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ABSTRACT
Research on feedback in introductory programming focuses mostly
on incomplete and incorrect programs. However, most of the func-
tionally correct programs also contain defects that call for feedback.
We analyzed 114,000 solutions to 161 short coding problems in
Python and compiled a catalog of 32 defects in code quality. We
found that most correct solutions contain some defects and that
students do not stop making them if they do not receive targeted
feedback. The catalog of defects, together with their prevalence
across common topics like expressions, loops, and lists, informs
educators which defects to address in which lectures and guides the
development of exercises on code quality. Additionally, we describe
defect detectors, which can be used to generate valuable feedback
to students automatically.

CCS CONCEPTS
• Applied computing→ Education; • Social and professional
topics→ CS1.
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1 INTRODUCTION
The ability to solve programming problems is not the same as the
ability to solve them well [8, 14]. In our experience from teach-
ing a CS1 course and developing an online learning environment,
most students solve the assigned problems—but the code qual-
ity is poor. Consider the following problem: “Write a function
impose_fine(age, beer) that returns True if a person under
18 drinks beer.” The problem is easy to solve; the success rate in our
learning environment is over 90%. It is not, however, easy to solve
well; a typical solution contains redundant if-else and redundant
comparison to True:
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def impose_fine(age, beer):
if age < 18 and beer == True:

return True
else:

return False

Even after solving many programming problems, students still
commit these two defects. Without feedback on code quality, the
students might not be aware of the mistakes they make. Solving
more problems improves their ability to solve programming prob-
lems, but the code quality can remain poor. The students learn
to write code that is functionally correct but difficult to read and
extend. We thus focus on the code quality of functionally correct
solutions and use the term defect to describe any imperfect parts of
code for which it is possible to provide some feedback or advice.

Professional code analysis tools do not provide helpful feedback
to novices [8, 15]. Despite the importance of feedback on code qual-
ity, research on automated feedback in introductory programming
exercises has been predominantly focused on incorrect programs
[18]. Many studies investigated automatic error detection [2, 5, 10],
providing hints [12, 20, 22], and identifying misconceptions related
to incorrect solutions [13, 23, 24].

Some studies did explore the code quality of correct solutions
in introductory programming. Typically, they analyzed just a few
problems [15, 17, 19, 25], a few general issues like duplicate and
unused code [1], or measures of code quality like the number of
lines and cyclomatic complexity [3, 4]. Only two studies analyzed
the prevalence of specific defects in large datasets, both from in-
troductory programming courses in Java [8, 14]. All these studies
reported the prevalence either in the individual problems or in the
whole dataset; unknown is the prevalence in individual topics.

The aim of this study is to broaden our knowledge about code
quality defects in introductory programming by answering the
following research questions: Which defects appear in correct solu-
tions to short coding problems in Python? How are they distributed
across problems and topics? To answer these questions, we analyzed
114,000 correct solutions to short programming problems and com-
piled a catalog of 32 defects. We describe automatic detectors and
the prevalence of these defects across diverse problem sets covering
common topics taught in CS1.

The catalog can be directly used by educators as an inspiration
for what to discuss and highlight in lectures. It also facilitates the
development of refactoring exercises and programming problems
focused on prevalent defects. Developers of learning environments
can use the catalog and detectors to automatically generate feedback
to students or to measure performance beyond binary correctness
[21]. Researchersmay use our catalog as a starting point for building
an even broader, more general and systematic taxonomy.
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2 METHOD
To compile the catalog of defects, we used an extensive dataset of
student solutions and processed it in two phases (exploratory and
confirmatory).

2.1 Data Collection
We used data from an online learning environment for introduc-
tory programming (umimeprogramovat.cz), which is used by both
high school and university students. The environment provides a
standard interface for solving short coding problems directly in the
browser. Students can run their code to compare its output to the
expected results. They get feedback only on the correctness, not
code quality.

