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ABSTRACT
Intelligent behavior of adaptive educational systems is based
on student models. Most research in student modeling fo-
cuses on student learning (acquisition of skills). We focus on
prior knowledge, which gets much less attention in model-
ing and yet can be highly varied and have important conse-
quences for the use of educational systems. We describe sev-
eral models for prior knowledge estimation – the Elo rating
system, its Bayesian extension, a hierarchical model, and a
networked model (multivariate Elo). We evaluate their per-
formance on data from application for learning geography,
which is a typical case with highly varied prior knowledge.
The result show that the basic Elo rating system provides
good prediction accuracy. More complex models do improve
predictions, but only slightly and their main purpose is in
additional information about students and a domain.

1. INTRODUCTION
Computerized adaptive practice [14, 22] aims at providing
students with practice in an adaptive way according to their
skill, i.e., to provide students with tasks that are most useful
to them. In this work we focus on the development of adap-
tive systems for learning of facts, particularly on modeling
of prior knowledge of facts.

In student modeling [6] most attention is usually paid to
modeling student learning (using models like Bayesian Knowl-
edge Tracing [4] or Performance Factors Analysis [24]). Mod-
eling of prior knowledge was also studied in prior work [22,
23], but it gets relatively little attention. It is, however, very
important, particularly in areas where students are expected
to have nontrivial and highly varying prior knowledge, e.g.,
in domains like geography, biology, human anatomy, or for-
eign language vocabulary. As a specific case study we use
application for learning geography, which we developed in
previous work [22]. The estimate of prior knowledge is used
in models of current knowledge (learning), i.e., it has im-
portant impact on the ability of the practice system to ask
suitable questions.

We consider several approaches to modeling prior knowledge
and explore their trade-offs. The basic approach (described
in previous work [22]) is based on a simplifying assumption
of homogeneity among students and items. The model uses a
global skill for students and a difficulty parameter for items;
the prior knowledge of a student for a particular item is
simply the difference between skill and difficulty. The model
is basically the Rasch model, where the parameter fitting is
done using a variant of the Elo rating system [9, 25] in order
to be applicable in an online system.

The first extension is to capture the uncertainty in parame-
ter estimates (student skill, item difficulty) by using Bayesian
modeling. We propose and evaluate a particle based method
for parameter estimation of the model. This approach is
further extended to include multiplicative factors (as in col-
laborative filtering [15]) which allows to better model the
heterogeneity among students and items.

The second extension is the hierarchical model which tries to
capture more nuances of the domain by dividing items into
disjoint subsets called concepts (or knowledge components).
The model then computes student skill for each of these
concepts. Since these concept skills are related, they are
still connected by a global skill. With this model we have
to choose an appropriate granularity of used concepts and
find an assignment of items to these concepts. We use both
manually determined concepts (e.g., “continents” in the case
of geography) and concepts learned automatically from the
data [19].

The third extension is a networked model, which bypasses
the choice of concepts by modeling relations directly on the
level of items. This model can be seen as a variation on
previously proposed multivariate Elo system [7]. For each
item we compute the most similar items (based on students’
answers), e.g., in the geography application, knowledge of
Northern European countries is correlated. Prior knowledge
of a student for a particular item is in this model estimated
based on previous answers to similar items (still using the
global skill to some degree).

Extended models are more detailed than the basic model and
can potentially capture student knowledge more faithfully.
They, however, contain more parameters and the parameter
estimation is more susceptible to the noise in data. We com-
pare the described models and analyze their performance on
a large data set from application for learning geography [22].



The results show that the studied extensions do bring an im-
provement in predictive accuracy, but the basic Elo system
is surprisingly good. The main point of extension is thus
in their additional parameters, which bring an insight into
the studied domain. We provide several specific examples of
such insight.

2. MODELS
Although our focus is on modeling knowledge of facts, in
the description of models we use the common general ter-
minology used in student modeling, particularly the notions
of items and skills. In the context of geography applica-
tion (used for evaluation) items correspond to locations and
names of places and skill corresponds to knowledge of these
facts.

