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Measuring Similarity of Educational Items: An
Overview

Radek Pelánek

Abstract—A measure of similarity of educational items has many applications in adaptive learning systems and can be useful also for
teachers and content creators. We provide a thorough overview of approaches for measuring item similarity. We document the
computation pipeline, explicitly highlighting many choices that have to be made in order to quantify item similarity. We also discuss
methods for analysis of similarity measures. For illustration and evaluation, we consider items from diverse domains, e.g., mathematics,
programming, and language learning. Although there is no ultimate, universal approach to measuring item similarity, our overview
leads to guidelines that facilitate computation of item similarity in practical applications.
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1 INTRODUCTION

A crucial part of learning is active solving of educational
items (problems, questions, assignments). For high-quality
education, we need large pools of items that learners can
solve. Even teachers in a standard educational setting often
work with many items. In personalized computerized sys-
tems, the need for a large pool of items is even higher—if
we want to provide a customized experience for individual
learners, we need to be able to choose from an extensive
set of items. To use a large item pool efficiently, we need
to be able to navigate it. For this, it is very useful to be
able to measure the similarity of individual items. How
can we measure the similarity of educational items? From a
spectrum of similarity measures, how do we pick a suitable
one? These are the main questions that we address in this
paper.

To put the problem in the broader context, similarity of
educational items is a special case of similarity of learning
objects. Churchill [1] proposed a classification of learning
objects into six classes: presentation objects, practice objects,
simulation objects, conceptual models, information objects,
and contextual representations. In this work, we deal with
just one of these classes—practice objects. Similarity mea-
sures have been studied in the general context of learning
objects [2]. However, when we consider a restricted type of
objects, we can use more powerful techniques by utilizing
data specific for a particular type. Particularly, in the case of
practice objects, we have data about solutions and learners’
performance that are not available for other types of learn-
ing objects.

For a specific illustration of educational items and their
similarity, let us consider items in a mathematics exercise
on the order of operations. A simple similarity measure for
such items is Levenshtein edit distance. Fig. 1. provides an
example of a projection of such items (from a real applica-
tion) based on this similarity measure.

Similarity measures have many applications, particu-
larly in adaptive learning systems. Similarity measure can
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be beneficial for automatic recommendations of activities. If a
learner solves an item, but with a significant effort, it may
be useful to recommend as a next item another very similar
item, so that the learner can get more practice. On the other
hand, if a learner solves an item easily, it is more meaningful
to recommend a dissimilar item. If a learner struggles with
an item, the system may provide as a hint a suitable worked
example based on a similarity measure. Similarity measures
can be used in learner and domain modeling: based on the
similarity between items, we may define knowledge com-
ponents and estimate the knowledge of learners. Similarity
measures may also be used in the user interface, e.g., for
enabling learners and teachers to navigate the item pool and
manually pick an item to solve.

Fig. 1. An illustration of a projection of items based on similarity (the
PCA projection based on the Levenshtein edit distance).

In addition to the use in automatic adaptation, similarity
measures can also be very useful for empowering humans
by providing useful and actionable insight (see [3] for a
general discussion of this approach). For developers of
learning system and content creators, a similarity measure
facilitates the management of an item pool. Using similarity
measures we may detect duplicate items and outliers, which
should be removed from the item pool. With the use of
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Fig. 2. Computing and applying item similarity.

visualization, it also may be possible to identify “missing
items”. Suitably presented data on item similarity may be
very useful for teachers, instructional designers, or textbook
authors. Such data may be useful for example for guiding
the choice of items for an exam—typically we want items
in an exam to be similar, but not very similar to items
practiced during learning. We also want exam items to be
rather “typical” (i.e., similar to many other items). Data on
item similarity may provide impulses for the organization
of classes, instructional materials, or creation of other edu-
cational resources (e.g., worked examples). In systems with
crowdsourced content creation, the size of an item pool may
be extensive, and similarity measures may be fundamental
for efficient utilization of available resources.

Fig. 2. presents the basic approach to computing and
applying item similarity. We take the available data about
items and use it to compute an item similarity matrix
(similarity values for each pair of items). This matrix is then
used for one of the above-described applications. In these
applications, the item similarity matrix is processed by other
computational steps, particularly with clustering algorithms
and dimensionality reduction algorithms (for creating visu-
alizations). Experience with clustering algorithms suggests
that the appropriate choice of similarity measure is more im-
portant than the choice of a specific clustering algorithm [4].
Since the choice of similarity measure is domain specific, it
is typically not explored in general research on clustering.
Therefore, in this work, we focus on the first step—the
choice of similarity measure—and explore it in detail for
the case of educational data.

Measuring item similarity is not a clearly defined prob-
lem. In most domains, there is no single correct measure
of item similarity. Consider word problems in mathemat-
ics. We obtain very different item similarities depending
on whether we consider similarity based on superficial
features (a cover story) or deep features (a principle of
solution). Similarly, for items illustrated in Fig. 1. we can
focus on specific numbers, on arithmetical operations, or on
mathematical principles (operator precedence, parenthesis).
Should (8−4)/2 be considered as more similar to 8−4/2 or
to (10 + 5)/3? This question does not have a simple correct
answer. In most applications, we would like to focus on
deep features. In some cases, however, it may be useful to
consider also shallow features that are more relevant to the
perception of similarity by novice learners. For example,
in solving programming exercises or mathematics word
problems, it may be beneficial for learner engagement to
present a series of problems with a similar theme of cover
stories.

The absence of clear ground truth makes the analysis
and evaluation of similarity measures difficult. A proper
evaluation of similarity measures thus has to be connected
to a particular application, i.e., we should evaluate the

whole pipeline in Fig. 2. together. However, the computation
of similarity involves many choices. Exploring all these
choices for each possible use of similarity measures is not
feasible. It is thus worthwhile to explore similarity measures
in general (without a specific application). In this setting, we
cannot give verdicts about which measure is better or worse.
Nevertheless, we can explore questions like: “Which choices
in the similarity computation are the most important?”,
“Which measures are highly correlated (and thus it is not
necessary to consider both of them)?”, “How much data do
we need for similarity measures to be stable?”. This is the
basic approach that we take in this paper.

