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Abstract. Explicit model checking algorithms explore
the full state space of a system. State spaces are usually
treated as directed graphs without any specific features.
We gather a large collection of state spaces and exten-
sively study their structural properties. Our results show
that state spaces have several typical properties, i.e.,
they are not arbitrary graphs. We also demonstrate that
state spaces differ significantly from random graphs and
that different classes of models (application domains,
academic vs industrial) have different properties. We
discuss consequences of these results for model check-
ing experiments and we point out how to exploit typical
properties of state spaces in practical model checking
algorithms.

1 Introduction

Model checking is an automatic method for formal ver-
ification of systems. In this paper we focus on explicit
model checking which is the state-of-the-art approach
to verification of asynchronous models (particularly pro-
tocols). This approach explicitly builds the full state
space of the model (also called Kripke structure, oc-
currence or reachability graph). The state space repre-
sents all (reachable) states of the system and transitions
among them. Verification algorithms use the state space
to check specifications expressed in a temporal logic. The
main obstacle of model checking is the state explosion
problem — the size of the state space can grow expo-
nentially with the size of the model description. Hence,
model checking algorithms have to deal with extremely
large graphs.

The classical model for large unstructured graphs is
the random graph model of Erdős and Renyi [13] —
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every pair of vertices is connected with an edge by a
given probability p. Large unstructured graphs are stud-
ied in many diverse areas such as social sciences (net-
works of acquaintances, scientist collaborations), biol-
ogy (food webs, protein interaction networks), and com-
puter science (Internet traffic, world wide web). Recent
extensive studies of these graphs revealed that they share
many common structural properties and that these prop-
erties significantly differ from properties of random graphs.
This observation led to the development of more ac-
curate models for complex graphs (e.g., ‘small worlds’
and ‘scale-free networks’ models) and to a better under-
standing of processes in these networks, e.g., spread of
diseases and vulnerability of computer networks to at-
tacks. See [1] for an overview of this research and further
references.

1.1 Questions

In model checking, we usually treat state spaces as arbi-
trary graphs. However, since state spaces are generated
from short descriptions, it is clear that they have some
special properties. This line of thought leads to the fol-
lowing questions:

1. What are typical properties of state spaces? What
do state spaces have in common?

2. Can state spaces be modeled by random graphs? Is
it reasonable to use random graphs instead of state
spaces for model checking experiments?

3. How can we apply properties of state spaces? Can
we exploit these typical properties to traverse a state
space more efficiently? Can some information about
a state space be of any use to the user or to the
developer of a model checker?

4. Are state spaces similar to such an extent that it
does not matter which models we choose for bench-
marking our algorithms? Is there any significant dif-
ference between toy academical models and real life



case studies? Are there any differences between state
spaces of models from different application domains?

In this paper we address these questions by an ex-
perimental study of a large number of state spaces of
asynchronous systems.

1.2 Related Work

Many authors point out the importance of the study of
models occurring in practice (e.g., [15]). But to the best
of our knowledge, there has been no systematic work
in this direction. In many articles one can find remarks
and observation concerning typical values of individual
parameters, e.g., diameter [7,37], back level edges [4,40],
degree [18], stack depth [18]. Some authors make implicit
assumptions about the structure of state spaces [10,24]
or claim that the usefulness of their approach is based
on characteristics of state spaces without actually iden-
tifying these characteristics [39]. Another line of work is
concerned with visualization of large state spaces with
the goal of providing the user with better insight into a
model [17].

The paper follows on our previous research, particu-
larly on [29,31–34]. The paper syntheses common topics
of these works and present them in an uniform setting.
The paper also presents several new observations (e.g.,
labels in state spaces, product graphs) and describes pos-
sible applications in more detail.

1.3 Organization of the Paper

Section 2 describes the benchmark set that we used to
obtain experimental results reported in the paper. Sec-
tion 3 introduces parameters of state spaces and presents
results of measurements of these parameters over the
benchmark set. Section 4 is concerned with parameters
of state space traversal techniques (breadth-first search,
depth-first search, and random walk). In Section 5 we
compare properties of state spaces from different classes
(application domains, industrial vs toy, models vs ran-
dom graphs). Possible applications of all the reported
results are discussed in Section 6. Finally, the last sec-
tion provides answers to the questions raised above.