The environment offers 161 problems divided into 17 problem
sets, which cover most topics typically included in first university
programming courses (CS1). There are two types of exercises: Clas-
sic and Turtle. In Python Classic, students implement a function that
computes or prints something and which is tested on hidden data.
In Turtle Graphics, students write a program that draws a specified
picture using the turtle graphics concept [7]. All the problems can
be solved with 2–20 lines of code; median times range from 1 to
20 minutes. Many problems contain some scaffolding code, often
just a function header, but sometimes also a more extensive code
to modify or extend.

In this study, we consider only correct solutions. Together, there
are 114,000 solutions from 11,000 students collected during a period
of 2.5 years. The distribution across problems is highly skewed
towards the easier ones, ranging from several thousand to just a
few tens of solutions per problem.

2.2 Defects Detection
The analysis had two phases: exploratory and confirmatory. In the
exploratory phase, we used generic, imprecise detectors to learn
which defects exist in the data and collect their examples. In the
confirmatory phase, we developed specific, accurate detectors to
capture these defects.

Exploratory detectors can be indiscriminate, i.e., not distinguish-
ing between different defects, and overgenerating, i.e., reporting
false positives. We employed existing code style checkers designed
for real-world software development [11], custom detectors of du-
plicate code, and an interpretable clustering technique [9] that
uses all submitted solutions to reveal common inappropriate ap-
proaches and missing programming constructs. In addition, we
have considered defects described in existing studies of code qual-
ity [6, 8, 14, 17], but only some were applicable to short Python
programs.

In the second phase, we implemented confirmatory detectors. In
contrast to the exploratory detectors, confirmatory detectors should
not report any false positives to avoid overestimation of the preva-
lence and misleading feedback if used in a learning environment.
The confirmatory detectors are functions that operate over abstract
syntax trees. For example, to detect augmentable assignment (x = x
+ 1), we inspect all non-augmented assignment nodes with binary
operation on the right-hand side. The assignment is augmentable
in two cases: (1) the left child is equivalent to the target variable (x
= x - 2), (2) the right child is equivalent to the target variable and

the operation is commutative, i.e., either multiplication or addition
in case of numbers (x = 2 + x).

All defects are listed in Table 1. For most of them, the implemen-
tation is a straightforward translation from the general description
in Table 1. Table 2 provides the details needed to replicate our
detectors.

3 RESULTS
Table 1 lists the 32 defects that we detected, grouped by the main
related programming concept. The last column indicates possible
feedback to students, formulated for brevity as an instruction to
follow in order to remove the defect. In practice, the feedback could
be longer, explaining why is the current code undesirable and how
is the suggested modification better.

3.1 Defects in Specific Problems
For any problem, we can apply the automatic detectors to find out
what are the common defects in code quality. In the Introduction,
we have mentioned the problem Impose Fine. From over 1000 cor-
rect solutions, 90% contain a defect. The most common defects are
redundant if-else (58%), redundant comparison (56%), and inappropri-
ate whitespace (42%). In total, we have detected 12 different defects,
although half of them appear just once or twice.

As another example, consider a problem to write a function that
counts the occurrences of letters ‘a’ and ‘A’ in a text. From over 400
solutions, 74% contain a defect. The three most common defects are
inappropriate whitespace (35%), mergeable equal (33%), and for loop
with redundant indexing (25%), all present in the following solution:
def count_a(text):

a=0
for i in range(len(text)):

if text[i]=="a" or text[i]=="A":
a+=1

return a

Other detected defects include misleading name (18%, for i in
text), augmentable assignment (16%, a = a + 1), one-letter name
(5%), duplicate if (4%), and 6 rare ones.

We could continue analyzing the 159 other problems one by one.
Instead, we leverage a large number of problems and climb one
level of abstraction up by grouping similar problems practicing the
same topic. Doing this gives us more generally applicable insights.

3.2 Prevalence across Topics
Table 3 shows the prevalence of each defect across 17 problem sets.
The most prevalent defect is inappropriate whitespace, which is
arguably also the least serious one. More serious and still rather
common in both Classic and Turtle exercises are duplicate blocks
and one-letter names, but even these are not universally prevalent
in all problem sets.