The specific contributions of this paper are the following:

• We provide a systematic overview of approaches to
measuring the similarity of educational items.

• We formulate the problem of measuring item simi-
larity in general terms, making the results applicable
across a wide range of educational domains.

• We discuss methodical issues of evaluation of simi-
larity measures, and we propose methods for anal-
ysis of similarity measures. We illustrate the use of
these methods on specific examples.

• We perform an analysis of similarity measures using
both real and simulated data. Based on these experi-
ments we formulate recommendations for the use of
similarity measures.

This paper extends previous work reported in [5], [6],
[7].

2 BASIC APPROACHES TO ITEM SIMILARITY

Fig. 2. shows the basic outline of computing and using item
similarity: based on the available data we compute similar-
ity, which can be utilized in many ways. We now provide
a more detailed elaboration of the process (illustrated in
Fig. 3).

2.1 Terminology

We start by clarifying the terminology. In our discussion
we use “similarity measures” (higher values correspond to
higher similarity); some related works provide formulas for
dissimilarity measures (the distance of items, i.e., lower val-
ues correspond to higher similarity). This is just a technical
issue, as we can easily transform similarity into dissimilarity
by subtraction.

Another technical point is that we discuss “measures”,
not “metrics” in a formal mathematical sense. A distance
metric must satisfy several properties: non-negativity, sym-
metry, the identity of indiscernibles, triangle inequality.
Many of the measures that we discuss do not satisfy these
properties, particularly the triangle inequality, which re-
quires that for all x, y, z a metric m satisfies: m(x, z) ≤
m(x, y) +m(y, z). Note that some applications of similarity
measures may require a proper distance metric (e.g., some
clustering algorithms). In these cases, it is necessary to either
choose a measure that satisfies the metric requirements or to
apply additional processing step to obtain a distance metric
(e.g., the Euclidean distance over a similarity matrix).
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Fig. 3. The general approach to computing and applying item similarity. The arrows that are discussed in more detail in the paper are denoted by
letters and referenced in the text as Arrow X.

2.2 Input Data
Several sources of data can be used for measuring similarity:

• an item statement and metadata: the content of the
item as it is shown to learners and metadata assigned
to an item (e.g., tagging with relevant topics),

• item solutions: a correct answer, a sample solution
provided by the item author, an explanation, and
potentially also data about learners’ solutions,

• performance data: the correctness of answers, item
solving times, number of attempts needed, hints
taken.

Item statement and item solution data are specific to a
particular domain and item type. Performance data are
similar across domains and item types, but they need to
be collected, which leads to a cold start problem.

To provide more specific examples of input data, we
consider items from several different domains. A general
type of item is a multiple-choice question. In this case, the
item statement is typically a natural language text (a stem
and a set of options), and the item solution is the correct
choice (which is not useful for computing similarity). In
mathematics, an item statement can be given as an expression
in a formal syntax (“3-(5+2)”) or as a word problem in
a natural language text. The core of the item solution is
typically a numerical value of the correct answer. It can be
supplemented with an explanation (in a natural language)
or a derivation of the answer (as a formal expression). In
programming, an item statement is a specification of the
item that a learner should solve, e.g., as a natural language
description of the task or an input-output specification.
A solution to an item is a program written in a given
programming language.

2.3 Data Pipeline
In analyzing and applying similarity, it is useful to distin-
guish explicitly two matrices that naturally occur in compu-
tations:

• a feature matrix, in which rows correspond to items
and columns to features of items (e.g., keywords

occurring in an item statement or an item solution,
tags in metadata),

• an item similarity matrix, which is a square matrix S,
where Sij denotes the similarity of items i and j.

Fig. 3. shows typical steps in the computation and appli-
cation of similarity. The first step consists of processing the
input data and computing either the feature matrix (Arrows
A, C, E) or directly the item similarity matrix (Arrows B,
D, F). These computations depend on the characteristics of
particular input data. Nevertheless, there are several basic
techniques for these computations that are relevant in most
domains. We discuss these techniques in Section 4 and
Section 5. Once we have the primary matrix, we can process
it or combine it with matrices that are based on different
input data. These transformations are done using mostly
standard machine learning techniques. We discuss the basic
approaches in Section 6.

For each step, there are many possible choices for their
specific realization. For example, the Arrow J (computing a
similarity matrix from a feature matrix) can be done using
Euclidean distance, Pearson correlation coefficient, cosine
similarity, and many other techniques. Analogically, there
are many specific ways how to transform an item solution
into a feature matrix (Arrow C) and many algorithms for
performing clustering (Arrow I). Moreover, individual steps
are mostly independent and can be combined.

In this work we focus on measuring similarity, i.e.,
constructing the item similarity matrix. We do not discuss
in detail different applications since it is necessary at first to
adequately clarify how to compute similarity.

3 RELATED WORK

A wide scope of research is related to measuring the similar-
ity of educational items. The problem is a specific instance of
a general machine learning approach, and specific similarity
measures have been studied in many domains.

The overall approach outlined in Fig. 3. is related to the
distinction between pairwise data clustering versus feature
vector clustering, which has been studied in the general
machine learning research [8], [9]. The similarity of practice
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items is a special case of the similarity of general learning
objects [1]. Previous work explored similarity measures for
general objects, e.g., using object content [2] or data about
object lifecycle (creation, usage, sharing) [10].

A specific domain, in which item similarities and clusters
have been extensively explored, is the field of recommender
systems. The basic classification of recommender systems
techniques is into content-based and collaborative filter-
ing. Here we can find a close analogy with our approach
outlined in Fig. 3. Content-based techniques [11] corre-
spond to computation based on data from the instructor
(item statements, metadata, sample solutions). Collaborative
filtering methods (e.g., neighborhood-based methods [12],
item-item collaborative filtering [13]) correspond to simi-
larity measures based on data from learners (performance
data, learners’ solutions). In recommender systems, simi-
larity measures are widely applied, e.g., for clustering of
items [14], [15] or for clustering of users [16]. A specific
example of the evaluation of similarity measures is work
by Spertus et al. [17], who compared six similarity measures
and evaluated their impact on the studied application.

