direct Hidden Triple 2.5

Direct Claiming 1.9 Pointing 2.6

Direct Hidden Pair 2.0 Claiming 2.8

4.2 Logic Techniques and Their Difficulty Rating

To specify the stated abstract model, we have to provide list of logic techniques and

their difficulty rating. The usual approach used by Sudoku tools is based on a list of

logic techniques which are supposed to be simulations of techniques used by humans;

each of these techniques is assigned difficulty rating. This rating is provided by the

tool developer, usually based on personal experience and common knowledge. Table 1

gives an example of such a rating.

This approach has disadvantage that it contains lot of ad-hoc parameters and it is

highly Sudoku-specific, i.e., it gives us limited insight into human problem solving and

it is not portable to other problems (the success of the approach is based on significant

experience with the problem).

We propose an alternative approach to classification of logic techniques. The ap-

proach is based on the assumption that many advanced logic techniques are in fact

“short-cuts” for a search (what-if reasoning).
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We therefore provide rating of difficulty of logic techniques with the use of search.

This approach contains nearly no parameters and is not specific to Sudoku (i.e., it is

applicable to any CSP). The only Sudoku specific issue is the selection and realization

of “simple” techniques – in our case these are hidden single, naked single techniques;

note that these techniques are basically derived from the rules of the problem. For most

CSP problems it should be possible to derive basic simple techniques on a similar basis.

Let us suppose that we have a state in which the specified simple techniques do not

yield any progress. For each unassigned variable (empty cell) we compute a “refutation

score”, this score expresses the difficulty of assigning the correct value to this variable

in the given state by refuting all other possible candidates.

For each wrong candidate value v we denote ref v the smallest number of simple

steps which are necessary to demonstrate the inconsistency of the assignment. The

“ideal refutation score” is obtained as a sum of values ref v. If some of the values is not

refutable by simple steps, we set the score to ∞.

The computation of ref v can be done by breadth-first search over possible puzzle

states, but it is computationally expensive and anyway the systematic search does not

correspond to human behavior. Therefor we use randomized approach analogical to our

main model – instead of computing the smallest number of steps necessary to refute a

given value, we just use a randomized sequence of simple steps and count the number

of steps needed to reach an inconsistency. The refutation score is thus a randomized

variable.

The variable (cell) with the lowest score is deemed to be the easiest to fill and the

refutation score is used as a difficulty rating of an (unknown) logic technique. For all

our considered Sudoku puzzles there was always at least one cell with finite score; for

more complex problems it may be necessary to further specify the model for the case

that all refutation scores have value ∞.

4.3 Evaluation of the Model

Using the described notions we specify a “Simple Sudoku Solver” (SiSuS) model: the

general model described in Section 4.1 with two hard-wired logic techniques (hidden

single, naked single) of equal difficulty which uses refutation score when the basic tech-

niques are not applicable.

We have evaluated the SiSuS model over detailed data records from

czech-sudoku.com. To evaluate our model we compare the order in which the
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Figure 6: Comparison of cell filling ordering by humans and by model for three sample

puzzles of different difficulty. Each dot corresponds to one cell, the positions denote

mean order of filling. Correlation coefficients: 0.84 (easy), 0.94 (medium), 0.86 (hard).

cells are filled by humans and the model. For the evaluation we used 15 selected

puzzles of wide range of difficulty (from very easy to very difficult). Each puzzle was

solved by 10 to 60 solvers.

Based on the data records of human solvers we computed the mean order for each

cell. Similarly we computed for each cell mean order over 30 randomized runs of our

model. Figure 6 shows the relation between model and humans for three sample puz-

zles (the puzzles were manually selected to be representative of the results). In most

cases the correlation coefficient is between 0.85 a 0.95. Best results are obtained for puz-

zles of intermediate difficulty. For very easy puzzles there are many ways in which cells

can be filled and therefore it is hard to predict the exact order (in this cases the order

also differs among individual solvers). Difficult puzzles cannot be solved by the basic

techniques used by the model and hence the prediction is again bit worse. Nevertheless,

given the simplicity of the SiSuS model, we consider the overall performance to be very

good.

5 Difficulty Metrics

Based on the model of human solution progress (Section 4) we now provide several

difficulty metrics and evaluate them on the data on human behaviour (Section 3). For

all studied metrics we report the Pearson’s correlation coefficient.