The prevalence of all defects is highly non-uniform and depends
on the type of exercise, problem set, and even problem within the
problem set. First, let us examine the differences between the two
exercises (Classic and Turtle). In Turtle Graphics, problems do not
use conditional statements, so the related defects, such as duplicate
if, cannot occur. Augmentable assignments and duplicate expressions,
which are common in Classic problems, also do not appear in most



Table 1: Overview of defects.

Expressions
augmentable
assignment

Variable update expressible as augmented assignment. x = x + 4 Simplify to x += 4.

duplicate
expression

Repeated occurrences of a complex expression. if a[n//2] % 2 == 0:
print(a[n//2] % 2)

Avoid duplicate code by using a variable.

absolute value Compound expression equivalent to absolute value. x < 4 and x > -4 Simplify condition using abs.
repeated
multiplication

Repeated multiplication of the same expression. y = x*x*x Simplify using power (x ** 3).

repeated addition Repeated addition of the same expression. y = x+x+x Simplify using multiplication (3 * x).
redundant arithmetic Identity operation or constant-valued expression. 1*x, x/x Simplify to x. Simplify to 1.
Conditions
redundant if-else If-else statement directly returning a boolean. if c: return True

else: return False
Simplify to return c.

mergeable equal Comparing the same expression to multiple values. c == 'a' or c == 'A' Simplify to c in ’aA’.
redundant
comparison

Comparing boolean expression to a boolean constant. expr == True Remove redundant comparison to True.

redundant not Boolean expression with negation that can be applied. not a <= b Simplify to a > b.
If
duplicate if Consecutive if statements with the same body. if c1: print(x)

elif c2: print(x)
Avoid duplicate code by joining conditions
with or.

else if Else clause containing just single if-else block. else:
if c: print(x)

Simplify by using elif instead of else if.

nested if Nested if-statements avoidable using conjunction. if c1:
if c2: ...

Avoid unnecessary nesting by joining condi-
tions with and.

redundant elif If clause with a condition that is always true. if x <= y: print(1)
elif x > y: print(2)

Simplify by using else instead of elif.

empty if Redundant branch containing just pass. if c: pass
else: ...

Simplify by inverting the condition.

Loops
duplicate sequence Sequence of statements that are same or differ in a

single value.
print(1); print(2);
print(3); print(4);

Avoid duplicate code by using for loop.

for with redundant
indexing

Iterating through indices, accessing (not modifying)
items at the current index only.

for i in range(len(s)):
print(s[i])

Simplify by iterating directly through ele-
ments (for char in s).

while as for While loop with the number of iterations known be-
fore its start.

while i <= n:
print(i); i += 1

Use for loop when the number of iterations
is known.

redundant for For loop with zero or single iteration. for i in range(1): ... Remove the unnecessary for loop.
Functions
duplicate block Two very similar blocks of code. if c: f(1); g(1); f(1)

else: f(2); g(2); f(2)
Avoid duplicate code by using a function.

long script Program with more than 20 lines outside functions. Use functions to increase readability.
long function Function with more than 20 lines. Decompose into multiple shorter functions.
unused parameter Function parameter is never used in the body. def f(x, y):

print(x)
Remove unused parameter (or use it to gener-
alize the behavior).

unused function Function that is defined but never called. Remove unused function.
Variables
one-letter name One-letter variable name (with exceptions like i). l = 4 Use more descriptive variable name.
misleading name Variable i/j used to traverse items, not indices. for i in text: ... Avoid using name i for anything but index.
built-in name Variable name that is name of a built-in function. list = [3, 4] Avoid using built-in names for variables.
unused variable Variable that is defined but never read. Remove unused variable.
Miscellaneous
inappropriate
whitespace

Violating PEP 8 conventions about whitespace (only
the universally accepted rules).

print( x, y ) Remove the space after ( and before ) to ad-
here to conventions.

long line Line with more than 100 characters. Avoid too long lines; they are difficult to read.
unreachable code Part of source code that is never executed. return x; print(x) Remove unreachable code after return.
unused import Module is imported but unused. Remove unused module import.



Table 2: Technical details of the used defect detectors.

Duplicate expression: expressions with at least 8 weighted tokens, giving
arithmetic operators weight 2.