Our aim is to estimate the probability that a student s knows
an item i based on previous answers of students s to ques-
tions about different items and previous answers of other
students to questions about item i. As a simplification we
use only the first answer about each item for each student.

In all models we use the logistic function σ(x) = 1
1+e−x

as a link between a skill and a probability that a student
answers correctly. In the case of multiple-choice questions
the probability can be modeled by a shifted logistic function
σ(x, k) = 1/k + (1 − 1/k) 1

1+e−x , where k is the number of

options. We restrict our attention to online models (models
that are updated after each answer). Such models can adapt
to user behavior quickly and therefore are very useful in
adaptive practice systems.

2.1 Basic Model
The basic model (described in previous work [22] and cur-
rently used in the online application) uses a key assumption
that both students and studied facts are homogeneous. It
assumes that students’ prior knowledge in the domain can
be modeled by a one-dimensional parameter.

We model the prior knowledge by the Rasch model, i.e.,
we have a student parameter θs corresponding to the global
knowledge of a student s of a domain and an item parameter
di corresponding to the difficulty of an item i. The probabil-
ity that the student answers correctly is estimated using a
logistic function of a difference between the global skill and
the difficulty: P (correct |θs, di) = σ(θs − di).

A common approach to the parameter estimation for the
Rasch model is joint maximum likelihood estimation (JMLE).
This is an iterative approach that is slow for large data, par-
ticularly it is not suitable for an online application, where
we need to adjust estimates of parameters continuously.

In previous work [22, 25] we have shown that the parameter
estimation can be done effectively using a variant of the Elo
rating system [9]. The Elo rating system was originally de-
vised for chess rating, but we can use it in student modeling
by interpreting a student’s answer on an item as a “match”
between the student and the item. The skill and difficulty
estimates are updated as follows:

θs := θs +K · (correct − P (correct |θs, di))
di := di +K · (P (correct |θs, di)− correct)

where correct denotes whether the question was answered
correctly and K is a constant specifying sensitivity of the
estimate to the last attempt. An intuitive improvement,
which is used in most Elo extensions, is to use an “uncer-
tainty function” instead of a constant K – the update should
get smaller as we have more data about a student or an item.
We use an uncertainty function U(n) = α/(1+βn), where n
is the number of previous updates to the estimated param-
eters and α, β are meta-parameters.

2.2 Bayesian Model
In the basic model the uncertainty is modeled as a sim-
ple function of number of attempts. Such an approach is a
simplification since some answers are more informative than
others and thus the effect of answers on reduction of uncer-
tainty should be differentiated. This can be done by using a
Bayesian modeling approach. For this model we treat θs, di
and correct as random variables. We can use Bayes’ theorem
for updating our beliefs about skills and difficulties:

P (θs, di|correct) ∝ P (correct|θs, di) · P (θs, di)

We assume that the difficulty of an item is independent of
a skill of a student and thus P (θs, di) = P (θs) · P (di). The
updated beliefs can be expressed as marginals of the condi-
tional distribution, for example:

P (θs|correct) ∝ P (θs)·
∫ ∞
−∞

P (correct|θs, di = y)·P (di = y)dy

In the context of rating systems for games, the basic Elo
system has been extended in this direction, particularly in
the Glicko system [11]. It models prior skill by a normal
distribution and uses numerical approximation to represent
the posterior by a normal distribution and to perform the
update of the mean and standard deviation of the skill dis-
tribution using a closed form expressions. Another Bayesian
extension is TrueSkill [12], which further extends the system
to allow team competitions.

This approach is, however, difficult to modify for new sit-
uations, e.g., in our case we want to use the shifted logis-
tic function (for modeling answers to multiple-choice ques-
tions), which significantly complicates derivation of equa-
tions for numerical approximation. Therefore, we use a more
flexible particle based method to represent the skill distribu-
tion. The skill is represented by a skill vector θs, which gives
the values of skill particles, and probability vector ps, which
gives the probabilities of the skill particles (sums to 1). The
item difficulty is represented analogically by a difficulty vec-
tor di and a probability vector pi. In the following text the
notation psk stands for the k-th element of the vector ps.