In both educational data mining and recommender sys-
tems, two basic approaches can be used to capture relations
between items: a “model-based approach” and an “item
similarity approach”. In this work, we explore the similarity
approach. The alternative model-based approach is based
on the idea of constructing a simplified model that explains
the observed user data. Using a matrix of learners’ answers,
we construct a model that predicts these answers. Typically,
the model assigns several latent skills to learners and uses
a mapping of items to corresponding latent factors. This
kind of models can often be naturally expressed using
matrix multiplication, i.e., fitting a model leads to matrix
factorization. Once we fit the model to data, items that
have the same value of a latent factor can be denoted as
“similar”. The model is typically computed using some
optimization technique that leads only to local optima (e.g.,
gradient descent). It is thus necessary to address the role of
initialization, and parameter setting of the search procedure.
In recommender systems this approach is used for imple-
mentation of collaborative filtering; it is often called “sin-
gular value decomposition” [18]. In the educational context,
many variants of this approach have been proposed under
different names and terminology, e.g., Q-matrix [19], [20],
non-negative matrix factorization techniques [21], sparse
factor analysis [22], or matrix refinement [23].

Several authors discuss similarity measures specific to
a particular application domain. Hosseini et al. [24] con-
sider the similarity of programming items and worked-
out examples using introductory programming problems
concerning the Java language. Brusilovsky et al. [25] used a
content-based similarity measure for adaptive visualization
of programming examples. Sahebi and Brusilovsky [26] also
analyzed similarity in the programming domain, but they
focus on similarity among non-graded items (e.g., an ex-
planatory text, videos). Liu et al. [27] proposed a similarity
measure for items involving both text and images that is
based on a representation computed by a neural network.
The method is relevant for example in mathematics, where
items containing both text and images are common. John et
al. [28] studied similarity specifically for word problems in

mathematics. Käser et al. [29] study similarity and clustering
of users (instead of items) in a learning system for mathe-
matics. The work is noteworthy for providing a detailed
description of the whole processing pipeline for computing
similarity.

Other works discuss problems in different research areas,
but with close relation to the similarity of educational items.
Similarity measures have been thoroughly studied for text
documents [30]; this research is directly relevant to educa-
tion since many educational items are textual. Specifically,
recent approaches based on distributed representations of
words, sentences, and paragraphs [31], [32] can be used
for computing similarity of textual items. In biology and
ecology, similarity measures based on binary data about
species presence are often used [33]. Although this may
seem like a completely different research area from educa-
tional data mining, the binary data about species presence
are analogical to binary data about correct and incorrect
answers and the same similarity measures can be used.
In item response theory, an important assumption is local
item dependence [34]; methods for checking the dependence
assumption are related to item similarity.

4 SIMILARITY BASED ON ITEM STATEMENTS,
METADATA, AND SOLUTIONS

We start by discussing techniques for measuring similarity
using item statements, metadata, and solutions. There are
two natural approaches to computing similarity based on
these data. At first, we can compute similarity via a feature
matrix. This matrix can be, for example, based on the bag-
of-words model (i.e., the occurrence of keywords, ignoring
their structure). The similarity matrix is then computed
from the feature matrix using some transformation (e.g.,
Euclidean distance). At second, we can compute similarity
by direct computation of similarity for each pair of items—
this is typically done by some version of edit distance, and
the approach takes the structure of items into account.

4.1 Similarity via Features
The first approach is to take item statements, metadata, or
solutions and use them to compute an item feature matrix
(Arrow A and Arrow C). This approach is natural particularly
for metadata like tags or topics, which can be treated directly
as features. For item statements and solutions, the approach
is to a large degree domain specific—we need to select
suitable features for a particular domain. The basic approach
is to use a bag-of-words model, where the features are
“keywords” occurring in items and we ignore the structure
of items, using only the number of their occurrences. The
choice of “keywords” depends on the type of items:

• items consisting of a natural language text (e.g., mul-
tiple choice questions, word problems): the standard
bag-of-words model, keywords are just plain words
(lemmatized),

• expressions in mathematics: keywords are the used
operations and syntactical elements in expressions
(e.g., addition, parenthesis, fraction),

• solutions in programming items: keywords are the
keywords and operations of the used programming
language.
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Additional features depend on a specific domain and the
type of a problem. For example, in programming we may
use features like the use of functions, the nested depth, the
length of a code, or description of variable types (e.g., inte-
ger, string, list). Items containing natural language text can
utilize as features distributed vector representations [31],
[32], which are able to capture not just syntax of words,
but also their semantics. More complex items may contain
not just text, but also images or other media formats. Liu
et al. [27] propose to use neural networks in such situations
to automatically find a suitable representation (features) of
items.

4.2 Direct Computation of Similarity

The second approach is to compute the item similarity
matrix directly from item statements (Arrow B) or item
solutions (Arrow D). This can be done by some variation
of edit distance [35]. The most commonly used edit distance
is the Levenshtein edit distance, which is directly applicable
to textual items, for example in language learning. It may
be beneficial to preprocess the text with standard natural
language processing techniques like lemmatization. An al-
ternative to the edit distance approach, which considers
only the syntactical aspect of items, is to consider also
semantical similarity [35].

In the case of programming items, the basic Levenshtein
edit distance may be still applicable, particularly for pro-
gramming exercises that use graphical programming (e.g.,
the Blockly environment), since in this case programs can be
relatively easily canonized and linearized. Edit distance can
also be applied to the sequence of actions performed by a
program. Piech et al. [36] use this approach together with the
Needleman-Wunsch global DNA alignment for measuring
edit distance. For more complex programming items and ex-
pressions in mathematics, it is natural to represent solutions
as abstract syntax trees and to utilize tree edit distance [37].