Absolute value: reference solution contains more absolute values than
the student solution and the student solution contains a compound
condition where the conditions are both equalities, strict inequalities,
or non-strict inequalities.

Repeated multiplication: at least 3rd power (i.e., allowing x * x).
Mergeable equal: expression at least 20 characters long.
Nested if : there are two cases where the if statements can be unnested

using compound condition: (1) The last clause in the outer if contains
just single if without elif or else. (2) Penultimate clause in the outer
if contains single if-else and the body of the inner else is same as the
body of the outer else.

Redundant elif : complementary comparisons, e.g., x < y followed by x
>= y or n % 2 == 0 followed by n % 2 == 1.

Duplicate sequence: at least 3 statements if it can be rewritten using for-
in-range, or at least 4 if it requires iterating through a collection of
values. We exclude problems from problem sets before introducing
loops.

For with redundant indexing: for-in-range-len statements where each
occurrence of the loop variable is reading (not writing to) item from
the collection on this current index.

While as for: while loop can be replaced by a for loop if the test is a
comparison that contains exactly one variable that is updated by a
constant in each iteration, and all the other variables that appear in
the test are not updated in the body. We exclude loops containing
break or return.

Duplicate block: at least 3 lines long, have the same number of tokens,
and differ in at most 3 tokens.

One-letter name: excluding names that are universally accepted as ap-
propriate for some use cases and also all that appear in at least one
scaffolding (_abcijkmnpxyz).

Unused variable: excluding loop counters.
Unreachable code: lines after return, break, or continue, if statements
with conditions that are always false, and also subsequent branches
after a condition that is always true.

Turtle problems. On the other hand, duplicate sequences and long
scripts are much more common in Turtle than in Classic problems.

Even within each type of exercise, the variability between prob-
lem sets is enormous. Redundant if-else occurs in every other solu-
tion in the Logic problem set but much less frequently elsewhere.
The Logic problem set is also abundant with redundant comparisons
and duplicate if statements. As one more example, consider mislead-
ing names and for loops with redundant indexing. These defects are
rare in most problem sets but prevalent when practicing strings
and lists.

One could expect loop-related defects to occur dominantly in
the loop-related problem sets, function-related defects in function-
related problem sets, etc. However, few defects meet this expecta-
tion.Without feedback on code quality, students do not stopmaking
the defect just after some practice. The prevalence fluctuates as
there might be more or fewer opportunities for the particular defect,
but for most defects, their prevalence tend to increase, not decrease.

Many students still use augmentable assignment, redundant com-
parison, and while loops instead of for loops in the last problem
set.

Table 3 hides the variability between problems in a single prob-
lem set. Some defects are highly localized, i.e., they only occur in a
few specific problems, but in these problems, the prevalence is high.
A typical example is an expression simplifiable to absolute value: in
the Logic problem set, it appears in just 2 from the 10 problems,
with the prevalence of 91% and 65%.

3.3 Aggregated Defects
We can climb one more level of abstraction up by grouping similar
defects into more general types of defects, such as duplicate and
unused code. Table 4 shows the prevalence of several aggregated
groups of defects. Poor formatting comprises inappropriate white-
space and long line; long code is either long function or long script;
duplicate can be block, sequence, if, or expression; poor names can
be one-letter, misleading, or built-in; unused code can be function,
parameter, variable, import, or unreachable code; and, finally, unnec-
essarily complex code that can be simplified by a local modification
includes the rest of the defects.

In an average problem, every other solution contains a defect.
However, many of those defects are just formatting issues. Exclud-
ing the formatting issues, about a third of solutions have a defect.
Locally complex code is prevalent in Classic problems, long code
in Turtle Graphics, and duplicate code in both exercises. Poor vari-
able names are not frequent initially but become frequent in more
difficult problems. Unused code is rather rare in our data.

Intriguingly, duplicate code is rare in Classic problem set on
for loops, although it is prevalent in the similar problem set in
Turtle Graphics. This phenomenon can be partially attributed to
a major difference between the two exercises: Classic problems
require writing a general function, while Turtle Graphics asks for
one specific picture, so it is possible to avoid the loop by a (possibly
long) sequence of commands. There are, for sure, other factors at
play, such as the choice of specific problems and their scaffolding.