The skill and difficulty vectors are initialized to contain val-
ues that are spread evenly in a specific interval around zero.
The probability vectors are initialized to proportionally re-
flect the probabilities of the particles in the selected prior
distribution. During updates, only the probability vectors
change, the vectors that contain the values of the particles
stay fixed. Particles are updated as follows:

psk := psk ·
n∑
l=1

P (correct|θs = θsk, di = dil) · pil

pil := pil ·
n∑
k=1

P (correct|θs = θsk, di = dil) · psk



After the update, we must normalize the probability vectors
so that they sum to one. A reasonable simplification that
avoids summing over the particle values is:

psk := psk · P (correct|θs = θsk, di = E[di])
pil := pil · P (correct|θs = E[θs], di = dil)

where E[di] (E[θs]) is the expected difficulty (skill) particle
value (i.e. E[di] = di

T · pi). By setting the number of
particles we can trade off between precision on one hand
and speed and memory requirements on the other hand.

Using the described particle model in a real-world applica-
tion would require storing the probabilities for all the par-
ticles in a database. If we assume that our beliefs stay
normal-like even after many observations then we can ap-
proximate each of the posteriors by a normal distribution.
This approach is called assumed-density filtering [17]. Con-
sequently, each posterior can be represented by just two
numbers, the mean and the standard deviation. In this
simplified model, each update requires the generation of
new particles. We generate the particles in the interval
(µ − 6σ, µ + 6σ). Otherwise, the update stays the same
as before. After the update is performed, the mean and
the standard deviation are estimated in a standard way:
µθs := θs

T · ps, σθs := ‖θs − µθs‖2.

The model can be extended to include multiplicative factors
for items (qi) and students (rs), similarly to the Q-matrix
method [1] or collaborative filtering [15]. Let k be the num-
ber of factors, then x passed in to the likelihood function
σ(x) has the form: x = θs − di +

∑k
j=1 qi,j · rs,j . The up-

dates are similar, we only need to track more variables.

2.3 Hierarchical Model
In the next model, which we call ‘hierarchical’, we try to
capture the domain in more detail by relaxing the assump-
tion of homogeneity. Items are divided into disjoint sets –
usually called ‘concepts’ or ‘knowledge components’ (e.g.,
states into continents). In addition to the global skill θs
the model now uses also the concept skill θsc. We use an
extension of the Elo system to estimate the model parame-
ters. Predictions are done in the same way as in the basic
Elo system, we just correct the global skill by the concept
skill: P (correct |θs, θsc, di) = σ((θs + θsc)− di). The update
of parameters is also analogical (U is the uncertainty func-
tion and γ is a meta-parameter specifying sensitivity of the
model to concepts):

θs := θs + U(ns) · (correct − P (correct |θs, θsc, di))
θsc := θsc + γ · U(nsc) · (correct − P (correct |θs, θsc, di))
di := di + U(ni) · (P (correct |θs, θsc, di)− correct)

This proposed model is related to several student model-
ing approaches. It can be viewed as a simplified Bayesian
network model [3, 13, 16]. In a proper Bayesian network
model we would model skills by a probability distribution
and update the estimates using Bayes rule; equations in our
model correspond to a simplification of this computation us-
ing only point skill estimates. Bayesian network model can
also model more complex relationships (e.g., prerequisites),
which are not necessary for our case (fact learning). Other
related modeling approaches are the Q-matrix method [1],
which focuses on modeling mapping between skills and items

(mainly using N : M relations), and models based on knowl-
edge space theory [8]. Both these approaches are more com-
plex than the proposed model. Our aim here is to evaluate
whether even a simple concept based model is sensible for
modeling factual knowledge.

