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Faculty of Informatics, Masaryk University Brno

Abstract. Artificial intelligence and data mining techniques offer a
chance to make education tailored to every student. One of possible
contributions of automated techniques is a selection of suitable problems
for individual students based on previously collected data. To achieve
this goal, we propose a model of problem solving times, which predicts
how much time will a particular student need to solve a given problem.
Our model is an analogy of the models used in the item response theory,
but instead of probability of a correct answer, we model problem solving
time. We also introduce a web-based problem solving tutor, which uses
the model to make adaptive predictions and recommends problems of
suitable difficulty. The system already collected extensive data on human
problem solving. Using this dataset we evaluate the model and discuss
an insight gained by an analysis of model parameters.

1 Introduction

Problem solving is an important component of education. To make problem
solving activities attractive, it is important to confront students with problems of
suitable difficulty – neither too easy, nor too difficult (see the flow concept [3, 4]).
Since students vary in their skills, it is crucial to make problem recommendations
individually adaptive.

Our main aim in this paper is to predict a difficulty of problems, more specif-
ically to predict a time it will take a student to solve a problem. We aim to do
the prediction based on previous data about problem solving activity of this
and other students. To this end we model a relation between a problem solving
ability and a time to solve a problem. As a concrete application of the proposed
model we develop a problem solving tutor – an online application for enhanced
learning.

To make our setting clear, we describe one of the problems that we use
in our tutoring application (and also in evaluation in this paper). The goal
of the problem “Graphs and functions” (see Fig. 1) is to identify a formula
for describing a function, which is specified by its graph. As a tool for solving
students may use interactive graph drawing facility which plots their attempts
to the graph1. By solving these puzzles students train their ability to visualize
math functions and deduct formulas from visualizations.
? This work is supported by GAČR grant no. P202/10/0334.
1 The reader can try the problem at tutor.fi.muni.cz.



Fig. 1. Three instances of the problem “Graphs and functions” and their solutions.
Note that a title is sometimes used to give students a hint.

Our work is related to four research areas, but has significant differences from
each of them. Item response theory (IRT) [2, 5] is used particularly for comput-
erized adaptive testing (i.e., for measuring student latent ability). IRT considers
tests where each question (item) has several possible answers. IRT models give
relation between student ability and a probability of a correct answer. Our model
is directly inspired by IRT, but there is an important difference. The IRT focuses
on tests with correct and incorrect answers, whereas we study problem solving
and measure a time to solve a problem (as illustrated above on the “Graphs and
functions” problem). The most relevant aspect of IRT are models of response
times [15, 16] (which are discussed in more detail in Section 2.3). Unlike IRT
which is primarily applied for adaptive testing, we are interested in intelligent
tutoring.

Intelligent tutoring systems [1] are computer programs used to make learn-
ing process more adaptive and student oriented. They provide background in-
formation, problems to solve, hints, and learning progress feedback. Well known
example of an intelligent tutoring system is a system for teaching algebra [9, 8].
Tutoring systems usually have static structure which is determined by an expert
in a particular domain. Our system is dynamic and recommends problems based
on collected problem solving data. Most research on tutoring systems focuses on
the “inner loop” (how to give hints about a problem), we focus solely on the
“outer loop” (how to dynamically order problems) [17].

Recommendation systems [7] are used mainly in e-commerce. These systems
recommend to users products that may be interesting for them (e.g., books on
Amazon, films on Netflix). One of the approaches to recommendation – col-
laborative filtering – is based on the use of data on user behaviour. With this
approach a recommender system at the same time collects data and uses these
data to make predictions and recommendation. We build our system in the same
way, although we are not interested in recommending products, but problems of
suitable difficulty. This approach is in contrast with the mainly linear approach
(collect data, calibrate models, use models) used in IRT and in education in
general.
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Research in human problem solving [14] so far focused mainly on analysis and
computational modeling of human problem solving for a particular problem, e.g.,
Tower of Hanoi [10], Chinese ring puzzle [11], Fifteen puzzle [13], Sokoban [6],
Sudoku [12]. This research provides insight into problem difficulty, but the insight
is usually closely tied to a particular problem.

We combine principles from the above mentioned areas in the following way.
We build tutor for practising problem solving which recommends users problems
of suitable difficulty, based on the previously collected data and using a novel
model, which is a variation on models used in the item response theory.