The first few problem sets have few defects since there is not
much room for them. With more difficult problems, the aggregate
prevalence tends to increase. Students might be more skillful, but
longer programs offer more opportunities for various defects. There
are a few exceptions to this general trend, the most prominent being
the Logic problem set, where over 80% of solutions are defected,
more than in any other problem set.

3.4 Effect of Scaffolding Intervention
In our learning environment, we have investigated the potential
of implicit scaffolding to eliminate defects. Observing the extreme
prevalence of redundant if-else, we added three problems with scaf-
folding that demonstrated returning the value of logic expression
directly without an if statement. Figure 1 compares the prevalence
before and after this intervention. It reduced the prevalence from
about 70% to about 40% in the original problems (which we left
unchanged). This is a significant decrease, but 40% is still a lot. Even
in the scaffolded problems, 10–20% of students delete the provided
scaffolding and use if statement.



Table 3: Prevalence (%) of defects across problem sets. Read empty cells as 0%. Abbreviated problem sets: Expr. = Expressions,
Modif. = Code Modifications., Num. = Computations with Numbers, ASCII = ASCII art, Func. = Functions, Vars. = Variables.

  Python Classic Python Turtle
  Expr. Logic If For Modif. Num. ASCII Strings Lists Bonus Basics Loops Func. Angles Patterns Vars. Fractals avg.

augment. assignment 0.2 8.4 10.9 1.8 14.3 2.6 9.9 7.2 17.5 0.2 7.1 2.1 4.8
duplicate expression 0.3 0.1 0.9 1.9 1.8 5.6 6.9 12.3 9.5 2.2 1.8 2.6
absolute value 15.6 6.1 2.7 1.4
repeated multiplication 5.0 0.3
repeated addition 0.5 0.2 0.2 0.8 0.2 2.2 0.3 0.2 0.3
redundant arithmetic 0.1 0.1 0.4 1.8 0.1 0.4 0.3 0.3 0.2

redundant if-else 47.9 0.1 7.4 0.1 3.8 3.8 1.4 3.8
mergeable equal 1.2 0.2 0.1 9.7 3.6 1.3 4.4 1.2
redundant comparison 5.7 0.1 1.4 0.1 0.8 0.4 2.7 0.7
redundant not 0.2 0.1 0.3 0.1 0.1 0.3 0.6 0.3 0.1

duplicate if 12.1 3.7 0.5 1.0 1.3 3.4 0.8 0.6 7.7 1.8
else if 1.6 4.1 0.2 0.1 0.3 2.0 0.8 0.4 3.5 0.8
nested if 1.3 0.6 0.3 0.1 2.2 0.4 0.5 0.8 3.3 0.6
redundant elif 0.4 1.6 0.4 0.1 0.7 0.9 0.3 0.6 0.3
empty if 0.8 0.2 0.9 0.3 0.1

duplicate sequence 0.1 0.6 15.3 13.6 12.5 18.8 10.5 4.0 4.4
redundant indexing 0.1 1.5 8.6 16.2 4.8 1.8
while as for 1.9 1.8 0.5 1.9 0.7 1.8 0.1 0.4 0.5
redundant for 0.3 0.1 0.6 0.2 1.1 0.8 1.3 3.1 1.3 0.5

duplicate block 2.1 6.2 0.5 8.8 1.3 4.1 6.1 0.1 12.1 11.7 12.7 0.7 14.4 6.5 5.8 5.5
long script 0.1 13.1 3.6 8.1 14.3 8.6 4.7 3.1
long function 0.1 0.9 0.1 0.1 0.1 1.1 0.3 0.4 10.3 0.2 0.1 0.7 8.3 1.3
unused parameter 0.2 3.1 0.3 4.6 1.6 0.6
unused function 0.1 0.4 0.5 0.3 0.1 2.3 0.2