The advantage of the hierarchical model is that user skill is
represented in more detail and the model is thus less sen-
sitive to the assumption of homogeneity among students.
However, to use the hierarchical model, we need to deter-
mine concepts (mapping of items into groups). This can
be done in several ways. Concepts may be specified manu-
ally by a domain expert. In the case of geography learning
application some groupings are natural (continents, cities).
In other cases the construction of concepts is more diffi-
cult, e.g., in the case of foreign language vocabulary it is
not clear how to determine coherent groups of words. It is
also possible to create concepts automatically or to refine
expert provided concepts with the use of machine learning
techniques [5, 19].

To determine concepts automatically it is possible use clas-
sical clustering methods. For our experiments we used spec-
tral clustering method [27] with similarity of items i, j de-
fined as a Spearman’s correlation coefficient cij of correct-
ness of answers (represented as 0 or 1) of shared students
s (those who answered both items). To take into account
the use of multiple-choice questions we decrease the binary
representation of a response r by guess factor to r − 1/k (k
is the number of options). Disadvantages of the automatic
concept construction are unknown number of concept, which
is a next parameter to fit, and the fact that found concepts
are difficult to interpret.

It is also possible to combine the manual and the automatic
construction of concepts [19]. With this approach the man-
ually constructed concepts are used as item labels. Items
with these labels are used as a training set of a supervised
learning method (we used logistic regression with regular-
ization). For the item i, the vector of correlation with all
items cij is used as vector of features. Errors of the used
classification method are interpreted as “corrected” labels;
see [19, 20] for more details.

2.4 Networked Model
The hierarchical model enforces hard division of items into
groups. With the next model we bypass this division by
modeling directly relations among individual items, i.e., we
treat items as a network (and hence the name ‘networked
model’). For each item we have a local skill θsi. For each pair
of items we compute the degree to which they are correlated
cij . This is done from training data or – in the real system
– once a certain number of answers is collected. After the
answer to the item i all skill estimates for all other items j
are updated based on cij . The model still uses the global
skill θs and makes the final prediction based on the weighted
combination of global and local skill: P (correct |θs, θsi) =
σ(w1θs + w2θsi − di). Parameters are updated as follows:

θs := θs + U(ns) · (correct − P (correct |θs, θsi))
θsj := θsj + cij · U(ns) · (correct − P (correct |θs, θsi))

for all items j
di := di + U(ni) · (P (correct |θs, θsi)− correct)



Figure 1: Illustration of the networked model on European countries. Only the most important edges for
each country are shown.

This model is closely related to multivariate Elo which was
previously proposed in the context of adaptive psychometric
experiments [7].

For illustration of the model, Figure 1 shows selection of the
most important correlations for European countries. Note
that this automatically generated figure contains some nat-
ural clusters as Balkan countries (right), Scandinavian coun-
tries (middle), and well-known1 countries (left).

3. EVALUATION
We provide evaluation of the above described models over
data from an adaptive application for learning facts.

3.1 The Used System and Data
For the analysis we use data from an online adaptive system
slepemapy.cz for practice of geography facts (e.g., names
and location of countries, cities, mountains). The system
estimates student knowledge and based on this estimate it
adaptively selects questions of suitable difficulty [22]. The
system uses a target success rate (e.g., 75 %) and adaptively
selects questions in such a way that the students’ achieved
performance is close to this target [21]. The system uses
open questions (“Where is France?”) and multiple-choice
questions (“What is the name of the highlighted country?”)
with 2 to 6 options. Students answer questions with the use
of an interactive ‘outline map’. Students can also access a
visualization of their knowledge using an open learner model.

Our aim is to model prior knowledge (not learning during
the use of the system), so we selected only the first answers
of students to every item. The used data set contains more
than 1.8 million answers of 43 thousand students. The sys-
tem was originally available only in Czech, currently it is
available in Czech, English, and Spanish, but students are
still mostly from Czech republic (> 85%) and Slovakia (>
10%). The data set was split into train set (30%) and test
set (70%) in a student-stratified manner. As a primary met-
ric for model comparison and parameter fitting we use root
mean square error (RMSE), since the application works with
absolute values of predictions [22] (see [26] for more details
on choice of a metric).

1By students using our system.