5 SIMILARITY BASED ON PERFORMANCE DATA

With performance data, we can in principle again either
use the feature matrix or directly compute the similarity
matrix. However, the use of the feature matrix (Arrow E)
in this case does not seem very promising. Although there
are some natural features describing learners’ performance
(e.g., success rate, the standard deviation of performance),
these natural features are insufficient for measuring item
similarity. Nevertheless, they may be beneficial as additional
features in another feature-based approach.

We focus on the direct computation of similarities from
performance data (Arrow F). In this case, the input to item
similarity computation is given by data about learners’ per-
formance, i.e., a matrix of size L× I , where L is the number
of learners and I is the number of items. The matrix values
specify the learners’ performance. The matrix is typically
very sparse (i.e., with many missing values). The output of
the computation is an item similarity matrix, which specifies
the similarity between each pair of items.

Note that in our discussion we mostly ignore the issue
of learning (the change of learners’ skill as they progress
through items). When learning is relatively slow and items

are presented in a randomized order, learning is just a
reasonably small source of noise and does not have a fun-
damental impact on the computation of item similarities. In
cases where learning is fast or items are presented in a fixed
order, it is necessary to extend described techniques to take
learning explicitly into account.

5.1 Correctness of Answers

We start with similarity measures that utilize only dichoto-
mous data about the correctness of learners’ answers. The
advantage of these measures is that they are applicable to
a wide variety of settings since the correctness of answers
is the primary type of information available in learning
systems.

With dichotomous data, we can summarize learners’
performance on items i and j using an agreement matrix
with just four values (Table 1). Although we have only four
values to quantify the similarity of items i and j, previous
research has identified a large number of applicable mea-
sures [38], [39], [40]. For example, Choi et al. [38] discuss 76
different measures, albeit many of them are only slight vari-
ations on one theme. Similarity measures over dichotomous
data are often used in biology with data on co-occurrence
of species [33]. A more directly relevant application is the
use of similarity measures for recommendations [41]. Rec-
ommender systems typically use either Pearson correlation
or cosine similarity for computation of item similarities [12],
[13], but they consider richer than binary data.

TABLE 1
An agreement matrix for two items.

item i
incorrect correct

item j incorrect a b
correct c d

TABLE 2
Definitions of similarity measures based on the agreement matrix.

measure formula range

Pearson (ad− bc)/
√

(a+ b)(a+ c)(b+ d)(c+ d) [−1, 1]

Yule (ad− bc)/(ad+ bc) [−1, 1]

Cohen (Po − Pe)/(1− Pe) [0, 1]
Po = (a+ d)/n
Pe = ((a+ b)(a+ c) + (b+ d)(c+ d))/n2

n = a+ b+ c+ d

Ochiai a/
√

(a+ b)(a+ c) [0, 1]

Sokal (a+ d)/(a+ b+ c+ d) [0, 1]

Jaccard a/(a+ b+ c) [0, 1]

Table 2 provides definitions of 6 measures that we have
chosen for analysis. Following previous research (e.g., [33],
[38]), we call measures by names of researchers who pro-
posed them. We selected the measures in such a way as to
cover measures used in the most closely related work and
measures which achieved good results (even if the previous
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work was in other domains). We also tried to cover different
types of measures.

Pearson measure is the standard Pearson correlation
coefficient evaluated over dichotomous data. The Pearson
correlation coefficient is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

When the vectors ~x and ~y are vectors of answers, the expres-
sion simplifies to the formula given in Table 2. For example,
the left part of the denominator (variance of x values)
becomes (a + c)(b + d)/n. In the context of dichotomous
data, this measure is also called the Phi coefficient or the
Matthews correlation coefficient.

Yule measure achieved good results in previous work in
the field of recommender systems [41]. The measure is a
special case of Goodman and Kruskal’s gamma, which is a
rank correlation metric given as (Ns−Nd)/(Ns+Nd), where
Ns is the number of pairs that are ranked in the same order,
and Nd is the number of pairs that are ranked in reversed
order.

Cohen measure is typically used as a measure of inter-
rater agreement (it is more commonly called “Cohen’s
kappa”). It considers the observed agreement between two
ratings (Po), taking into account the agreement occurring by
chance (Pe). In our setting, it makes sense to consider this
measure when we view learners’ answers as “ratings” of
items. Relations among Pearson, Yule, and Cohen measures
are discussed in [42].

Ochiai coefficient is typically used in biology [33]. It is
also equivalent to the cosine similarity measure, which for
two vectors ~x, ~y is given as the cosine of the angle between
the two vectors: cos(α) = ~x·~y

|~x||~y| . When the cosine similarity
is evaluated over dichotomous data, it leads to the Ochiai
formula given in Table 2. Cosine similarity is often used in
recommender systems for computing item similarity, albeit
typically over interval data [13].

Finally, we consider two very simple measures. Sokal
measure is also called Sokal-Michener or “simple match-
ing”. It is equivalent to the accuracy measure used in
information retrieval. Together with Jaccard measure, they
are often used in biology, but they have also been used for
clustering of educational data [39].

Note that some similarity measures are asymmetric with
respect to 0 and 1 values. These measures are typically used
in contexts where the interpretation of binary values is the
presence/absence of a specific feature (or observation). In
the educational context, it is more natural to use measures
which treat correct and incorrect answers symmetrically.
Nevertheless, for completeness, we have also included some
of the commonly used asymmetric measures (Ochiai and
Jaccard). In these cases, we focus on incorrect answers (value
a as opposed to d) as these are typically less frequent and
thus bear more information.

5.2 Additional Performance Data
The correctness of answers is the primary source of infor-
mation about item similarities, but not the only one. The
second major type of performance data is response time.
Particularly in domains like programming, the response
time is a key performance indicator.