one-letter name 1.3 1.7 0.9 6.7 1.0 5.6 4.5 5.2 6.2 13.7 0.7 3.5 0.8 3.6 5.2 14.3 4.4
misleading name 0.1 0.1 0.7 7.4 8.0 4.3 1.2
built-in name 0.1 0.2 1.2 3.0 0.1 0.3 3.9 3.3 0.1 0.1 2.3 0.9
unused variable 0.1 0.1 0.2 0.4 0.2 0.8 0.7 1.5 2.3 4.7 0.1 0.1 1.5 0.7

inapprop. whitespace 33.9 46.6 49.9 50.8 42.0 56.5 49.6 42.8 35.3 58.9 0.3 2.1 6.6 3.7 8.0 27.4 56.3 33.6
long line 0.1 0.8 0.1 0.1 0.3 0.6 0.3 3.1 0.3
unreachable code 0.5 0.1 0.2 0.2 0.1 0.2 0.1
unused import 0.1 0.1 0.0

Table 4: Prevalence (%) of aggregated groups of defects.

  Python Classic Python Turtle
  Expr. Logic If For Modif. Num. ASCII Strings Lists Bonus Basics Loops Func. Angles Patterns Vars. Fractals avg.

poor formatting 33.9 46.6 50.3 50.8 42.0 56.5 49.9 42.8 35.5 59.5 0.3 2.1 6.6 3.7 8.0 27.4 56.3 33.7
complex code 5.7 60.7 14.9 14.4 3.6 27.9 20.7 26.9 28.9 35.1 0.0 1.1 1.2 1.3 3.4 8.8 2.1 15.1
duplicate code 0.4 14.2 10.7 0.9 11.4 3.9 12.3 13.5 13.0 24.0 0.0 24.5 23.9 13.1 30.5 17.8 11.2 13.3
poor names 1.4 1.7 1.2 8.0 1.1 8.9 4.6 11.6 17.0 20.0 0.0 0.7 3.5 0.8 3.7 5.3 16.5 6.2
long code 0.0 0.1 0.9 0.1 0.1 0.1 1.1 0.3 0.4 10.3 0.1 13.1 3.8 8.1 14.3 9.2 13.0 4.4
unused code 0.1 0.5 0.2 0.6 0.3 1.1 0.8 2.0 2.4 4.9 0.0 0.2 3.7 0.4 4.9 3.2 2.3 1.6

all incl. formatting 39.4 81.9 63.8 58.3 50.9 72.6 63.4 67.7 64.8 80.0 0.5 30.4 35.3 21.6 45.4 50.0 70.4 52.7
all excl. formatting 7.6 62.3 22.8 20.2 15.6 35.7 32.0 46.4 49.6 62.5 0.2 28.6 31.3 18.0 39.5 30.5 32.8 31.5

4 DISCUSSION
Research on feedback in introductory programming focuses on
incorrect programs, but most of the correct programs also contain
defects that call for feedback. We created a catalog of 32 defects
and analyzed their prevalence in introductory programming prob-
lems. In general, defects are prevalent and the prevalence increases
with problem difficulty, but there is large variability in prevalence
between topics.

4.1 Implications for Educators and Learning
Environments

The defects are often symptoms of missing knowledge and do not
disappear with practice without targeted feedback or instruction.
We should, therefore, teach the students to recognize and fix the
defects.

Table 3 indicates when to expect which defects to occur and
which are likely to be prevalent enough to be worth whole-class



Figure 1: Prevalence of redundant if-else in the Logic prob-
lem set before and after addition of three problems with
scaffolding targeting this defect (problems 1, 3, 4).
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discussion, attention of teaching assistants during computer labs,
and possibly even a targeted exercise. For example, in a lesson
on logic expressions and if statements, it is worth highlighting
redundant if-else, redundant comparison to True, and duplicate if.
In a lesson on strings and lists, important defects to highlight are
misleading names and for with redundant indexing. In a computer lab
using Turtle Graphics, we should pay special attention to duplicate
code.

Virtual learning environments can also be improved by consid-
ering the occurrence of defects. Many learning environments give
just correctness feedback. This may mislead students into a belief
that their solution is appropriate even when it is not, e.g., when
they use while loop instead of for loop. Over time, the missing
feedback on code quality can reinforce undesirable coding habits.