3.2 Model Parameters
The train set was used for finding the values of the meta-
parameters of individual models. Grid search was used to
search the best parameters of the uncertainty function U(n).
Left part of Figure 2 shows RMSE of the basic Elo model
on training data for various choices of α and β. We chose
α = 1 and β = 0.06 and we used these values also for derived
models which use the uncertainty function.

Figure 2: Grid searches for the best uncertainty
function parameters α, β (left) and the best parame-
ters w1, w2 of the networked model (right). As can be
seen from different scales, models are more sensitive
to α and β parameters.

Grid search (Figure 2 right) was used also to find the best
parameters w1 = 0.8, w2 = 1 of the networked model. The
train set was also used for computation of correlations. To
avoid spurious high correlations of two items i, j as conse-
quence of lack of common students we set all cij = 0 for
those pairs i, j with less than 200 common students. Corre-
lations computed by this method show stability with respect
to selection of train set. For two different randomly selected
train sets correlation values correlate well (> 0.95). As Fig-
ure 1 shows, the resulting correlations are interpretable.

For the particle-based Bayesian model we can tune the per-
formance by setting the number of particles it uses for es-
timating each distribution. We found out that increasing
the number of particles beyond 100 does not increase per-
formance. For the simplified version, only 10 particles are
sufficient. This is probably due to the way the algorithm
uses the particles (they are discarded after each step).



Table 1: Comparison of models on the test set.

Model RMSE LL AUC

Elo (α = 1, β = 0.06) 0.4076 −643179 0.7479
Bayesian model 0.4080 −644362 0.7466
Bayesian model (3 skills) 0.4056 −637576 0.7533
Hierarchical model 0.4053 −636630 0.7552
Networked model 0.4053 −636407 0.7552

3.3 Accuracy of Predictions
All the reported models work online. Training of models
(parameters θs, di) continues on the test set but only pre-
dictions on this set are used to evaluate models.

Table 1 shows results of model comparison with respect
model performance metrics. In addition to RMSE we also
report log-likelihood (LL) and area under the ROC curve
(AUC); the main result are not dependent on the choice of
metric. In fact, predictions for individual answers are highly
correlated. For example for the basic Elo model and hier-
archical model most of the predictions (95%) differ by less
than 0.1.

The hierarchical model reported in Table 1 uses manually
determined concepts based on both location (e.g., conti-
nent) and type of place (e.g., country). Both the hierarchical
model and the networked model bring an improvement over
the basic Elo model. The improvement is statistically sig-
nificant (as determined by a t-test over results of repeated
cross-validation), but it is rather small. Curiously, the Par-
ticle Bayes model is slightly worse than the simple Elo sys-
tem, i.e., the more involved modeling of uncertainty does not
improve predictions. The performance improves only when
we use the multiple skill extension. We hypothesize that
the improvement of the hierarchical (resp. multiple skill)
extensions model be more significant for less homogeneous
populations of students. Each skill could then be used to
represent a different prior knowledge group.

RMSE is closely related to Brier score [26], which provides
decomposition [18] to uncertainty (measures the inherent
uncertainty in the observed data), reliability (measures how
close the predictions are to the true probabilities) and reso-
lution (measures how diverse the predictions are).

This decomposition can be also illustrated graphically. Fig-
ure 3 shows comparison of the basic Elo model and the hi-
erarchical model. Both calibration lines (which are near the
optimal one) reflect very good reliability. On the other hand,
histograms reflect the fact that the hierarchical model gives
more divergent predictions and thus has better resolution.

3.4 Using Models for Insight
In student modeling we are interested not just in predictions,
but also in getting insight into characteristics of the domain
or student learning. The advantage of more complex models
may lie in additional parameters, which bring or improve
such insight.