The basic approach to utilization of response time is to
combine it with the correctness of an answer. Given the
correctness value c ∈ {0, 1} and response time t ∈ R+,
we combine them into a single score r. Typically we want to
take into account the labor-intensity of a particular item, e.g.,
by considering the median of all response times τ . Examples
of specific formulas for computing the score r are:

• linear transformation for correct answers only:
r = c ·max(1 − t/2τ, 0),

• linear transformation for both correct and incorrect
answers (“high speed, high stakes scoring rule” used
in the Math Garden software [43]):
r = (2c− 1) ·max(1 − t/2τ, 0),

• exponential discounting (used in [44]):
r = c ·min(1, 0.9t/τ−1).

The scores obtained in this way are real numbers. Given the
scores, it is natural to compute the similarity of two items
using the Pearson correlation coefficient of scores.

It is also possible to utilize specific wrong answers for
computation of item similarity. Wrong answers typically
have a very skewed distribution of their occurrence dom-
inated by a few common mistakes. These common wrong
answers may be indicative of item similarity [45]. For ex-
ample, if two words are repeatedly confused by learners in
vocabulary learning, this can be interpreted as an evidence
of the similarity of these words (we illustrate this approach
in our analysis, specifically in Fig. 4.).

6 DATA TRANSFORMATIONS

Once we compute the item features or basic item similari-
ties, we can process them using many transformations. In
contrast to the above-described processing of input data,
which necessarily involves details specific for a particular
type of items, the data transformation steps are rather
general—they can be used for arbitrary feature matrices and
are covered by general machine learning techniques. We
discuss techniques that are the most relevant for educational
items.

6.1 Feature Transformations and Combinations
The primary feature matrix obtained by data processing
contains for each feature raw counts, e.g., the number of
occurrences of a keyword. Before computing similarity it
is beneficial to normalize the values in the feature matrix
(Arrow G), i.e., to perform transformations that take the
feature matrix and produce a new, modified feature matrix.
Examples of such transformations are:

• binarization by thresholding (a very coarse-grained
normalization),

• normalization by dividing by a maximal value for
each feature to get values into the [0, 1] interval,

• log transform (used particularly to limit the influence
of outlier values),

• TF-IDF (term frequency–inverse document fre-
quency) transformation, used particularly for the
bag-of-words features.

Often we can obtain several feature matrices (or item
similarity matrices) corresponding to different data sources



7

or multiple solutions. We can combine these matrices in
different ways, e.g., by average (assuming additive influence
of data sources), min (assuming conjunctive influence of
data sources), or max (assuming disjunctive influence of data
sources).

6.2 From Features to Similarity
Once we have the features matrix, we want to compute the
item similarities (Arrow J). In this step, we have a vector of
real values for each item (weights of individual features),
and we compute the similarity of a pair of items as the
similarity of their vectors. Computing the similarity of vec-
tors is a common operation in machine learning, with many
choices available. The common choices are cosine similarity,
the Pearson correlation coefficient, and Euclidean distance
(transformed into a similarity measure by subtraction). In
the case of binarized features, the measures described in
Table 2 are applicable.

These similarity measures are used widely in recom-
mender systems, with the experience that the choice of a
suitable measure depends on a particular data set [12]. The
choice of a similarity measure also depends on the steps
used to compute the feature matrix and on the purpose
of the similarity measure. As an example, consider two
programming problems, for which solutions use the same
concepts (keywords), but one of the solutions is longer and
uses each keyword multiple times. If we use normalization,
the feature vectors will be (nearly) the same and the items
will end up as very similar for any similarity measure. If
we do not use normalization, the items will end up as very
similar when we use cosine similarity and correlation coef-
ficient, but as different when we use Euclidean distance. We
cannot give a simple verdict, which one of these approaches
is better, since this may depend on the intended application.

6.3 Projections
From the feature matrix or the item similarity matrix, we
can compute projection to Rn (Arrow H and Arrow K). Such
projection is typically used for applications, particularly for
visualization of items. It can, however, also be a useful
processing step in the computation of item similarities. For
example, in the case of correlated features, we can use
the principal component analysis (PCA) for decorrelating
features (Arrow H) and then compute similarities based on
the principal components (Arrow L).

There are many techniques for computing low dimen-
sional projections. For the feature matrix (Arrow H), the pop-
ular choices include the basic linear PCA and the nonlinear
t-SNE [46]. For similarity data (Arrow K), the basic technique
is the (non-metric) multidimensional scaling.

6.4 Second Level of Item Similarity
The basic computation of item similarities computes the
similarity of items i and j using only data about these two
items. To improve a similarity measure, we can employ
a “second level of item similarity” that is based on the
computed item similarity matrix and uses information on
all items (Arrow M). Examples of such a second step are
Euclidean distance or correlation. The similarity of items

i and j is given by the Euclidean distance or Pearson
correlation of rows i and j in the similarity matrix. Note that
the Euclidean distance may be used implicitly when we use
standard implementations of some clustering algorithms
(e.g., k-means) or projections (e.g., the PCA projection in
Fig. 1. was done in this way).

With the basic approach to item similarity, we consider
items similar when the performance of learners on these
items is similar. With the second step of item similarity,
we consider two items similar when they behave similarly
with respect to other items. The main reason for using this
second step is the reduction of noise in data by using more
information. This approach may be useful particularly for
dealing with learning. Two very similar items may have
rather low direct similarity because getting feedback on the
first item can strongly influence the performance on the
second item. However, we expect both items to have similar
similarities to other items.

A more technical reason for using the second step (par-
ticularly the Euclidean distance) is to obtain a measure that
is a distance metric. The measures described above mostly
do not satisfy triangle inequality and thus do not satisfy the
requirements on a distance metric.

The basic idea of the second level similarity is related to
the idea behind the SimRank algorithm [47]: “two objects are
similar if they are related to similar objects”. The SimRank
algorithm works with relational data (represented using
graphs). It is based on a recursive definition of similarity,
which further generalizes the principle of second level
similarity. Experience suggests that the recursive definition
stabilizes very quickly. Thus for practical purposes, the
second level similarity should be sufficient.