2 Background

In our previous study [29] we have used state spaces
generated by six different model checkers. This study
demonstrates that most parameters are independent of
the specification language used for modeling and the tool
used for generating a state space. The same protocols
modeled in different languages yield very similar state
spaces.

For this study we use models from our BEnchmark
set for Explicit Model checkers (Beem) [31]. Models in

the set are implemented in a low-level modeling language
based on communicating extended finite state machines
(DVE language). Most of the models are well-known
examples and case studies. Models span several differ-
ent application areas (e.g., mutual exclusion algorithms,
communication protocols, controllers, leader election al-
gorithms, planning and scheduling, puzzles).

The benchmark set includes more than 50 paramet-
rised models (300 concrete instances). For this study we
use instances which have state space sizes smaller than
150,000 states (120 instances). We use only models of
restricted size due to the high computational require-
ments of the performed analysis. However, our results
show that properties of state space do not change signif-
icantly with the size of the state space.

The benchmark set is accompanied by an comprehen-
sive web portal [31], which provides detailed information
about all models. The web portal also includes detailed
information about state spaces used in this paper. All
the data about properites of analyzed state spaces are
available for download (in XML format) and can be used
for more detailed analysis.

The DVE modeling language is supported by an ex-
tensible model checking environment — The Distributed
Verification Environment (DiVinE) [5]. We use the en-
vironment to perform all experiments reported in this
paper. The benchmark set also contains (automatically
generated) models in Promela, which can be used for in-
dependent experiments in the well-known model checker
Spin [21].

3 State Space Parameters

A state space is a relational structure which represents
the behavior of a system (program, protocol, chip, . . . ).
It represents all possible states of the system and tran-
sitions between them. Thus we can view a state space
as a simple directed graph G = (V,E, v0) with a set
of vertices V , a set of directed edges E ⊆ V × V , and
a distinguished initial vertex v0. Note that we use sim-
ple graphs, i.e., graphs without self-loops and multiple
edges. This choice have a minor impact on some of the
reported results (e.g., degrees of vertices), but it does not
influence conclusions of the study. We also suppose that
all vertices are reachable from the initial vertex. In the
following we use graph when talking about generic no-
tions and state space when talking about notions which
are specific to state spaces of asynchronous models.

3.1 Degrees

Out-degree (in-degree) of a vertex is the number of edges
leading from (to) this vertex. Average degree is the ratio
|E|/|V |. The basic observation is that the average de-
gree is very small – typically around 3 (Fig. 1). Maximal
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Fig. 1. Degree statistics. Values are displayed with the boxplot
method. The upper and lower lines are maximum and minimum
values, the middle line is a median, the other two are quartiles.
Note the logarithmic y-axis.

in-degree and out-degree are often several times higher
than the average degree but with respect to the size of
the state space they are small as well. Hence state spaces
do not contain any ‘hubs’. In this respect state spaces are
similar to random graphs, which have Poisson distribu-
tion of degrees. On the other hand, scale free networks
discussed in the introduction are characterized by the
power-law distribution of degrees and the existence of
hubs is a typical feature of such networks [1].

The fact that state spaces are sparse is not surpris-
ing and was observed long ago — Holzmann [18] gives
an estimate 2 for average degree. It can be quite easily
explained: the degree corresponds to a ‘branching fac-
tor’ of a state; the branching is due to parallel compo-
nents of the model and to the inner nondeterminism of
components; and both of these are usually rather small.
In fact, it seems reasonable to claim that in practice
|E| ∈ O(|V |). Nevertheless, the sparseness is usually not
taken into account either in the construction of model
checking algorithms or in the analysis of their complex-
ity.

3.2 Strongly Connected Components

A strongly connected component (SCC) of G is a maxi-
mal set of states C ⊆ V such that for each u, v ∈ C, the
vertex v is reachable from u and vice versa. The quotient
graph of G is a graph (W,H) such that W is the set of
SCCs of G and (C1, C2) ∈ H if and only if C1 6= C2

and there exist r ∈ C1, s ∈ C2 such that (r, s) ∈ E. The
SCC quotient height of the graph G is the length of the
longest path in the quotient graph of G. Finally, a com-
ponent is terminal if it has no successor in the quotient
graph.