Figure 5 gives comparison of item difficulty for Elo model

Figure 3: Illustration of the Brier score decomposi-
tion for the basic model and the hierarchical model.
Top: reliability (calibration curves). Bottom: reso-
lution (histograms of predicted values).

and Particle Bayes. As we can see, the estimated values of
the difficulties are quite similar. The main difference be-
tween these models is in estimates of uncertainty. The un-
certainty function used in Elo converges to zero faster and
its shape is the same for all items. In Particle Bayes, the
uncertainty is represented by the standard deviation of the
normal distribution. This uncertainty can decrease differ-
ently for each item, depending on the amount of surprising
evidence the algorithm receives, as is shown in Figure 4. The
better grasp of uncertainty can be useful for visualization in
an open learner model [2, 10].

Other extensions (networked, hierarchical, Bayesian with
multiple skills) bring insight into the domain thanks to the
analysis of relations between items, e.g., by identifying most
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Figure 5: Difficulty of countries – the basic Elo model versus the Bayes model.

useful clusters of items. Such results can be used for improv-
ing the behavior of an adaptive educational system. For
example, the system can let the user practice items from
one concept and after reaching mastery move to the next
one. Another possible use of concepts is for automatic con-
struction of multiple-choice questions with good distractors
(falling under the same concept).

We performed evaluation of the hierarchical model with dif-
ferent concepts. We used several approaches for specifying
the concepts manually: based on type (e.g., countries, cities,
rivers), location (e.g., Europe, Africa, Asia) and combina-
tion of the two approaches (e.g, European countries, Euro-
pean cities, African countries). Since we have most students’
answers for European countries, we also considered a data
set containing only answers on European countries. For this
data set we used two sets of concepts. The first is the parti-
tion to Eastern, Western, Northwestern, Southern, Central
and Southeastern Europe, the second concept set is obtained
from the first one by union of Central, Western and Southern
Europe (countries from these regions are mostly well-known
by our Czech students) and union of Southeastern and East-
ern Europe.

We compared these manually specified concepts with auto-
matically corrected and entirely automatically constructed
concepts (as described in Section 2.3; ‘corrected’ concepts
are based on manually specified concepts and are revised
based on the data). The quality of concepts was evaluated
using prediction accuracy of the hierarchical model which
uses these concepts. Table 2 shows the results expressed as
RMSE improvement over the basic model. Note that the
differences in RMSE are necessarily small, since the used
models are very similar and differ only in the allocation of
items to concepts. For the whole data set (1368 items) a
larger number of concepts brings improvement of perfor-
mance. The best results are achieved by manually speci-
fied concepts (combination of location and type of place),
automatic correction does not lead to significantly different
performance. For the smaller data set of European countries
(39 items) a larger number of (both manual and automat-
ically determined) concepts brings worse performance – a

model with too small concepts suffers from a loss of informa-
tion. In this case the best result is achieved by a correction
of manually specified concepts. The analysis shows that the
corrections make intuitive sense, most of them are shifts of
well-known and easily recognizable countries as Russia or
Iceland to block of well-known countries (union of Central,
Western and Southern Europe).

Table 2: Comparison of manual, automatically cor-
rected manual, and automatic concepts. Quality of
concepts is expressed as RMSE improvement of the
hierarchical model with these concepts over the ba-
sic model.

number of RMSE
All items concepts improvement

manual – type 14 0.00132
corrected – type 14 0.00132
manual – location 22 0.00179
corrected – location 22 0.00167
manual – combination 56 0.00235
corrected – combination 56 0.00234
automatic 5 −0.00025
automatic 20 0.00039
automatic 50 0.00057

Europe

manual 3 0.00003
corrected 3 0.00011
manual 6 −0.00015
corrected 6 0.00003
automatic 2 0.00007
automatic 3 0.00004
automatic 5 −0.00019

Models with multiple skills bring some additional informa-
tion not just about the domain, but also about students.
Correlation of concept skills with the global skill range from
-0.1 to 0.5; the most correlated concepts are the ones with
large number of answers like European countries (0.48) or
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Figure 6: Boxplots of the item factor values from the Bayesian model (3 factors) grouped by some manually
created concepts.

Asian countries (0.4), since answers on items in these con-
cepts have also large influence on the global skill. Corre-
lation between two clusters skills typically range from -0.1
to 0.1. These low correlation values suggest that concept
skills hold interesting additional information about student
knowledge.