Our specific contributions are the following. We propose a general setting
for modeling problem solving times and three specific models. For these models
we discuss methods for parameter estimation and provide evaluation on large
problem solving data. We also present direct application of the model – a problem
solving tutor (tutor.fi.muni.cz).

2 Modeling Problem Solving Times

In this section we describe our approach to modeling problem solving times. It is
analogical to models used in the item response theory, but instead of modeling
probability of a correct answer, we model a time to solve a problem.

2.1 Summary of Item Response Theory

We start by summarising main principles of the item response theory. We focus
only on aspects relevant to our model and we provide simplified description of the
theory. The item response theory is a tool for designing, analyzing, and scoring
tests, questionnaires, and similar instruments that measure abilities [2]. One of
its main applications is computerized adaptive testing – selection of questions
in test is done dynamically based on answers of a student.

Main assumption of IRT is that a given test measures one latent ability θ. IRT
models response to one item (test question) as a relation between this ability θ
and probability P that the item is correctly answered (basic models consider only
dichotomous questions). This relation is expressed by an item response function.
The basic model in IRT is 3 parameter logistic model (see also Fig. 2):

Pa,b,c,θ = c+ (1− c) ea(θ−b)

1 + ea(θ−b)

This model has three parameters: b is the basic difficulty of the item, a is
the discrimination factor (slope of the curve, how well the item discriminates
based on ability), and c is the pseudo-guessing parameter (lower limit of the
curve, probability that even a student with very low ability will guess the correct
answer). Other two often used models are derived from this model by fixing
values of some parameters: a two parameter logistic model (c = 0) and a one
parameter logistic model (c = 0, a = 1).
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Fig. 2. Intuitive illustration of item response function, general problem response func-
tion, and a specific problem response function under our assumptions. Dashed lines
illustrate distributions at certain points; solid lines denotes the median of a time dis-
tribution, grey areas depict the area into which most attempts should fall.

To apply these models, it is necessary to estimate values of their parameters.
Since we do not know neither the item parameters (a, b, c), nor student’s abilities
(θ), we need to estimate both of these at the same time. This is usually done
by joint maximum likelihood estimation, which proceeds by repeating two steps:
estimating abilities from item parameters and estimating item parameters from
abilities. These steps are repeated until parameter values converge.

An important feature of IRT models is group invariance – item parameters
do not depend on a subset of students which answered the item, i.e., even if some
item is answered only by above-average students, the estimated item parameters
should be similar as if the item was answered by a representative subset of
students.

2.2 Problem Solving Times

There are many extensions of the basic IRT models, e.g., models for items with
polytomous answers or models which take into account response times. But none
of these models is directly applicable to the problem solving setting. We propose
a model, which relates problem solving ability and a time to solve a problem. At
the moment we study only students time to solve a problem and not a quality
of solutions (i.e., the current theory is applicable only to well-structured prob-
lems with easily verifiable solutions like the “Graphs and Functions” problem in
Fig. 1).

The basic principles are analogical to the above mentioned principles of IRT.
Similarly to IRT, we assume that a problem solving performance depends on
one latent problem solving ability θ. We are interested in “problem response
function” f(θ), which for a given ability θ gives an estimate of a time to solve
a problem. More specifically, the function gives a probabilistic density of times.
Fig. 2 gives a comparison of basic setting of IRT and our model.

2.3 Specific Assumptions and Model

To obtain a specific model we make the following two assumptions. First, the
distribution of solving times f(θ) for students with a fixed ability θ is a log-
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Fig. 3. Examples of different problem types and their modeling using the 3 parameter
model. See Fig. 6 for specific examples.

normal distribution. Second, the mean and variance of the distribution f(θ)
are exponentially dependent on θ (this dependency can be, of course, changed
by rescaling θ; we implicitly assume that problem solving ability is normally
distributed in the population).

These assumptions are grounded on our data about human problem solving
from our previous experiments [6, 12] and on experience in modeling response
times in IRT [16]. Moreover, the assumptions lead to a tractable model with nice
properties – by using logarithm of time we obtain linear relationship and normal
distributions.

Based on these assumptions, we can now specify a concrete model. Our basic
model is a 3 parameter model in which the intuitive meaning of the parameters
is the following (we intentionally use notation analogical to IRT): discrimination
factor a, basic difficulty of the problem b, randomness factor c.