Note that difficulty rating is interwoven with modeling human solvers. Difficulty

metrics are based on the data collected by simulating the model of human solver, but

the model depends on rating of difficulty of techniques (see Figure 7). Models which
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Figure 7: Relations between solver model and difficulty rating.

incorporate many logic technique depend on the intuition of the human designer (alter-

natively they could use some kind of bootstrapping).

5.1 Combining Rating of Logic Techniques

Given a model of a human solver, a straightforward approach to difficulty rating is to

run the model, count how often each logic technique is used and produce the overall

rating as a simple function of these statistics. This is the approach used by most Sudoku

generators. For our evaluation, we use the following metrics:

Serate metric Default metric used by the Sudoku Explainer tool [9]; it is a maximal

difficulty of a used logic technique.

Serate LM metric Linear model over techniques used by the Sudoku Explainer tool;

this approach is inspired by [14]. We compute how many times each logic tech-

nique2 was used over each problem. Using half of the problems as a training set

we compute parameters for a linear model; the metric is evaluated on the remain-

ing problems (a test set).

Fowler’s metric Default metric used by G. Fowler’s tool [6]; the metric is given by a

(rather complicated) expression over number of occurrences of each logic tech-

niques (with ad-hoc parameter values).

Refutation sum metric Mean sum of refutation scores (Section 4.2) over 30 randomized

run of our SiSuS model.

5.2 Dependency Metric

So far we have focused on the difficulty involved in single steps. The overall organiza-

tion of these steps was considered only in a simple way as a simple function of difficulty

2We take into account only techniques which were used in at least 0.5% of all technique applications.

There are 13 such techniques, all other techniques were grouped together.
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Figure 8: Dependency among steps captured by graph of number of possibilities for

the next step. Results for three sample puzzles of different difficulty are shown (the

difficulty is indicated by mean solution time of human solvers).

ratings of individual steps. Insufficiency of this approach can be seen particularly for

simple Sudokus – these problems are solvable by the basic simple techniques (i.e., the

above describe metrics return very similar numbers), but for humans there are still sig-

nificant differences in difficulty (some problems are more than two times more difficult

than others).

Some of this additional difficulty can be explained by the concept of ‘dependency’

among steps in the solution process (applications of logic techniques). An important

aspect of human CSP solving is “the number of possibilities leading to a next step”

in each step. For example in our small Sudoku example from Figure 5, there are 3

possibilities in the first step, 4 possibilities in the second and third steps, and so on. It is

quite clear that for the classical 9× 9 Sudoku it it makes a big difference if we can in the

first step apply a logic technique at 10 different cells or only at just 2.

To apply this idea, we count in each step of the SiSuS model the number of possibil-

ities to apply a simple technique. Since the model is randomized, we run several runs

and compute for each step mean number of possibilities. Figure 8 shows illustrates a

difference among several specific instances – it shows that for easy problem there are

many possibilities for progress in each step whereas for hard problem there are only

few of them.

16



To specify a difficulty metric, we need to convert the graphs in Figure 8 to a single

number. We simply compute the mean over the first k steps (k is a parameter of the

metric). But what is a good value of k? As illustrated by examples in the Figure 8, in

the second half of the solution there are usually many possibilities for all problems; i.e.,

these steps probably do not contribute to the difficulty and therefore it is better to limit

the parameter k, on the other hand too small k ignores potentially useful information.

We have evaluated the preciseness of the metric with respect to the parameter k over our

datasets (Table 2). The results show that a suitable value of k is slightly dependent on

the dataset, but generally it is between 20 and 30 and results are not too much dependent

on the precise choice of k (for the interval 20 to 30).

Table 2: Dependency metric – correlation coefficient with human performance for dif-

ferent values of parameter k.
k 5 10 15 20 25 30 35 40

fed-sudoku.eu all 0.42 0.57 0.65 0.67 0.64 0.58 0.51 0.47

fed-sudoku.eu simple 0.57 0.64 0.70 0.73 0.74 0.73 0.70 0.66

sudoku.org.uk all 0.31 0.54 0.62 0.70 0.74 0.76 0.76 0.73

sudoku.org.uk simple 0.62 0.71 0.76 0.79 0.80 0.80 0.78 0.75

5.3 Evaluation

Except for the metrics described above, we also evaluated combinations of metrics,

more specifically linear models over several metrics. Parameters of linear models were

determined over a training set (one half of the problems), results were evaluated over

the other half of models (testing set). We evaluated two linear models. The first com-

bined metric is based on data obtained only from our SiSuS model (linear combination

of Refutation sum and Dependency metric; denoted “RD” in Table 3). The second com-

bined metric is a based on four metrics (Serate, Fowler’s, Refutation sum, Dependency;

denoted “SFRD” in Table 3).