Another view of relations between items is provided by the
Bayesian model with multiplicative factors – this model does
not provide division of items into disjoint sets, but rather de-
termines for each item a strength of its relation to each factor
(based on the data). Figure 6 illustrates how the learned fac-
tors relate to some manually specified concepts. Note that
the results in Table 1 suggest that most of the improvement
in predictive accuracy can be achieved by just these three
automatically constructed factors. We can see that factor 3
discriminates well between countries in Europe and Africa
(Figure 7 provides a more detailed visualization). In the
case of geography the division of items to concepts can be
done in rather natural way and thus the potential applica-
tion of such automatically determined division is limited and
serves mainly as a verification of the method. For other do-
mains (e.g., vocabulary learning) such natural division may
not exist and this kind of model output can be very useful.

Also, note that Factor 2 differentiates between states in
USA and countries on other continents and Factors 1 and 2
have different values for regions in Czech republic and states
in Germany. This evidence supports an assumption that the
model may be able to recognize students with varied back-
ground.

4. DISCUSSION
We have described and compared several student models of
prior knowledge. The models were evaluated over exten-
sive data from application for learning geography. The de-
scribed models should be directly applicable to other online
systems for learning facts, e.g., in areas like biology, human
anatomy, or foreign language vocabulary. For application in
domains which require deeper understanding (e.g., mathe-
matics, physics) it may be necessary to develop extensions
of described models (e.g., to capture prerequisite relations
among concepts).

The results show that if we are concerned only with the ac-
curacy of predictions, the basic Elo model is a reasonable
choice. More complex models do improve predictions in sta-
tistically significant way, but the improvement is relatively

Figure 7: Visualization of the values of the third
factor in the Bayesian model with multiple skills.

small and evenly spread (i.e., individual predictions by dif-
ferent models are very similar).

The improvement in predictions by the hierarchical or net-
worked models may be more pronounced in less homoge-
neous domains or with less homogeneous populations. Nev-
ertheless, if the main aim of a student model is prediction of
future answers (e.g., applied for selection of question), then
the basic Elo model seems to be sufficient. Its performance
is good and it is very simple to apply. Thus, we believe that
it should be used more often both in implementations of
educational software and in evaluations of student models.

The more complex models may still be useful, since improved
accuracy is not the only purpose of student models. De-
scribed models have interpretable parameters – assignment
of items to concepts and better quantification of uncertainty



of estimates of knowledge and difficulty. These parameters
may be useful by themselves. We can use them to guide the
adaptive behavior of educational systems, e.g., the choice
of questions can be done in such a way that it respects the
determined concepts or at the beginning of the session we
can prefer items with low uncertainty (to have high confi-
dence in choosing items with appropriate difficulty). The
uncertainty parameter is useful for visualization of student
knowledge in open learner models [2, 10]. Automatically
determined concepts may also provide useful feedback to
system developers, as they suggest potential improvements
in user interface, and also to teachers for whom they offer
insight into student’s (mis)understanding of target domain.
Given the small differences in predictive accuracy, future re-
search into extensions of basic models should probably focus
on these potential applications.
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educational system behaviour on student motivation.
In Artificial Intelligence in Education, 2015.

[22] Jan Papoušek, Radek Pelánek, and Vı́t Stanislav.
Adaptive practice of facts in domains with varied prior
knowledge. In Educational Data Mining (EDM), pages
6–13, 2014.

[23] Zachary A Pardos and Neil T Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In User
Modeling, Adaptation, and Personalization, pages
255–266. Springer, 2010.

[24] Philip I. Pavlik, Hao Cen, and Kenneth R. Koedinger.
Performance factors analysis-a new alternative to
knowledge tracing. In Proc. of Artificial Intelligence in
Education (AIED), volume 200 of Frontiers in
Artificial Intelligence and Applications, pages 531–538.
IOS Press, 2009.

[25] Radek Pelánek. Time decay functions and elo system
in student modeling. In Educational Data Mining
(EDM), pages 21–27, 2014.
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