
Measuring Students’ Performance on Programming Tasks
Tomáš Effenberger
Masaryk University

Brno, Czech Republic
tomas.effenberger@mail.muni.cz

Radek Pelánek
Masaryk University

Brno, Czech Republic
pelanek@fi.muni.cz

ABSTRACT
Large scale learning systems for introductory programming
need to be able to automatically assess the quality of students’
performance on programming tasks. This assessment is done
using a performance measure, which provides feedback to
students and teachers, and an input to the domain, student and
tutor models. The choice of a good performance measure is
nontrivial, since the performance of students can be measured
in many ways, and the design of measure can interact with
the adaptive features of a learning system or imperfections
in the used domain model. We discuss the important design
decisions and illustrate the process of an iterative design and
evaluation of a performance measure in a case study.

INTRODUCTION
A key part of adaptive learning systems is student modeling,
which provides the foundation for the intelligent behavior of
these systems. Research in student modeling focuses mainly
on the intricacies of modeling temporal dynamics of learn-
ing and complex relations among knowledge components [3].
Relatively little attention has been given to the basic input to
student modeling: the summary of a students’ performance
on a given task. In most cases, modeling approaches consider
only binary information about correctness. Several authors
consider richer information, e.g., a partial credit based on stu-
dents’ use of hints [8], high speed high stakes rule based on
response times [2], or classification of incorrect answers based
on the frequency of errors [5]. However, such approaches
are not utilized in the current mainstream student modeling
approaches [3].

More complex measures of students’ performance are useful
particularly in domains where students’ interaction with a
task is complex and relatively long. We focus specifically on
introductory programming. In this case, a student can spend
several minutes solving a programming exercise. Using just
the information about the correctness of the attempt would
lead to the loss of potentially useful information about the
student’s knowledge state. Performance measures in such case
can range from simple heuristics based on summary statistics
(e.g., response time, number of code edits), through more

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

L@S ’19 June 24–25, 2019, Chicago, IL, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6804-9/19/06.

DOI: https://doi.org/10.1145/3330430.3333639

complex algorithms that consider all individual interactions
with the task, to a recurrent neural network over a series of
program snapshots embeddings [7].

Utilizing detailed information about students’ interaction with
a task (as done in [7]), is potentially powerful, but compli-
cates the development of adaptive learning systems. Even
in the case of introductory programming, different activities
(turtle graphics, a robot on a grid, text processing) have sig-
nificantly different interaction modes and each of them would
require complex research into suitable modeling of students’
performance.

On a general level, we propose to use discrete performance
measures with just a few distinct values. We argue that this
should be enough to capture the main differences in students’
performance, and at the same time, it makes the development
of adaptive learning systems much more viable as it makes stu-
dent modeling independent of the idiosyncrasies of a particular
educational task. We show that even for a simple introductory
programming exercise the design of a performance measure
is nontrivial and involves interaction with domain modeling.
Our results are directly relevant for many other introductory
programming activities that are today used on very large scale;
e.g., Hour of Code activities are solved by millions of student
every year [9].

MEASURES OF STUDENTS’ PERFORMANCE
A performance measure is a function that takes as an input a
log data on a student’s interaction with a particular task and
outputs a summary measure of the performance. A perfor-
mance measure can be seen as a model of a student’s perfor-
mance on a task. The key difference with student modeling
(as commonly used) is that student modeling uses data on a
sequence of tasks and takes into account temporal dynamics
(learning) along the sequence.

Overview of Possible Approaches
Previous research on student modeling avoids the need for
a nontrivial performance measure by either using a binary
success as a trivial performance measure [3], or by using raw
observational data directly to train a model [7]. However, both
of these extreme approaches have severe disadvantages.

Binary success contains too little information. Solving a pro-
gramming task takes much more time than, e.g., answering a
multiple choice question about a geography fact. Furthermore,
most tasks in a well-designed system for teaching introductory
programming are eventually solved—failing to solve a task
after several minutes of trying is frustrating and decreases the

https://doi.org/10.1145/3330430.3333639


motivation of students, so it is important to avoid it. For exam-
ple, the two problems from Hour of Code with published data
have success rates 81.0% and 97.8 % [7]. Therefore, binary
success delivers infrequent and not very informative signal
about the student.

Specifically, the binary success is clearly insufficient to guide
recommendation decisions: if the student spent 10 minutes
solving the first task in the system, he should be recommended
a different task than a student who solved this task in 10
seconds. The binary success is also insufficient to optimize
tutor models: if the student solves the task, it could still be
too easy, or too difficult for the student, so we do not know
whether the recommendation was appropriate.