The problem response function, i.e., the probability that a student with abil-
ity θ will solve a problem at a logarithm of time t, is given by a normal distri-
bution with a mean b+ aθ and a variance c2. Thus we have:

fa,b,c,θ(ln t) = N (aθ + b, c)(ln t) =
1√
2πc

e−
(ln t−(aθ+b))2

2c2

This model and intuition behind its parameters are illustrated in Fig. 2.
Discrimination factor a describes the slope of the function, i.e., it specifies how
the problem distinguishes between students with different ability. Basic difficulty
describes expected solving time for student with average ability. Randomness
factor describes variance in solving times for particular ability. The model is
relatively simple, yet it can capture different aspect of problem difficulty and
their combinations (see Fig. 3).

The presented model is not yet identified as it suffers from the “indeterminacy
of the scale” issue in the same way as the basic IRT model, e.g., we can multiply θ
and divide a by k without any effect on the model. Thus we further require the
following normalization – for a set of problem parameters bi, ai, ci and student
parameters θj , we require that the mean of θj is 0, the mean of ai is -1.

Similarly to IRT, we can also use simplified models. A two parameter model
is obtained by using a constant randomness factor k, a one parameter model is
obtained by using constant randomness and discrimination factors:
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Fig. 4. If a problem is solved by above-average persons, the mean time underestimates
the difficulty of a problem, whereas our model can capture it correctly.

fai,bi,θ(ln t) = N (bi + aiθ, k)(ln t) fbi,θ(ln t) = N (bi − θ, k)(ln t)

Our model is similar to van der Linden’s model for response times in IRT [15].
There are two main differences. First, he uses the model in a context of testing,
where the timing information is just supplementary to information about cor-
rectness of an answer, whereas in our case timing is the main focus. Second, his
model has just two parameters (basic difficulty and randomness).

2.4 Group Invariance

An important feature of the approach is that the models are group invariant
(analogically to IRT), i.e., parameters of a problem do not depend on a subgroup
of students which solve the problem.

Let us explain this important feature by comparing our 1 parameter model
to the baseline metric of a problem difficulty – the mean time to solve the
problem (Fig. 4). In both cases the problem difficulty is captured by one number
– by difficulty parameter b in our model or by the mean m. If we have a set
of problems, then it typically happens that harder problems are solved only by
students with above-average ability. In this case the mean time underestimates
the real difficulty of the problem, whereas our mode is not biased by the selection
of students.

3 Parameter Estimation

Since we do not know neither parameters of problems, nor parameters of stu-
dents, we need to estimate them. To compute these estimates we use data of
the following type: problem i was solved by a student j in time tij . From these
data we need to estimate both problem parameters ai, bi, ci and student param-
eters θj .

One way to do this is to apply a generic data-fitting method like non-linear
least squares directly on the model and to use existing software implementa-
tions to compute estimates. Here we discuss an alternative iterative approach
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which is analogical to the joint maximum likelihood calculation in IRT. Advan-
tage of the iterative approach is that it computes estimates for each student
(problem) separately from others, so it is possible to update estimates locally
without recomputing the whole set of parameters – this is a useful feature for the
application of the approach in our problem solving tutor, which needs to make
prediction in realtime. Moreover, the iterative approach gives better insight into
the computation.

3.1 Estimating Ability

Suppose that a student solved n problems, where i-th problem has parameters
ai, bi, ci and was solved in time ti. Based on these data we want to estimate
the ability θ of the student. We do this by finding a maximal likelihood θ. The
likelihood of the observed times t1, . . . , tn given our 3 parameter model is:

L =

n∏
i=1

fai,bi,ci,θ(ln ti) = k

n∏
i=1

1

ci
e
− (ln ti−(bi+aiθ))

2

2c2
i

We need to find the value of θ such that L is maximized. As is usual, we
proceed by finding maximum of lnL (which is the same as maximum of L):

lnL = k +

n∑
i=1

ln
1

ci
+

1

2c2i
(a2i θ

2 + 2aiθ(ln ti − bi) + (ln ti − bi)2)

Since this is a quadratic function in θ, we can find maximum by finding the
value of θ for which the derivation is zero:

lnL

∂θ
=

n∑
i=1

θ
a2i
c2i

+
ai
c2i

(ln ti − bi) = 0 θ =

∑n
i=1

a2i
c2i

ln ti−bi
ai∑n

i=1
a2i
c2i

The resulting expression for θ has a clear intuitive interpretation. The ex-
pression (ln ti − bi)/ai is a local estimate of ability for i-th problem – it is the
value of θ for which the expected logarithm of time is ln ti. The overall estimate
of θ is obtained as a weighted average of these local estimates, where the weight
is given by the expression a2i /c

2
i , i.e., the more discriminating and less random

a problem is, the more weight it gets (which is exactly what one would intu-
itively expect). For the one parameter model model this expression simplifies to
θ = (

∑n
i=1 bi − ln ti)/n.