7 ANALYSIS

In preceding sections, we provided an overview of a wide
range of methods that can be used to compute the similarity
of items. What are the relations among these methods?
Which one should we choose for a particular application? To
get insight into these questions, we now discuss methods for
analyzing similarity measures and provide an illustrative
analysis of some specific measures. In our analysis, we focus
mainly on measures based on performance since these are
to a large degree independent of a particular domain. Mea-
sures based on item statements and solutions are domain
dependent, and thus it is hard to study them in general.
For these, we provide several illustrative observations and
examples.

To evaluate techniques on realistic and diverse educa-
tional data, we use data from several sources:

• fill-in-the-blank questions with two options about
Czech grammar and orthography from the system
umimecesky.cz (further denoted as “Czech”),

• constructed response questions from mathe-
matics (mostly arithmetic) from the system
umimematiku.cz (further denoted as “Mathe-
matics”),

• Blockly programming problems from the system
robomise.cz (further denoted as “RoboMission”),

• multiple-choice questions for English vocabulary
from the system umimeanglicky.cz,
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• Python programming problems from an introductory
university course at Masaryk University.

7.1 Methods
Evaluation of similarity measures is difficult—there is no
clear criterion of quality of measures since we do not
have access to the ground truth (the “correct” similarity).
Moreover, the desirable properties of a similarity measure
may depend on a particular application. Nevertheless, it is
very useful to get an insight into similarity measures in an
application-independent way.

One useful type of analysis is the study of agreement of
different measures. Let us consider two similarity measures
S1 and S2. By analyzing their agreement, we cannot decide
which one is better, but the analysis is still instrumental.
If we find out that S1 and S2 are highly correlated, then
we know that from a practical perspective we can pick
one of them and ignore the other one. If they are highly
uncorrelated, we should perform further exploration before
choosing one of them for use in our application. Note that
with this approach we encounter some “meta-problems”:
How do we quantify the agreement of two measures? Are
there differences between different methods for measuring
agreement? In this work, we quantify agreement using the
Pearson correlation coefficient over the values in the (flat-
tened) similarity matrix. In previous work [6], we measured
agreement also using ranking (agreement on the topN most
similar items); this change did not significantly influence
results.

Another practical analysis is the internal stability of
measures, specifically for those based on performance data.
For these techniques to provide meaningful results, we need
to have enough data. How much is “enough”? How do
we tell whether we already have enough data? A simple
check is a variation of the previous analysis: We divide
the available learner data into two datasets (learner-level
division), we compute the item similarity measure for each
dataset and then analyze their agreement. If the agreement
over two independent datasets is high, we can consider the
measure to be stable.

As a complement to the analysis with real data from
learning systems, it is also useful to perform analysis using
simulated data. Simulated data provide a setting that is in
many aspects simplified, but allows easier evaluation thanks
to the access to the ground truth.

7.2 Measures Using Different Input Data
A critical aspect of the computation of item similarity is
the choice of input data: item statements, item solutions,
or performance data. Each of these input sources leads to
a different view of similarity, and the appropriate choice
depends on a particular application.

For an intuitive, high-level illustration, we consider visu-
alizations of item similarities for groups of words in English
vocabulary practice. Fig. 4. shows PCA projections of three
groups of words (animals, colors, months) based on three
similarity measures. The first measure uses Levenshtein
distance of words, i.e., it corresponds to direct computation
of similarity based on item statements (Arrow B). The second
measure is also based on item statements (words), but

uses features (Arrow A and Arrow J) which are given by
a distributed representation of words based on processing
a large corpus of natural language data; for the analysis,
we use precomputed 300-dimensional vectors [48]. The
third approach uses learner performance data (Arrow F).
Specifically, we use data on mistakes in multiple-choice
questions. The similarity measure corresponds to the ratio
of mistakes for the given pair of words. Note that mistakes
in vocabulary learning to a certain degree depend on the
learners’ first language (in our analysis we use data from
Czech native speakers). Clearly, the measures based on
item text and learner performance are quite different. The
distributed representation of words, which captures the
semantic context of words, is closer to learner mistakes than
the purely syntactical approach, but there are still some non-
trivial differences.

For direct analysis of item similarity matrices, let us
consider the domain of programming. Fig. 5. shows two
similarity matrices for 72 introductory programming prob-
lems in Python. One matrix is based on item solutions
(sample programs provided by the item author); similarity
is computed using a feature matrix based on programming
keywords occurring in sample solutions. This matrix is
dense since many keywords (e.g., print, for) are shared
by many items. The second similarity matrix is based on
item statements (natural language descriptions of the pro-
gramming task); similarity is computed using a bag-of-
words representation of the text. The item statements are
brief (typically one sentence), and thus items share words
only with several other items. The resulting matrix is sparse
and quite different from the first one.

Fig. 5. Item similarity matrices for 72 Python programming problems.
Left: similarity computed using features based on keywords in problem
sample solutions, logarithmic transformation, and correlation. Right:
similarity computed using features based on words in natural language
item statement, TF-IDF transformation, and correlation. Note that items
are ordered by hierarchical clustering and although the matrices show
same items, each uses different ordering.

For each data source we need to pick a processing
pipeline—specific choice of features and their transforma-
tion. The importance of these choices depends on a par-
ticular dataset. In general, our experience suggests that
the choice of specific processing pipeline does not have
a fundamental impact on the resulting similarity values,
particularly when compared with the impact of the choice
of input data. Some choices of a processing pipeline can
lead to significantly different results—particularly when the
computation becomes overly sensitive to some aspect of
items, e.g., computing similarity with the use of Euclidean
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Fig. 4. PCA projections of groups of words in English vocabulary practice based on three different similarity measures.

distance over unnormalized counts of keyword occurrences.
Fig. 6. illustrates these general observations on data

from the RoboMission programming problem. It shows the
agreement among measures that use different input data
and processing pipelines.

Fig. 6. Agreement among 12 similarity measures for problems in
RoboMission [7]. Measures use bag-of-words features from either prob-
lem statement, sample solution, or both. Transformation is either log,
or log+IDF; similarity function is either correlation, or (subtracted) Eu-
clidean distance.