One remedy is to use the presented defect detectors and give stu-
dents short feedback on the committed defects (see the right-most
column in Table 1). There are also other interventions to consider,
such as worked examples, code scaffolding, evaluation based on
code quality, and refactoring exercises [16]. Which interventions
are effective in which context is yet to be discovered. Preliminary
work suggests that reducing defects prevalence is not easy: A tar-
geted tutoring system increased code quality when working inside
but not outside the tutoring system [25]. Using professional code
analysis tools was not associated with a lower prevalence of de-
fects in students’ programs [14]. Our experiment with scaffoldings
brought improvement in students’ codes, but not as high as we
expected.

4.2 Methodological Caveats and Limitations
The defect prevalences need to be interpreted with caution. We
have already discussed variability between exercises, topics, and
problems. The prevalences thus cannot be expected to transfer to
vastly different contexts, as can be confirmed by consulting previous
research [1, 14].

In a popular open-ended block-based programming environment
Scratch, duplicate code was detected in 26% programs and unused
code in 28% [1], much more than in our data. In Java programs from
the first four weeks of an academic year, the duplicate code was
detected in just 5% programs, while unused code in 27% [14]. These
aggregates might be heavily influenced by the precise definitions of
duplicate and unused code, but the difference is also present in the

prevalence of specific defects; unused variable and unused import
were observed in 16% and 20% of Java programs, while only 0.7% and
0.02% in our data. Even more importantly, most of the individual
defects that they detect are not applicable to our context at all since
they are specific to Java or longer object-oriented programs.

Even with the same programming problems, the prevalence
would change for a different student population, learning envi-
ronment, or defect definitions. In our case, the environment does
not provide any feedback on code quality and the students are
often implicitly motivated to finish the problems quickly to have
their homework done, which probably inflates the observed preva-
lences. On the other hand, our list of defects is not yet exhaustive—
in particular, we do not detect all instances of poor names and
poor formatting—so the prevalence of the aggregated defect groups
might be higher.

Even with the same collected data, there are methodological
decisions with a large effect on the presentation and interpretation
of the results. We report the macro-averaged prevalence, i.e., first
computing within-problem prevalences and then averaging them,
which gives equal importance to each problem in the problem set.
Analogously, the overall prevalence is the macro average of the
problem-set prevalences, which gives equal importance to each
problem set. Macro-averaging is important because the data are
skewed—first few problems have many more attempts than the
last ones. The simple average (also called micro average) would
put much more importance on the first few problems, considerably
biasing the results. When we analyze the prevalence of solutions
with at least one defect, the macro average is 53%, but the simple
average is just 31%. This reflects the fact that there are not many
defects in the simplest problems, which are the ones with the most
collected solutions.

Another caveat is that our notion of prevalence is unconditioned,
i.e., we report how frequently the defect appears in a randomly
selected problem. Since not every problem gives an opportunity to
make every defect, low prevalence does not imply that few students
would make that defect if they had an opportunity. For instance,
the overall unconditioned prevalence of expressions simplifiable to
absolute value is 3.8%, but in the problems whose reference solution
contains an absolute value, it is 58%. For the unconditioned preva-
lence to be high, there must be many opportunities to make that
defect and the conditional probability of the defect given an oppor-
tunity must be high. Conditional prevalence would give another
useful view, but it is unclear what exactly counts as an opportunity—
a difficulty that is well worth tackling in future research.

Finally, more research is needed to explore the generalizability of
results. We have analyzed 161 problems in 17 diverse problem sets.
This is a significantly larger sample than what is used in most of
the previous research on code quality, which typically analyzed stu-
dents’ solutions to just a few problems. However, our results show
that the prevalence of individual defects varies significantly across
exercises and topics and the space of introductory programming is
still much broader. There certainly are many defects not present
in our catalog, which are prevalent in different programming exer-
cises. Moreover, the prevalence depends not only on the specific
programming problems but also on their presentation, feedback,
and student population. To get a more complete picture, we need
to explore prevalence in other contexts.
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