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ABSTRACT
Evaluation of user modeling techniques is o�en based on the predic-
tive accuracy of models. �e quanti�cation of predictive accuracy
is done using performance metrics. We show that the choice of a
performance metric is important and that even details of metric
computation ma�er. We analyze in detail two commonly used met-
rics (AUC, RMSE) in the context of student modeling. We discuss
di�erent approaches to their computation (global, averaging across
skill, averaging across students) and show that these methods have
di�erent properties. An analysis of recent research papers shows
that the reported descriptions of metric computation are o�en in-
su�cient. To make research conclusions valid and reproducible,
researchers need to pay more a�ention to the choice of performance
metrics and they need to describe more explicitly details of their
computation.

KEYWORDS
evaluation; metrics; predictive accuracy; student modeling; RMSE;
AUC

1 INTRODUCTION
A key approach in the evaluation of user modeling techniques is
the analysis of their predictive accuracy, i.e., their ability to predict
future actions of users. To measure predictive performance of mod-
els, we need to summarize the di�erence between predictions and
observations by some performance metric, e.g., RMSE, AUC, MAE,
log-likelihood, or accuracy. Although the choice of a speci�c metric
used for analysis o�en does not get much a�ention in published
research, this choice can signi�cantly in�uence interpretation of
results of model evaluation [32].

Moreover, it is not just the choice of a metric that ma�ers. Even
seemingly small details of metric computation can be important.
�is is well illustrated by a recent work by Khajan et al. [22]. �ey
studied deep knowledge tracing approach proposed by Piech et
al. [33], who claimed that their approach based on deep learning
leads to large improvement compared to previous results reported
for the same data set in literature [30]. In their analysis, Khajan
et al. [22] noticed that although both [33] and [30] used the same
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performance metric (AUC), the metric was computed in each case in
a slightly di�erent way (global computation of the metric versus per-
skill computation with averaging). �e large improvement reported
in [33] was probably to large degree caused by this methodological
issue.

Motivated by this case, we analyze in detail two commonly used
performance metrics (RMSE and AUC), speci�cally with the focus
on the used averaging approach. To highlight the issues involved,
we provide illustration on arti�cial examples. We also provide
discussion of relevant research literature – providing pointers to
relevant discussions in other research areas and mapping the use of
metrics in user modeling. �is overview shows that many studies
rely on the AUC metric, which has several known disadvantages,
and that research studies typically do not provide explicit details
about metrics computation. �is is an obstacle to reproducibility
and research progress.

To keep the paper compact, we consider examples and studies
only from the area of student modeling (models applied for person-
alization in education). Nevertheless, the raised issues are relevant
also for other types of user models and personalization areas.

2 DEFINITION OF METRICS
At �rst, note that the word “metric” is traditionally used in the
context of student modeling in a sense “any function that is used
to make comparisons”, not in the mathematical sense of a distance
function. We focus on two metrics – RMSE and AUC – that are
used most commonly in student modeling and represent two signif-
icantly di�erent approaches to measuring predictive performance,
for overview of other metrics and their usage see [32].

2.1 Basic De�nitions of Metrics
We start with a basic de�nition of metrics, where we treat all pre-
dictions and observations uniformly. We assume that we have data
about n cases, numbered i ∈ {1, . . . ,n}, a student model provides
predictionspi ∈ [0, 1], and the observed value is given by the binary
value oi ∈ {0, 1}. Root mean square error (RMSE) is then given as:

RMSE =

√√
1
n

n∑
i=1

(oi − pi )2

RMSE is an “error metric”, i.e., lower values mean be�er predictive
performance.

�e second metric that we consider is the area under the re-
ceiver operating curve (AUC). �e receiver operating curve (ROC)
summarizes performance of a binary classi�cation over all possible
thresholds. �e curve has “false positive rate” on the x-axis and
“true positive rate” on the y-axis, each point of the curve corre-
sponds to a choice of a threshold; for a detailed introduction to



ROC curve construction and interpretation see [9]. Area under
the ROC curve (AUC) provides a summary performance measure
across all possible thresholds. It is equal to the probability that a
randomly selected positive observation has higher predicted score
than a randomly selected negative observation. AUC is 1 for a
perfect model and 0.5 for a random predictions, i.e., it is interpreted
as a reward (higher is be�er). �e area under the curve can be
approximated using a metric called A′; this metric is equivalent to
the well-studied Wilcoxon statistics [10].