3.2 Estimating Problem Parameters

Suppose that a problem was solved by n students, where j-th student has ability
θj and solved the problem in time tj . Now we want to estimate problem param-
eters a, b, c. Maximal likelihood estimates can be found by a regression analysis.
For the two and three parameter models we can use standard linear regression
(least square method), because for our model (linear dependence with normally
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distributed errors) the least square method gives maximal likelihood estimation.
Parameter c is then estimated from error residuals.

For the one parameter model we are looking for linear regression line with
a fixed slope a = −1, thus we need to minimize the following sum of squares:∑n
j=1(ln tj − (b − θj))2. This is a quadratic function with a minimum at b =

(
∑n
j=1 ln tj + θj)/n.

3.3 Joint Estimation

So far we assumed that either abilities are known exactly and we estimate prob-
lem parameters, or that problem parameters are known exactly and we estimate
student ability. In reality, of course, we do not known exactly neither student
abilities nor problem parameters. We compute their estimates by an iterative
bootstraping process:

1. initialization: for each problem i, set problem parameters as follows: ai = −1,
bi = mean time, ci = k,

2. repeat until a selected convergence criterion is satisfied:
(a) for each user j update the estimates of θj based on the current problem

parameters,
(b) for each problem i update the estimates of ai, bi, ci based on the current

ability estimates.

Although each of the steps computes maximum likelihood estimates (with
respect to fixed input parameters), overall it is only approximation of the joint
maximum likelihood. One of the reasons is that the input parameters in each
step of iteration are only estimates and they differ in their confidence, e.g., for
students which solved more problems we have better estimates of their ability.
However, this aspects is not included in the described computation. This issue
can be (pragmatically) addressed by using weighted least squares for estimating
parameters ai and bi with weight for each student dependent on the number of
solved problems.

4 Application and Evaluation

We apply the model in development of a web portal for tutored problem solving:
a “Problem solving tutor”. In this section we describe the system and provide
evaluation of the model using the collected data.

4.1 Problem Solving Tutor

Problem solving tutor is a free web-based tutoring systems for practicing problem
solving skills; the system is available at tutor.fi.muni.cz. The tutor contains
large set of problems of different types. At the moment the system contains
a math problem, two programming exercises, regular expressions, and 10 logic
puzzles. For each problem type there are between 30 and 80 instances of different
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difficulty. The system is in active development and we are continuously adding
new problems and collecting more data. Although the system was made public
only recently, it is already used by several high schools and has more than 1 200
registered users who have spent more then 2000 hours solving more than 60 000
problems.

At the moment we focus solely on the “outer loop” of the tutor [17], i.e.,
recommending problem instances of the right difficulty. The inner loop (within a
selected problem) is currently not present – we just let the users solve a problem,
either they finish or give up; i.e., rather than giving hints we give users different
(simpler) problem to solve.

The following modules provide the core functionality of the system:

– Problem simulators. Simulators provide web interface for solving individual
problems (puzzles).

– Prediction module. Based on the collected data it makes predictions about
solving time for given user.

– Recommendation module. Based on predictions it recommends to a user an
unsolved problem of suitable difficulty. Recommendations are based on the
predicted times and on the session history (e.g., number of recent successes
and failures).

– Feedback module. Based on the collected data it gives a user comparison
with other users; particularly we provide immediate feedback after finishing
problem solving (to support the flow phenomenon [4]).

Our focus at the moment is on the prediction module, which implements
the model described above. The prediction module uses the iterative process
for computing the parameter estimates. It would be computationally expensive
to recompute all parameter estimates after each solved problem. Thus when
user j solves problem instance i we update only parameters ai, bi, ci, θj and
only occasionally we run complete update of all parameters (i.e., full run of the
iterative computation).

For every solved problem instance we store not only a final solving time, but
also every performed move. In this way we collect extensive data about human
problem solving. These data may be useful for further analysis of human problem
solving behaviour and more detailed research into problem difficulty (in a similar
way as in our previous research [6, 12]).