For state spaces, the height of the SCC quotient graph
is small. In all but one case it is smaller than 200, in 70%
of cases it is smaller than 50.

There is an interesting dichotomy with respect to
the structure of strongly connected components, partic-
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Fig. 2. Histogram of sizes of the largest SCC component in a state
space.

ularly concerning the size of the largest SCC (see Fig. 2).
A state space either contains one large SCC, which in-
cludes nearly all states, or there are only small SCCs.
The largest component is usually terminal and often it
is even the only terminal.

3.3 Labels

So far we have considered state spaces as plain directed
graphs. However, state spaces do not have ‘anonymous’
edges and states:

– Vertices are state vectors which consist of variable
valuations and process program counter values.

– Edges are labelled by actions which correspond to
actions of the model.

Distribution of edge labels is far from uniform. Typ-
ically there are few labels which occur very often in a
state space, whereas most labels occur only in small
numbers. More specifically, for most models the most
often occurring label appears on approximately 6% of
all edges, the five most often occurring labels appears
on approximately 20% of all edges. This result does not
depend on number of labels, i.e., the 20% ratio taken
by the five most common labels holds approximately for
both small models with thirty different labels as well as
for realistic models with hundreds of different labels.

State vectors can be divided into parts which corre-
spond to individual processes in the model (i.e., program
counter of the process and valuation of local variables).
The number of distinct valuations of these local parts
is small, in most cases smaller then 255, which means
that the state of each process can be stored in 1 byte.
Moreover, the distribution of different valuations is again
non-uniform, i.e., some valuations of the local part occur
in most states (typically valuations with repeated value
0), whereas other valuations occur only in few states.

The number of differences in state vectors of two
adjacent vertices is small, typically the action changes
the state vector in 1 to 4 places. Distribution of these

3



Diamond 3-mond Diamond 3x3 FFL

1

2 3

4

1

2 3 4

5 6 7

8

0

1 2

3 4 5

6 7

8

1

2

3

Fig. 3. Illustrations of motifs

changes is again non-uniform. This is not surprising since
changes in the state vector are caused by (non-uniformly
distributed) labels.

For more details see the Beem webpage [31], which
contains specific results for each model.

3.4 Local Structure and Motifs

As the next step we analyze the local structure of state
spaces. In order to do so, we employ some ideas from the
analysis of complex networks. A typical characteristic
of social networks is clustering — two friends of one
person are friends together with much higher probability
than two randomly picked persons. Thus vertices have
a tendency to form clusters. This is a significant feature
which distinguishes social networks from random graphs.

In state spaces we can expect some form of clustering
as well — two successors of a state are more probable to
have some close common successor than two randomly
picked states. Specifically, state spaces are well-known
to contain many ‘diamonds’. We try to formalize these
ideas and provide some experimental base for them.

The k-neighborhood of v is a subgraph induced by a
set of vertices with the distance from v smaller or equal
to k. The k-clustering coefficient of a vertex v is the ratio
of the number of edges to the number of vertices in the k-
neighborhood (not counting v itself). If the clustering co-
efficient is equal to 1, no vertex in the neighborhood has
two incoming edges within this neighborhood. A higher
coefficient implies that there are several paths to some
vertices within the neighborhood. For state spaces, the
clustering coefficient linearly increases with the average
degree. Most random graphs have clustering coefficients
close to 1.

Another inspiration from complex networks are so-
called ‘network motifs’ [28,27]. Motifs are studied mainly
in biological networks and are used to explain functions
of network’s components (e.g., function of individual pro-
teins) and to study evolution of networks.

We have systematically studied motifs in state spaces.
We find the following motifs to be of specific interest ei-
ther because of abundant presence or because of total
absence in many state spaces:

– Diamonds (we have studied several variations of struc-
tures similar to diamond, see Fig. 3). Diamonds are
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Fig. 4. Relationship between occurrence of diamonds and the av-
erage degree. The occurrence of diamonds is reported as a ratio
of the number of states which are roots of some diamond to all
states.

well known to be present in state spaces of asyn-
chronous concurrent systems due to the interleav-
ing semantics. Diamonds display an interesting de-
pendence on the average degree (Fig. 4). There is a
rather sharp boundary for value 2 of the average de-
gree: for a state space with average degree less than
two there is a small number of diamonds, for state
spaces with average degree larger than two there are
a lot of them.