Results are given in Table 3. Figure 9 gives scatter plots for combined metric SFRD

as an illustration of the distribution of the data points.

We get consistently better results for sudoku.org.uk than for fed-sudoku.eu. This is

probably mainly due to the wider variability of difficulty in the sudoku.org.uk dataset

(see the discussion of differences between these datasets in Section 3.2, particularly Fig-
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Table 3: Correlation coefficients between metrics and human results. Refutation sum

metric is not applicable to simple problems.
fed-sudoku sudoku.org

metric all simple all simple

number of givens 0.25 0.22 0.27 0.34

Serate 0.70 0.55 0.86 0.28

Serate LM 0.78 0.60 0.86 0.66

Fowler’s 0.68 0.53 0.87 0.64

Refutation sum 0.68 – 0.83 –

Dependency 0.67 0.73 0.69 0.78

Combined (RD) 0.74 – 0.88 –

Combined (SFRD) 0.84 0.75 0.95 0.83

ure 4). Beside the difference in absolute numbers, all other below discussed trends are

the same over both datasets.

For the “Simple” subset of puzzles (solvable only by hidden single and naked single

techniques), previously studied metrics (Serate, Fowler’s) achieve rather poor results;

on the other hand, the new Dependency metric works quite well.

The Refutation sum metric achieves only slightly worse results than classical metrics

(Serate, Fowler’s), despite the fact that it is much more general and simpler technique

with only little Sudoku specific aspects (particularly it does not have ad hoc parame-

ters).

Serate LM metric (linear model over data about the usage of 14 logic techniques)

achieves similar results as basic Serate metric. Fowler’s metric, which differs in details

and parameter values but uses the same basic approach as Serate, also achieves similar

results. It seems that given the basic approach, the selection of exact parameter values

is not that much important. Nevertheless, by combining 4 different metrics, we can

significantly improve the overall performance and achieve really good performance of

the metric.

6 Conclusions and Future Work

Current popularity of puzzle solving via Internet enables us to easily collect extensive

data on human problem solving. Although such data collection is not done under con-
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Figure 9: Scatter plots showing relation between prediction of difficulty by combined

rating metric and real difficulty (measured as mean solving time). Graphs correspond

to the last line in Table 3.

trolled laboratory conditions, our analysis shows that data from Internet may be ro-

bust and definitively useful. In our evaluation we used two very different datasets;

although we did get different absolute results for each dataset, relative results (com-

parison among different techniques) was nearly the same – this supports our believe

in robustness and usefulness of the data collected from Internet. In this work we use

the data to study and evaluate difficulty ratings of a sample problem; but the approach

could be used also for other problems and for studies of other cognitive issues (e.g.,

what kind of errors humans do).

In this work we study a Sudoku puzzle as an example of a constraint satisfaction

problem. We provide a general model of human CSP solving. We show that by instanti-

ating the model with only few and simple Sudoku-specific details, we can obtain quite

reasonable difficulty rating metric (correlation coefficient up to 0.88). By combining sev-

eral techniques which are specifically tuned for Sudoku we are able to obtain very good

difficulty rating metric (correlation coefficient up to 0.95).

We identify two aspect which influence the problem difficulty: difficulty of individ-

ual logic steps during the solution and dependency among individual steps. Previously

used techniques [6, 9] focused only on individual logic steps. The novel concept of

dependency enabled us to significantly improve the performance of rating.

As the main direction for future work we consider the application of the depen-

dency concept to difficulty rating of other CSPs. Another line for future research is to

use similar methodology (Internet based data collection, computational modeling) to

study different type of problems (e.g., transportation puzzles which lead to state space
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traversal). By combining particular results for individual problems, we can hopefully

proceed towards a general theory of problem difficulty.
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