7.3 Measures Based on Performance

We analyze in more detail measures based on performance
since these measures are to a large degree domain indepen-
dent and can thus be studied in a more general way then
content specific measures. A disadvantage of these measures
is that they suffer from the cold start problem. Therefore, we

pay attention to the stability of these measures depending
on the amount of available data.

7.3.1 Simulated Data

We start with experiments with simulated data where we
can utilize the ground truth. For generating simulated data
we use a simple approach with a minimal number of as-
sumptions and ad hoc parameters. Each item belongs to one
of k knowledge components. Each knowledge component
(KC) contains n items. Knowledge components correspond
to the ground truth item similarities (items within one KC
are “truly similar”). Each item has a difficulty generated
from the standard normal distribution di ∼ N (0, 1). Skills of
learners with respect to individual knowledge components
are independent. A skill of a learner l with respect to a
knowledge component j is generated from the standard
normal distribution θlj ∼ N (0, 1). We assume no learning
(constant skills). Answers are generated as Bernoulli trials
with the probability of a correct answer given by the logistic
function of the difference between the relevant skill and the
difficulty of item j (a Rasch model): p = exp(θlj−di)−1. The
used approach is quite standard; closely related procedures
for generating simulated data have been used by several
authors [34], [39], [49].

For a good similarity measure, we expect high values for
items in the same KC (within-KC values) and low values for
items from different KC (between-KC values). Fig. 7. shows
the distribution of similarity values for selected measures.
To quantify the differences among within-KC and between-
KC distributions we calculate a discrimination factor d that
expresses how often a score sampled from one distribution
is greater than a score sampled from another distribution.
This factor is closely related to the AUC metric or the “com-
mon language effect size indicator” used in psychology [50].
The results show that for Jaccard and Sokal measures the
values overlap to a large degree, whereas Pearson and Yule
measures provide better results. Adding the second step—
Pearson correlation in this example—to the similarity mea-
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Fig. 7. Differences between similarity values inside knowledge compo-
nents and between them. The experiment uses 100 simulated learners
and 5 knowledge components with 10 items in each of them.

sure separates within-cluster and between-cluster values
better.

Fig. 8. shows the quality of different measures depend-
ing on the number of learners. Sokal and Jaccard are poor
measures, and their performance does not improve with
additional data. Pearson and Yule have very comparable
performance. The second step in similarity improves the
quality of a measure. The figure also shows that with 200
learners the best measures achieve quite good results. This
result should, however, be interpreted as an “optimistic
bound”, since our setting is simplified, e. g., the individual
knowledge components are entirely independent and data
are complete (no missing values). For practical applications,
we should expect the necessary number of learners to be
higher.

Fig. 8. The impact of the used data size on the quality of different
measures (quantified by the discrimination factor). The experiment uses
5 knowledge components with 20 items in each of them.

For a better insight into the role of the second step of
similarity, Fig. 9. shows the impact of the second and the
third step of similarity for our simulated data. We see that
further steps amplify the signal in data (the true within-KC
similarities). However, we also see that the further steps also
amplify noise in data (between-KC similarities, which are
not present in the ground truth model generating the data).
This amplification of noise is not a problem when we are
concerned with detecting the most similar items. However,

it has an impact of the internal stability of the measure when
the stability is quantified by correlation of similarity values;
we observe this behavior also over real data.

Fig. 9. Illustration of the impact of the second and the third step of simi-
larity. The experiment uses 200 learners and 5 knowledge components
with 10 items in each of them.

7.3.2 Real Data
For data coming from real systems, where we do not have
access to the ground truth, we focus on the analysis of agree-
ment between measures. We have analyzed the agreement
among the six measures described in Table 2. Fig. 10. shows
averaged results for five frequently solved knowledge com-
ponents from the Czech and Mathematics datasets. As can
be seen, the results are very similar for these two datasets,
even though they correspond to very different items. The
results are also quite stable across knowledge components.
The results show that Pearson and Cohen measures are
very highly correlated across all data sets and have nearly
the same values (although not exactly the same). Larger
differences in similarity values (but only up to 0.1) can be
found when one of the values in the agreement matrix is
small, which happens only for poorly correlated items with
the resulting similarity value around 0. The second pair
of highly correlated measures is Ochiai and Jaccard, which
are both asymmetric with respect to the agreement matrix.
The correlation between these two pairs of measures varies
depending on a dataset and in some cases drops to 0.5.
These two measures are also highly correlated with Pearson
and Cohen. Yule measure is somewhat different from other
measures. Sokal is the most outlying measure with small
correlation with all other measures.

In Fig. 8. we analyzed the impact on the amount of
data on the quality of measures using simulated data. In
Fig. 11. we perform an analogical analysis for real data,

Fig. 10. The agreement of similarity measures. Reported values were
computed as average correlations computed over 5 knowledge compo-
nents from each domain.
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Fig. 11. The internal stability of measures depending on the amount of
data.

reporting the internal validity of a measure using the two
halves experiment. In this case, we use only the Pearson
measure and show results for six knowledge components
of different types. The results are quite stable across knowl-
edge components—they show that to get good stability of a
measure we need over 500 answers per item.

A detailed analysis of similarity values over real data
shows that the values can be influenced by the way data
are collected. For example, attrition bias (data not missing
at random) or details of user interface (leading to bias in
answers for some users) can lead to artifacts in computed
similarity values [51]. These issues need more attention in
future research.

8 DISCUSSION

We conclude our overview of similarity measures for ed-
ucational items with a high-level discussion of the most
important issues in the use of similarity measures. We also
provide recommendations for practitioners.

8.1 Choices and Their Evaluation
Measuring the similarity of items is a complex problem
because it can be tackled in many ways and it is hard to
evaluate the quality of measures. We propose a system-
atic approach to studying similarity measures (outlined in
Fig. 3.), which explicitly highlights many choices that we
need to make to specify a similarity measure. In practical
applications of similarity measures, it can easily happen that
we make some of these choices implicitly, e.g., by using a
default setting in a used software package in Arrow J. Such
implicit choices can influence results of experiments based
on similarity measures. It is thus important to be at least
aware of them.