– Chains of states with just one successor. We have
measured occurrences of chains of length 3, 4, 5.
Chains occur particularly in state spaces with av-
erage degree less than two (i.e., their occurrence is
complementary to diamonds).

– Short cycles of lengths 2, 3, 4, 5. Short cycles are
nearly absent in most state spaces.

– Feed forward loop (see Fig. 3). This motif is a typical
for networks derived from biological systems [28]; in
state spaces it is very rare.

The bottom line of these observations is that the lo-
cal structure depends very much on the average degree.
If the average degree is small, then the local structure of
the state space is tree-like (without diamonds and short
cycles, with many chains of states of degree one). With
the high average degree, the state space has many dia-
monds and high clustering coefficient.

4 Properties of Search Techniques

In verification, the basic operation is the traversal of
a state space. Therefore, it is important to study not
only ‘static’ parameters of state spaces but also their
‘dynamics’, i.e., properties of search techniques. Here we
consider three basic techniques for state space traversal
and their properties.
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Fig. 5. The BFS height plotted against the size of the state space.
Note the logarithmic x-axis. Three examples have BFS height
larger than 300.

4.1 Breadth-First Search (BFS)

Let us consider BFS from the initial vertex v0. A BFS
level with an index k is a non-empty set of states with
minimal distance from v0 equal to k. The BFS height
is the largest index of a level. An edge (u, v) is a back
level edge if v belongs to a level with a lower or the
same index as u. The length of a back level edge is the
difference between the indices of the two levels.

In our benchmarks, the BFS height is small (Fig. 5).
There is no clear correlation between the state space size
and the BFS height; it depends rather on the type of the
model.

The sizes of levels follow a typical pattern. If we plot
the number of states on a level against the index of a
level we get a BFS level graph1. See Fig. 6. for several
examples of BFS level graphs. Note that in all cases the
graph has a ‘bell-like’ shape.

The ratio of back level edges to all edges in a state
space varies between 0% and 50%; the ratios are uni-
formly distributed in this interval. Most edges are short
— they connect two close levels (as already observed
by Tronci et al. [40]). However, for most models there
exist some long back level edges.

4.2 Depth-First Search (DFS)

Next we consider the DFS from the initial vertex. The
behavior of DFS (but not the completeness) depends on
the order in which successors of each vertex are visited.
Therefore we have considered several runs of DFS with
different orderings of successors.

If we plot the size of the stack during DFS we get
a stack graph. Fig. 6. shows several stack graphs; for
more graphs see [31]. The interesting observation is that
the shape of the graph does not depend much on the
ordering of successors. The stack graph changes a bit

1 Note that the word ‘graph’ is overloaded here. In this context
we mean graph in the functional sense.
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Fig. 7. A comparison of maximal queue and stack sizes expressed
as percentages of the state space size.

of course, but the overall appearance remains the same.
This suggests, that DFS is rather ‘stable’ with respect
to the ordering of successors. Each state space, however,
has its own typical stack graph; compare to BFS level
graphs, which all have more or less bell-like shape.

For implementations of the breadth- and depth-first
search one uses queue and stack data structures. Fig. 7.
compares the maximal size of a queue and a stack dur-
ing the traversal. The maximal size of a stack is smaller
then maximal size of a queue in 60% of cases, but the
relative size of a queue is always smaller than 25% of
the state space size whereas the relative size of a stack
can go up to 100% of the state space size. These results
have implications for practical implementation of model
checking tools (see Section 6).

4.3 Random Walk

Finally, we consider a simple random walk technique.
The technique starts in the initial state of the graph. In
each step it randomly chooses a successor of the current
state and visits it. If the current state does not have any
successors the algorithm re-starts from the initial state.
The search also uses periodic re-start in order to avoid
the situation when the random walk gets trapped in a
small terminal strongly connected component.