The other extreme is to use all observational data as the input
to, e.g., a student model [7]. However, the lack of unified input
makes such complex models challenging to reuse, even in a
single system with multiple exercises with different observa-
tional data.

Between these two extremes, there is a broad spectrum of op-
tions for performance representations, ranging from discrete
performance levels (most interpretable, least information),
through a single-value continuous performance, to a multidi-
mensional performance embedding (least interpretable, most
information). Beyond the binary success, it becomes unclear
how to interpret the values and how to compute them. Also,
most of the currently used student models are designed to
work with binary performance as their input, so these must be
adapted in order to work with the more complex performance
representations.

Discrete Performance Measures
For introductory programming tasks, a few discrete perfor-
mance levels provide a good tradeoff between the interpretabil-
ity of the binary success and the precision of the continuous
performance. The precision can be increased by adding more
performance levels (better approximating the continuous per-
formance) at the cost of either weaker interpretability, or more
demanding annotation process.

As the first step, we propose to extend the currently prevalent
binary success to four performance levels: failed < poor <
good < excellent. Already in this case, the interpretation is
ambiguous, and it is even less clear for more levels or a con-
tinuous representation. One possible interpretation of these
levels is based on the student’s experience: poor performance
means that the task was too difficult for the student, good per-
formance indicates an appropriate task, and excellent perfor-
mance too easy task. This interpretation makes the measured
performance useful as a signal for tutor model optimization.

DESIGN OF A PERFORMANCE MEASURE
So far, we have argued that discrete performance measures can
be useful. However, it is not clear how to design a suitable per-
formance measure for a given type of exercise. Does it matter
which performance measure we choose, or do all reasonable
choices lead to similar measurements?

To explore this question, we performed a case study of de-
signing a performance measure for RoboMission, an adaptive

Figure 1. Relationship between number of code edits, number of execu-
tions and solving time.

learning system for introductory programming. RoboMission
is a programming game—a variation on the commonly used
theme “robot in a grid”, which is often used for introductory
programming (e.g., in the Hour of Code activities). Students
create programs using a block-based programming interface
and can execute their program at any time to see its effect in
the game environment. The game covers sequences of com-
mands, loops, and conditional statements; see [1] for details.
There are 85 tasks divided into linearly ordered hierarchical
problem sets (9 levels, each with 3 sublevels). Each sublevel
contains about 3 similar tasks, which practice the same con-
cepts. The data used for the analysis consist of 62,500 task
sessions (a series of uninterrupted interactions with a task)
attempted by 3,800 students in total, and about 1 million of
program snapshots taken after each edit and execution. Most
task sessions (81%) are successful.

Choice of Input Data
In the programming tasks, the quality of the solution is usually
an important criterion. However, in introductory programming,
the diversity of the correct solutions is lower, because the
programs are short and use only a few commands known to
the students. The structure of the solution is often further
constrained; for example, in RoboMission, most tasks impose
a limit on the length of the program. Consequently, most
solutions are similar and thus do not carry useful information
for performance evaluation.

Therefore, we only consider time, number of edits and number
of executions as criteria for the measurement. Since all these
measures are highly skewed, we use them log-transformed.
We explore correlations between these features to see if we can
omit any of them. The global correlations (i.e., computed over
all task sessions) are high—over 0.69 for all pairs of measures
(Figure 1). However, they are not high within all individual
tasks; about 20 % of the tasks have correlations between the
time and a click-based signal below 0.5. In contrast, the
correlation between edits and executions is high for all tasks,
indicating that it is sufficient to use only one of these click-
based signals.

In this case study, we explore performance measures based
on a single criterion. The thresholds for good and excellent
performance can be set either globally, per problem set, or
even per each task. Another decision is whether to set these
thresholds manually, learn them from labeled task sessions, or
find them using collected observational data. We illustrate the
diversity by comparing three distinctly different measures: (1)
Execution Count Measure, that assesses as excellent the task
sessions with only one execution, and good performance with



Figure 2. Scatterplots of task difficulties for three performance mea-
sures. Each task and is placed according to the proportion of poor and
excellent performances. The rest of the performances is good.

at most 5 executions, (2) Absolute Time Measure with thresh-
olds per each problem set (obtained by a procedure described
in section 3.2), and (3) Relative Time Measure with thresholds
per each task computed as multiples of median solving time
on the task. These measures behave very differently (Figure 2),
so the choice of the measure is an important decision.

Iterative Improvement of Thresholds
How to set the thresholds for the Absolute Time Measure?
Standard supervised techniques are not directly applicable,
because reasonable thresholds must be chosen even before
any performance data are collected, and later improvements
should require only a few task sessions to be labeled manu-
ally. Furthermore, the collected data are not identically and
independently distributed due to a mixture of biases such as
a personalized recommendation of the next task, learning,
self-selection bias, and attrition bias [4].