Ideally, we would like to compare different choices and
use the best similarity measure. Unfortunately, the evalua-
tion of similarity measures is difficult. Without going into
the details of a specific application, we cannot objectively
compare measures. However, it is not reasonable to do the
evaluation only with respect to the final application. Con-
sider, for example, the use of similarity measures for recom-
mending items in a learning system. Evaluating the quality
of recommendations is a complex task even if we compare
just a single version of the recommendation algorithm to a

control group, particularly for a learning system which aims
to balance several goals like learning and engagement [52].
It is not feasible to evaluate variants of the recommendation
algorithm for many similarity measures.

We thus need to analyze similarity measures even with-
out considering specifics of a particular application. Such
evaluation cannot give us verdicts about which measures
are good or bad. However, we can evaluate which decisions
in the similarity computations are critical—which computa-
tion pipelines lead to different results. In this way, we can
narrow the number of measures that need to be explored for
a particular application from hundreds to a few cases. In the
current paper, we use for this purpose the basic analysis of
the correlation of similarity values of the two measures.

8.2 Importance of Input Data
The pipeline for computing similarity measure involves
many steps. However, not all of the involved decisions have
the same importance. Typically, the most important decision
is the choice of input data. Different types of input data
(item statements, metadata, item solutions, performance
data) lead to significantly different aspects of similarity.
Which of these aspects is the right one depends on a partic-
ular use case of similarity. Decision within the computation
pipeline (e.g., the choice of specific features or normalization
methods) are comparatively less important. There is a wide
set of choices, and some of them can lead to significantly
different results than others. Nevertheless, once we filter
out outlying techniques, we usually find a set of closely
correlated measures. Within them, the impact of the choice
is not fundamental.

Since the choice of similarity measure depends on a par-
ticular application and its specific settings, we cannot give
universal recommendations about the choice of input data.
Based on our experience and the results of the analysis, we
can, however, provide some basic guidelines for the choice.
For applications of similarity measures in learner modeling,
it is natural to use measures based on performance data
and learners’ solutions since these correspond to the actual
behavior of learners. On the other hand, if we want to use
similarity for guiding recommendations or hints, we may
prefer to use measures based on item similarity, which leads
to more understandable similarity results.

When using similarity measures for obtaining insight
for teachers and authors of educational content, it is useful
to highlight surprising, robust similarity results, specifically
by focusing on the disagreement of measures. If similarity
based on item statement is high, but the one based on
learner performance is low (or the other way around), it
may be useful for teachers to consider these items and
use them during lectures. Developers of learning systems
can use several types of measures for item management:
detecting duplicated items using similarity based on item
statements, detecting outlying items using similarity based
on learner performance, or checking the correctness of meta-
data by looking for differences between similarities based on
metadata and learner performance.

8.3 Recommendations for Similarity Computation
As mentioned above, the most important decision is the
choice of input data. This choice differs depending on
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a domain and a particular application. For example, in
programming the basic choice is to use item solutions—
sample programs are typically available and carry the most
important information about the item. For word problems in
mathematics, it is natural to focus on item statements. For
other kinds of items in mathematics (evaluating expressions
like 3 × (4 − 6) or 1

2 + 1
3 ) it may be better to focus on

performance data. For these items, the item statement and
solution carry limited information, whereas performance
data for these items can be quite quickly collected and used.

When using item statements and solutions, our explo-
rations and experience suggest that a reasonable default
pipeline is:

1) Compute feature matrix based on the data using the
basic bag-of-words approach (computing number of
occurrences of natural keywords).

2) Normalize the feature matrix, specifically using
some variant of the TF-IDF transformation.

3) Compute item similarity using the Euclidean dis-
tance of vectors in the normalized feature matrix.

When using performance data, Pearson, Yule, and Cohen
measures lead to better results than Ochiai, Sokal, and
Jaccard measures. It is also beneficial to use the second step
of item similarity. The exact choice of details does not seem
to make a fundamental difference (e.g., Pearson versus Yule
in the first step, the Euclidean distance versus Pearson corre-
lation in the second step). The Pearson correlation coefficient
is a good default choice since it provides quite robust results
and is applicable in several settings and steps. It also has
the pragmatic advantage of having fast, readily available
implementation in nearly all computational environments,
whereas measures like Yule may require additional imple-
mentation effort.

With performance data, it is essential to pay attention
to the amount of available data. With small datasets, the
computed similarity values are unstable and meaningless.
It is hard to say in general what is a large enough dataset.
Results of our analysis suggest that at least a few hundreds
of answers per item are necessary. The specific number,
however, depends on properties of a particular dataset. It is
thus necessary to check the stability of similarity measures
before we start using them.
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Radek Pelánek received his Ph.D. degree in
Computer Science from Masaryk University for
his work on formal verification. Since 2010 his
research interests focus on areas of educational
data mining and learning analytics. Currently, he
is the leader of the Adaptive Learning group at
Masaryk University and is interested in both the-
oretical research in user modeling and practical
development of adaptive educational systems.


	Introduction
	Basic Approaches to Item Similarity
	Terminology
	Input Data
	Data Pipeline

	Related work
	Similarity Based on Item Statements, Metadata, and Solutions
	Similarity via Features
	Direct Computation of Similarity

	Similarity Based on Performance Data
	Correctness of Answers
	Additional Performance Data

	Data Transformations
	Feature Transformations and Combinations
	From Features to Similarity
	Projections
	Second Level of Item Similarity

	Analysis
	Methods
	Measures Using Different Input Data
	Measures Based on Performance
	Simulated Data
	Real Data


	Discussion
	Choices and Their Evaluation
	Importance of Input Data
	Recommendations for Similarity Computation

	References
	Biographies
	Radek Pelánek