From the theoretical point of view the most relevant
characteristic of the random walk is the covering time,
i.e., the expected number of steps after which all vertices
of the graph are visited. For undirected graphs the cover-
ing time is polynomial. For directed graphs the covering
time can be exponential. Even in those cases when it is
not exponential, it is still too high to be measured ex-
perimentally even for medium sized graphs (hundreds of
states). For this reason we have measured the coverage,
i.e., the ratio of vertices which were visited after a given
number of steps.

The coverage increases with the number of compu-
tation steps in a log-like fashion, i.e., at the beginning
of the computation the number of newly visited states is
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Fig. 6. BFS level graphs (first four) and stack graphs (second four).
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Fig. 9. Graphs with similar properties but different random walk
coverage. The color correspond to probability of a visit by a ran-
dom walk; darker vertices have higher change of a visit.

high and it rapidly decreases with time. After a threshold
point is reached the number of newly visited states drops
nearly to zero. After this point it is meaningless to con-
tinue in the exploration. Our experience indicates that
this happens when the number of steps is about ten times
the size of the graph. This is the basic limit on the num-
ber of steps that we have used in our experiments. Fig. 8
gives the coverage after this limit. Note that the resulting
coverage is very much graph-dependent. In some cases
the random walk can cover the whole graph, whereas
sometimes it covers less than 3% of states.

A natural question is whether there is any correlation
between the efficiency (coverage) of the random walk and
structural properties of a state space. Unfortunately, it
seems that there is no straightforward correlation with
any of the above studied graph properties. The intuition
for this negative result is provided by Fig. 9. The two
displayed graphs have similar global graph properties,
but the efficiency of the random walk is very different.
While the first graph is easily covered, the random walk
will behave poorly on the second one. Note that graphs
of these types occur naturally in model checking.

Finally, we measure the probability of visiting indi-
vidual states in order to find whether the probability of
a visit has a uniform distribution or whether some states
are visited more frequently than others. We find that the
frequency of visits has the power law distribution. Thus
the probability that a given state is visited is far from

being uniform. This leads to the conclusion that the sub-
graph visited by the random walk cannot be considered
to be a random sample of the whole graph!

5 Comparisons

In this section we compare properties of state spaces of
models from different classes.

5.1 Application Domains

We have classified models according to their application
domains and studied the parameters of each class. State
spaces from each domain have some distinct characteris-
tics; see [31] for description of the classification and [32]
for more specific results.

– Mutual exclusion algorithms: state spaces usually con-
tain one large strongly connected component and
contain many diamonds.

– Communication protocols: state spaces are not acyclic,
have a large BFS height and long back level edges,
usually contain many diamonds.

– Leader election algorithms: state spaces are acyclic
and contain diamonds.

– Controllers: state spaces have small average degree,
a large BFS height and long back level edges, usually
contains many diamonds.

– Scheduling, planning, puzzles: state spaces are often
acyclic, with a very small BFS height, large average
degree, many short back level edges; state space are
without prevalence of diamonds or chains.

We expect that similar distinct characteristic exists
for other application domains as well.

5.2 Random Graphs

Let us compare properties of state spaces and properties
of random graphs, which are often used in experiments
with model checking algorithms. We use the classical
Erdős-Renyi model of a random graph [13].

Although distances (BFS height, diameter) in state
spaces are small, distances in random graphs are even
smaller. For most state spaces we observe that there
are only a few typical lengths of back level edges and
a few typical lengths of cycles (this is caused by the fact
that back level edges correspond to specific actions in a
model). However, random graphs have no such feature.

State spaces are characterized by the presence (re-
spectively absence) of specific motifs, particularly dia-
monds (respectively short cycles). More generally, state
spaces shows significant clustering and the size of k-
neighborhood grows (relatively) slowly. Random graphs
do not have clustering and the size of k-neighborhood
grows quickly.
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Fig. 10. Correlation between the average degree and random walk
coverage for random graphs and model checking graphs.

If we plot the size of the queue (stack) during BFS
(DFS) (as done in Fig 6) then we obtain for each state
space a specific graph, which is usually at least a bit
ragged and irregular. In contrast, for most random graphs
we obtain very similar, smooth graphs.