The accuracy of a performance measure can also be negatively
affected by flaws in the domain model1. Figure 2B illustrates
an interaction between the performance measure and the do-
main model. There are tasks in the level 2 (marked as stars
in the plot) at both ends of the difficulty spectrum. It could
be an issue with the specific performance measure, but in this
case, it is actually an issue with the domain model: the level 2
contains both easy and extremely tricky tasks, that should not
be given to the students so early.

When deciding that it is the domain model that should be
fixed, not the performance measure, we used an implicit as-
sumption about a reasonable progression of the thresholds
for a smooth learning experience. Specifically, the thresholds
should not change arbitrarily wildly, but rather they should
slowly and gradually increase. We made this assumption ex-
plicit by adding a constraint on the threshold progression,
requiring a constant increase of the thresholds (in the log-time
scale) between the corresponding sublevels of consecutive
levels, and similarly a constant increase between consecutive
sublevels of any given level. Such a constraint leads to a grad-
ually growing curve, with periodic drops after the end of each
level, an oscillation behavior recommended for the challenge
intensity in games [6].

This constraint also reduces the number of parameters that
need to be set initially by the task authors. In order to make
them easier to estimate for people, we made each parameter

1In this case study, the term domain model corresponds to the map-
ping between tasks and problem sets. Most of the discussion is,
however, relevant also for more general meaning of the term.

log time

1.1 1.B A.1 A.Ba.b

Figure 3. Thresholds parametrization for domains with linearly ordered
hierarchical problem sets. The filled black squares correspond to four
parameters that need to be set for each performance level (e.g., for good
performance), empty squares denote linearly interpolated thresholds.

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3
problem set

10s

20s

40s

80s

3m

6m

ti
m

e

tasks (time medians)

removed tasks

poor performance

good performance

excellent performance

Figure 4. Threshold progression plot. For each problem set, it shows the
time thresholds for good and excellent performance (thick black lines),
distribution of solving times (gray plots), median solving time for each
task (stars), and labeled task sessions (colored dots). The distribution of
solving times is visualized using extended box plots (letter-value plots).

to correspond to a threshold in a specific sublevel. This leads
to 4 parameters for good performance: thresholds for the first
and last sublevel of the first and last level (and analogically 4
parameters for excellent performance). All other thresholds
are interpolated linearly in a log-transformed 2D space with
levels and sublevels as the coordinates (Figure 3). Specifically,
let Ta.b be a threshold for level a, sublevel b; A the total number
of levels, B the number of sublevels in each level. Based on the
manually specified thresholds T1.1,T1.B,TA.1,TA.B, we specify
threshold Ta.b as (1−α)(1−β )T1.1 +(1−α)βT1.B +α(1−
β )TA.1 +αβTA.B, where α and β represent progress towards
the final level, and towards the final sublevel of the current
level, respectively: α = (a−1)/(A−1), β = (b−1)/(B−1).
The specific parametrization depends on the structure of the
domain (in our case, linearly ordered hierarchical problem
sets); different domains would need a different parametrization.
The general guiding principle is to choose a parametrization
with only a few parameters, all of them with a straightforward
interpretation.

Once some performance data are collected, we can visualize
them in threshold progression plot (Figure 4), which reveals
discrepancies between the thresholds and the observed perfor-
mances. To find out whether the discrepancies are caused by
wrong thresholds or wrong domain model, a few task sessions
randomly selected around a specified threshold can be labeled.
The task author then decides whether changing thresholds or
rather changing domain model is a more suitable remedy. For
example, even tasks practicing the very same concepts should
not be in the same sublevel (i.e., sharing the same thresholds)
if one task needs only 2 blocks, and the other 20, resulting
in longer solving times. In our case, there are a few outly-
ing tasks, which violate the homogeneity of sublevels and
should be removed or modified, and there is even a whole



outlying sublevel 2.3. At the end of this iterative procedure of
joint optimization of both performance measure and domain
model, the sublevels should be roughly homogeneous, and
the time thresholds should reasonably separate the excellent
performances from the good, and the good from the poor.

Evaluation of Performance Measures
To evaluate which of the performance measures is the best,
we use a combination of multiple qualitative and quantitative
methods. Two diagnostic visualizations that we have found
particularly useful are the already discussed task difficulties
scatterplot (Figure 2) and threshold progression plot (Fig-
ure 4).