4.2 Evaluation of Predictions

We have evaluated two approaches for estimating parameters: our implemen-
tation of the iterative estimation process (as described above) and estimation
using a generic non-linear least squares method (using R software). The iterative
computation converges very quickly (for practical use 3 iterations are enough)
and both methods provide very similar results.

Student abilities θ are approximately normally distributed and the relation
between ability and logarithm of time is nearly linear, see Fig. 6. These results
support assumptions on which the model is based (see discussion in Section 2.3).
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Table 1. Evaluation of quality of predictions measured by Spearman correlation coef-
ficients.

Problem Baseline Model Improvement (%)

Robot Karel 0.45 0.80 77.78
Nurikabe 0.42 0.73 73.81
Regular expressions 0.47 0.73 55.32
Graphs and functions 0.51 0.77 50.98
Slitherlink 0.64 0.84 31.25
Sokoban 0.67 0.80 19.40
Tents puzzle 0.58 0.67 15.52
Robot programming 0.62 0.71 14.52
Tilt maze 0.71 0.78 9.86
Region division 0.52 0.57 9.62
Rush Hour puzzle 0.78 0.84 7.69
Number maze 0.78 0.82 5.13

Fig. 5. Prediction versus real problem solving data: comparison of prediction based on
mean time (left) and on the one parameter model (right).

To evaluate a quality of predictions, we compare predictions based on the one
parameter model with the baseline metric “mean time to solve a problem”. Both
prediction methods were trained using 90% of data and evaluated on the remain-
ing 10% of data. Fig. 5 shows predictions and solving times for the Graphs and
functions problem. Table 1 compares the results using the Spearman correlation
coefficient. We have also evaluated other metrics like the Pearson correlation co-
efficient, root mean square error and mean absolute error, the results are similar.

As the table shows, the model leads to improvement of 5-80% in precision of
the prediction. As expected, the improvement is modest in cases of simple puzzles
which contain a “luck factor” (e.g., mazes), and it is more pronounced for prob-
lems, where problem solving skill plays significant role (pedagogical problems or
more complex logic puzzles like Nurikabe or Slitherlink).

There is no significant difference between quality of predictions based on the
one parameter model and the three parameter model. We suppose that the three
parameter models needs more data to make a difference for predictions. Never-
theless, even with current data the three parameter model brings an additional
insight – as we now illustrate on one of the examples.
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Fig. 6. “Graphs and functions” problem – three specific examples, for each of them we
provide the collected data and values of parameters of the three parameter model.

4.3 Insight Gained from Parameter Values

Let us illustrate the insight gained from the values of three parameter model on
the problem “Graphs and functions”, which is described in introduction. Fig. 6
shows the collected data and values of model parameters for the three examples
illustrated in Fig. 1. All three problems have similar basic difficulty (parameter
b), but they differ in the other two parameters. The “Logarithm wings” problem
has small randomness and large discrimination; the “Resonance” problem has
large randomness and small discrimination; and the “Squared and opposite”
problem has small randomness and small discrimination.

These parameters provide a valuable insight, which can be potentially used
for further improving intelligent tutoring systems. Problems with small discrim-
ination and large randomness clearly depend more on luck than on ability and
thus are probably not a very good pedagogical examples (so we may want to
filter out such examples). At the beginning of the problem solving session (when
we do not have a good estimate of student ability), we may prefer problems with
small discrimination (so that we have higher confidence in solving time estima-
tion), later we may prefer problems with higher discrimination (so that we select
problems “tuned” for a particular student).

5 Conclusions and Future Work

We propose a novel variation on the item response theory where we do not focus
on correctness of answers but on the time to solve a problem. Our model is given
by a function which for a problem solving ability gives a probabilistic distribution
of time to solve a problem. We provide a specific model with three parameters
and discuss methods for parameter estimation. We evaluate the model and apply
it in a problem solving tutor, which is already used in education.

This work lays foundations for future work in several directions. First, it
would be useful to extend the model to deal with unfinished attempts (when
a student spends some time trying to solve a problem and then abandons the
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problem, we do not include this information in our computation, although it can
plausibly improve our parameter estimates). Second, the problem solving tutor
can be extended by including an inner loop (hints for problem solving), and more
sophisticated recommendations (e.g., using session history). Third, the collected
data could be used to analyse causes of difficulty of particular problems (in a
similar way as in our previous work [6, 12]).
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