Finally, we provide a specific example which demon-
strates how the use of random graphs can obfuscate ex-
perimental analysis. Fig. 10 demonstrates the correlation
between the average vertex degree and the random walk
coverage both for random graphs and model checking
graphs. There is a clear correlation for random graphs.
For model checking graphs such a correlation has not
been observed. If we did the experiments only with ran-
dom graphs, we could be misled into wrong conclusions
about the effectiveness and applicability of random walk
technique.

5.3 Toy versus Industrial Examples

We have manually classified examples into three cate-
gories: toy, simple, and complex. The major criterion for
the classification was the length of the model description.
State spaces sizes are similar for all three categories, be-
cause for toy models we use larger values of model pa-
rameters (as is usual in model checking experiments).

The comparison shows differences in most parame-
ters. Here we only briefly summarize the main trends;
more detailed figures can be found on the Beem web
page [31].
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Fig. 11. The maximal stack size (given in percents of the state
space size) during DFS. Results are displayed with the boxplot
method (see Fig. 1 for explanation).

– The maximal size of the stack during DFS is signifi-
cantly shorter for complex models (Fig. 11).

– The BFS height is larger for state spaces of complex
models. The number of back level edges is smaller for
state spaces of complex models but they have longer
back level edges.

– The average degree is smaller for state spaces of com-
plex models. Since the average degree has a strong
correlation with the local structure of the state space
(see Section 3.4), this means that also the local struc-
ture of complex and toy models differs.

– Generally, the structure is more regular for state spaces
of toy models. This is demonstrated by BFS level
graphs and stack graphs which are smoother for state
spaces of toy models.

These results stress the importance of having com-
plex case studies in model checking benchmarks. Par-
ticularly experiments comparing explicit and symbolic
methods are often done on toy examples. Since toy ex-
amples have more regular state spaces, they can be more
easily represented symbolically.

5.4 Product Graphs

During the verification of temporal properties, algorithms
often work with the ‘augmented state space’ rather then
directly with the state space. Particularly, the verifica-
tion of linear temporal logic is based on the construction
of so-called product graph: a negation of a temporal
logic formulae is transformed into an equivalent Büchi
automaton, a product of a state space and the automa-
ton is computed, and the product graph is searched for
accepting cycles [41]. What are the properties of product
graphs? Is there any significant difference from proper-
ties of plain state spaces?

The Beem benchmark [31] also contains temporal
properties. We have used these properties to construct
product graphs and we have studied their properties.
Our experiments indicate that the structure of product
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graphs is very similar to structure of plain state spaces.
Since the results are so similar, we do not provide explicit
results and figures. The only difference worth mentioning
is that the height of the SCC quotient graphs is slightly
larger for product graphs, but it is still rather small.

6 Applications

In previous sections we outlined many interesting prop-
erties of state spaces. Are these properties just an inter-
esting curiosity? Or can we exploit them in the verifica-
tion process? In this section we outline several possible
applications of described properties.

6.1 Algorithm Tuning

Knowledge of typical properties of state spaces can be
useful for tuning the performance of model checking al-
gorithms.

In Section 4 we demonstrate that the size of a queue
(stack) during the state space search can be quite large,
i.e., it may happen that the applicability of a model
checker becomes limited by the size of a queue (stack)
data structure. Therefore, it is important to pay at-
tention to these structures when engineering a model
checker. This is already done in some model checkers –
SPIN can store part of a stack on disc [20], UPPAAL
stores all states in the hash table and maintains only
references in a queue (stack) [12].

BFS parameters (particularly BFS height and sizes
of BFS levels) can be used to set parameters of algo-
rithms appropriately: algorithms that exploit magnetic
disk often work with individual BFS levels [38]; random
walk search [33] and bounded search [23] need to es-
timate the height of the state space; techniques using
stratified caching [16] and selective storing of states [6]
can also take the shape of the state space into account.

The local structure of a state space (e.g., presence
or absence of diamonds) can also be used for tuning
parameter values, particularly for techniques which em-
ploy local search, e.g., random walk enhancements [33,
36], sibling caching and children lookahead in distributed
computation [25], or heuristic search.

Typical motifs and state vector characteristics (num-
ber of local states, number of changes in state vector)
can be employed for efficient storage of states (e..g, state
compression [19]). The fact that distribution of edge la-
bels is not uniform is important for selection of a cover-
ing set of transitions, which can be used for partial order
reduction or selective storing [6].