Execution Count Measure is the most benevolent, with some
tasks having over 75 % of excellent and nearly no poor perfor-
mances. The Absolute Time Measure is much more strict. The
labeled task sessions in the threshold progression plot suggest
its strictness is justified, and the distribution of performances
indicates that the difficulty of the tasks is increasing too fast.
The Relative Time Measure is from the definition rather ag-
nostic to the task difficulty, and hence it fails to detect the
too difficult problematic tasks; tasks in the introductory levels
have a similar proportion of the excellent performances as the
tasks in the more advanced levels.

We also measured agreement with human annotations on a
randomly selected sample of 70 task sessions. Two annotators
(authors of the paper) first labeled the task sessions indepen-
dently, and then they resolved discrepancies between them.
The Relative Time Measure is the weakest one, with accuracy
of 60 % and some off-by-2 errors (poor performance measured
as excellent). The Execution Count Measure and Absolute
Time Measure achieve accuracy of about 70 % and made no
off-by-2 errors. Although having similar accuracy, they differ
significantly in the direction of the errors: the former is too
benevolent, while the latter is too strict. Whether one is prefer-
able over the other would depend on the costs associated with
each type of misclassification.

DISCUSSION AND FUTURE WORK
Instead of using binary success, the currently prevalent choice
of performance measure, we propose to to use a few discrete
performance levels with universal interpretation, such as failed,
poor, good, and excellent. We have illustrated that designing
such a performance measure is nontrivial, but possible. How-
ever, the case study was limited to a specific block-based
programming activity and only single-feature performance
measures. For more complex programming exercises, the qual-
ity of the final program is a natural candidate for a criterion
in a performance measure. However, our preliminary analysis
of data from other types of introductory programming exer-
cises (turtle graphics and Python programming with text and
numbers) indicates that even in these cases most successful
solutions are very similar. Nevertheless, this aspect requires
further research, together with the exploration of methods for
combining multiple criteria, e.g., time, number of executions,
and the quality of the solution. Another possible extension
is the refinement of the failed category (e.g., “nearly solved”,
“serious failed attempt”, “unserious attempt”).

We suggest using a performance measure with just a few pa-
rameters, which have clear interpretation and can be estimated
a priori by the task authors. These parameters can then be iter-
atively improved once some performance data are collected.
The optimization of the performance measure is complicated
by its interaction with other components of an adaptive learn-
ing system. In our case study, we highlighted the importance
of simultaneously improving the domain model, making sure
that the tasks that share the same thresholds are indeed homo-
geneous with respect to their difficulty.

Other components of intelligent tutoring systems, such as
the student and tutor model, also influence the collected data
used to optimize and evaluate the performance measure. The
learned performance measure then prepares the input data to
train these models, closing the loop. Even more subtle interac-
tion is between the performance measure and user interface:
indicating what the performance measure is, e.g., by showing
an execution counter, affects students’ behavior and hence
the collected data. Future research should shed light on the
impact of these interdependencies and create a methodology
for unbiased evaluation of performance measures.

REFERENCES
1. Tomáš Effenberger and Radek Pelánek. 2018. Towards

making block-based programming activities adaptive. In
Proc. of Learning at Scale. ACM, 13.

2. S Klinkenberg, M Straatemeier, and HLJ Van der Maas.
2011. Computer adaptive practice of Maths ability using
a new item response model for on the fly ability and
difficulty estimation. Computers & Education 57, 2
(2011), 1813–1824.

3. Radek Pelánek. 2017. Bayesian knowledge tracing,
logistic models, and beyond: an overview of learner
modeling techniques. User Modeling and User-Adapted
Interaction 27, 3 (2017), 313–350.

4. Radek Pelánek. 2018a. The details matter:
methodological nuances in the evaluation of student
models. User Modeling and User-Adapted Interaction 28
(2018), 207–235. Issue 3.

5. Radek Pelánek. 2018b. Exploring the utility of response
times and wrong answers for adaptive learning. In Proc.
Learning at Scale. ACM, 18.

6. Jesse Schell. 2014. The Art of Game Design: A book of
lenses. AK Peters/CRC Press.

7. Lisa Wang, Angela Sy, Larry Liu, and Chris Piech. 2017.
Learning to represent student knowledge on
programming exercises using deep learning. In Proc. of
ducational Data Mining. 324–329.

8. Yutao Wang and Neil Heffernan. 2013. Extending
knowledge tracing to allow partial credit: Using
continuous versus binary nodes. In Proc. of Artificial
Intelligence in Education. Springer, 181–188.

9. Cameron Wilson. 2015. Hour of code—a record year for
computer science. ACM Inroads 6, 1 (2015), 22–22.


	Introduction
	Measures of Students' Performance
	Overview of Possible Approaches
	Discrete Performance Measures

	Design of a Performance Measure
	Choice of Input Data
	Iterative Improvement of Thresholds
	Evaluation of Performance Measures

	Discussion and Future Work
	References 