6.2 Automation of Verification

Any self-respecting model checker has a large number
of options and parameters which can significantly influ-
ence the run-time of verification. In order to verify any

reasonable system, it is necessary to set these parame-
ters properly. This can be done only by an expert user
and it requires lot of time. Therefore, it is desirable to
develop methods for automatic selection of techniques
and parameter values. We discuss in detail two concrete
examples.

6.2.1 Memory Reduction Techniques

The main obstacle to model checking is memory re-
quirements. Researchers have developed a large num-
ber of memory reduction techniques which aim at al-
leviating this problem. Most of these techniques intro-
duce time/memory trade-offs. Each of these techniques
has specific advantages and disadvantages and is suit-
able only for some type of models (state spaces). State
space parameters can be employed for the selection of
a suitable technique; in the following we outline several
specific examples.

The sweep line technique [11] deletes from memory
states that will never be visited again. This technique is
useful only for models with acyclic state spaces or with
small SCCs. This technique also requires short back level
edges. The same requirement holds for caching based on
transition locality [40].

For acyclic state spaces it is possible to use spe-
cialized algorithms, e.g., dynamic partial order reduc-
tion [14] or a specialized bisimulation based reduction [30,
p. 43-47].

For state spaces with many diamonds it is reason-
able to employ partial order reduction, whereas for state
spaces without diamonds this reduction is unlikely to
yield significant improvement. On the other hand, se-
lective storing of states [6] can lead to good memory
reduction for state spaces with many chains.

The heuristic algorithm based on bayesian meta heuris-
tic [35] works well for models with high average degree
(greater than 10). This fact calls into question the ap-
plicability of the approach to industrial models (see Sec-
tion 5.3). On the other hand, the IO-efficient algorithm
for model checking [2] works better for models with small
vertex degrees.

6.2.2 Cycle Detection Algorithms

Cycle detection algorithms are used for LTL verifica-
tion. Currently, there is a large number of different cy-
cle detection algorithms, particularly if we consider dis-
tributed algorithms for networks of workstations [3]. Anal-
ysis of state space parameters can be helpful for an au-
tomatic selection of a suitable algorithm.

For example, a distributed algorithm based on local-
ization of cycles [24] is suitable only for state spaces with
small SCCs (which are, unfortunately, not very com-
mon). Similarly, the classical depth-first search based
algorithm [22] can be reasonably applied only for state
spaces with small SCCs, because for state spaces with
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large SCCs it tends to produce very long counterexam-
ples (long counterexamples are not very useful in prac-
tice). On the other hand, the explicit one-way-catch-
them-young algorithm [9] has complexity O(nh), where
n is the number of states and h is the height of the SCC
quotient graph, i.e., this algorithm is more suitable for
state space with one large component. The complexity
of BFS-based distributed cycle detection algorithm [4] is
proportional to the number of back level edges.

6.3 Estimation of State Space Size

The typical pattern of the BFS level graph (see Sec-
tion 4.1) can be used for estimating the number of reach-
able states. Such an estimate has several applications: it
can be used to set verification parameters (e.g., size of
a hash table, number of workstations in a distributed
computation) and it is also valuable information for the
user of the model checker — at least, users are more
willing to wait if they are informed about the remaining
time [26].

We outline a simple experiment with state space size
estimation based on BFS levels. We generate a sample
consisting of the first k BFS levels. Then we estimate
how many times the number of reachable states is larger
than the size of the sample. More specifically, we do just
an order of magnitude estimate. Let R be the ratio of
the total number of reachable states to the size of the
sample. We use the following three classes for estimates:
class 1 (1 ≤ R < 4), class 2 (4 ≤ R < 32), class 3
(32 ≤ R).

We use three techniques for estimating the classifi-
cation: human, classification tree [8] and a neural net-
works. All techniques are trained on a training set and
then evaluated using a different testing set. All three
techniques achieve similar results — the success rate is
about 55%, with only about 3% being major mistake
(class 1 classified as class 3 or vice versa). These results
can be further improved by a combination with other
estimation techniques and by using domain specific in-
formation. See [34] for more details about this experi-
ment and for description of several other techniques for
estimating state space parameters.

7 Answers

Finally, we provide answers to questions that were raised
in the introduction and we discuss directions for the fu-
ture work. Although we have done our measurements on
a restricted sample of state spaces, we believe that it
is possible to draw general conclusions from the results.
Results of measurements are consistent — there are no
significant exceptions from reported observations.

What are typical properties of state spaces?

State spaces are usually sparse, without hubs, with
one large SCC, with small diameter and small SCC quo-
tient height, with many diamond-like structures.

These properties can not be explained theoretically.
It is not difficult to construct artificial models without
these features. This means that observed properties of
state spaces are not the result of the way state spaces are
generated nor of some features of specification languages
but rather of the way humans design/model systems.

Can state spaces be modeled by random graphs?
In Section 5.2 we have discussed many properties in

which state spaces differ from random graphs. Unfortu-
nately, random graphs are often used for experiments
with model checking algorithms. We conclude that ran-
dom graphs have significantly different structure than
state spaces and thus that this practice can lead to wrong
conclusions (see Section 5.2 for a specific example). Thou
shalt not do experiments on random graphs.

Are state spaces similar to such an extent that it does
not matter which models we choose for benchmarking
our algorithms?

Although state spaces share some properties in com-
mon, some can significantly differ. Behavior of some al-
gorithms can be very dependent on the structure of the
state space. This is clearly demonstrated by experiments
with random walk. For some graphs one can quickly
cover 90% of the state space by random walk, whereas
for other we were not able to get beyond 3%. So it is
really important to test algorithms on a large number of
models before one draws any conclusions.

Particularly, there is a significant difference between
state spaces corresponding to complex and toy models.
Moreover, we have pointed out that state spaces of sim-
ilar models are very similar. We conclude that it is not
adequate to perform experiments just on few instances of
some toy example. Thou shalt not do experiments (only)
on Philosophers.

How can we apply properties of state spaces?
Typical properties can be useful in many different

ways. In Section 6 we discuss two broad types of appli-
cations:

– Tuning of model checking algorithm, i.e., using the
knowledge of typical properties to improve the per-
formance of model checking algorithms.

– Automation of verification, i.e., using the knowledge
of parameter values to choose a suitable verification
technique or algorithm.

We outline many specific examples of applications
and we believe that there are (potentially) many more.
Moreover, we outlined also one untypical application —
estimation of the state space size based on the typical
behaviour of BFS.
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34. R. Pelánek and P. Šimeček. Estimating state space pa-
rameters. Technical Report FIMU-RS-2008-01, Masaryk
University Brno, 2008.

35. K. Seppi, M. Jones, and P. Lamborn. Guided model
checking with a bayesian meta-heuristic. In Proc. of Ap-
plication of Concurrency to System Design (ACSD’04),
page 217. IEEE Computer Society, 2004.

36. H. Sivaraj and G. Gopalakrishnan. Random walk
based heuristic algorithms for distributed memory model
checking. In Proc. of Parallel and Distributed Model
Checking (PDMC’03), volume 89 of ENTCS, 2003.

37. U. Stern. Algorithmic Techniques in Verification by Ex-
plicit State Enumeration. PhD thesis, Technical Univer-
sity of Munich, 1997.

38. U. Stern and D. L. Dill. Using magnatic disk instead of
main memory in the Murphi verifier. In Proc. Computer
Aided Verification (CAV 1998), volume 1427 of LNCS,
pages 172–183, 1998.

39. E. Tronci, G. D. Penna, B. Intrigila, and M. Venturini. A
probabilistic approach to automatic verification of con-
current systems. In Proc. Asia-Pacific Software En-
gineering Conference (APSEC 2001), pages 317–324.
IEEE Computer Society, 2001.

40. E. Tronci, G. D. Penna, B. Intrigila, and M. V. Zilli. Ex-
ploiting transition locality in automatic verification. In
Proc. Correct Hardware Design and Verification Methods
(CHARME 2001), volume 2144 of LNCS, pages 259–274,
2001.

41. M. Y. Vardi and P. Wolper. An automata-theoretic ap-
proach to automatic program verification. In D. Kozen,
editor, Proc. of Logic in Computer Science (LICS ’86),
pages 332–344. IEEE Computer Society Press, 1986.

12