�e fundamental di�erence between RMSE and AUC is that
RMSE considers absolute values of predictions, whereas AUC takes
into account only their relative ordering.

�e practical computation of RMSE is straightforward, whereas
the computation of the AUC metric is not completely clear and
can be done using di�erent approaches. For example, scikit, a pop-
ular machine learning library for Python, uses a trapezoid rule,
whereas code by Ryan Baker [1] (used in previous student mod-
eling evaluations) uses brute force to examine all tuples of cor-
rect/incorrect answers. Fawce� [8] discusses di�erent possibilities
of AUC computation in detail. Implementations may di�er in their
results particularly in cases with small data and repeated values of
predictions pi .

2.2 Averaging
�e basic de�nitions of metrics considers only “one dimensional
data”. But in student modeling we typically have at least two basic
dimensions of data: students and skills1. Data (both observations
and predictions) can thus be seen as a matrix (typically with missing
values). �e basic de�nitions of metrics are based on computations
over a �a�ened matrix. Alternatively, we can compute metrics per
row (or column) of the matrix and then compute an average value
of the metric.

�us there are three main approaches to computing any metric:
• Global computation. In the metric computation we do not

di�erentiate between students and skills and treat all data
points as equal.

• Averaging across skill. We compute the metric for each skill
and then take an average (in the case of low number of
skills we may also report the value for each skill).

• Averaging across student. We compute the metric for each
student and then take an average.

None of these approaches is “the correct one”, since the suitability
of each approach depends on a particular application. At the same
time, the choice of the approach is important – we will show that
these approaches can lead to quite di�erent results.

To get a basic intuition why the results may di�er, consider a
case of highly uneven distribution of answers, i.e., some students
(skills) have much larger number of answers than others – such
situation are in fact very typical in real educational systems. With
the global computation of a metric all data points have the same
weight and thus the results are in�uenced mainly by students (skills)
with many answers. On the other hand, the per student (or per
skill) computation gives equal weight to all students (skills) without
regard to the number of answers, i.e., answers for students (skill)
with many answers have less weight.
1In other user modeling application the dimensions would be “users” and “items”.

3 LITERATURE REVIEW
As the previous section shows, we can choose from metrics with
quite di�erent properties and we can compute them in several
di�erent ways. Now we provide an overview of research literature
to show what methodical advice is available and what is the current
practice in research papers.

3.1 Metrics in Student Modeling
A detailed overview of metrics used for evaluation of predictive ac-
curacy of student models is provided in [32]. Several other works de-
scribe general methodological issues connected with performance
metrics. Dhanani et al. [7] compare metrics in the case of learning
model parameters; they conclude that RMSE it be�er than AUC for
this purpose. Pardos and Yudelson [31] study the ability of models
to identify “moment of learning” and analyze the relation between
this ability and predictive accuracy metrics; the AUC metric again
shows poor results. González-Brenes and Huang [16] brie�y men-
tion the di�erences between global computation and computation
per skill and possible relation to the Simpson’s paradox.

Both RMSE and AUC are widely used for evaluation of student
models. In most cases, however, the exact approach to computation
is typically not explicitly speci�ed in papers. In most cases, probably,
the used approach is either global (particularly for the RMSE metric)
or averaging per skill.

�e RMSE metric has been used for example in [5, 12, 26, 27,
36–38]. RMSE was also used as a metric in the KDD Cup 2010,
which focused on student performance evaluation. Examples of
papers that use both the AUC metric and some other metric are
[5, 12, 13, 20, 21]. �ere are also many papers that use only the
AUC metric for evaluation, for example [3, 4, 15, 17, 28, 33].

Some papers that use the AUC metric explicitly describe per
skill computation or averaging. Pardos and He�ernan [30] report
AUC for individual skill. González-Brenes et al. [14] discuss both
global computation and averaging over skills. Khajah et al. [22] use
both global computation and averaging over skills and discuss the
impact of the choice on comparison with previous work. Several
works compute AUC per student and report averages and results
of statistical comparisons [2, 29, 34].

3.2 Metrics in Other Areas
Performance metrics are used also in many other research areas.
Result and observations from these areas may provide useful insight
for evaluation of user modeling techniques.

�e RMSE metric is closely connected to sum of square errors
and mean square of errors. From the perspective of model compar-
ison all these metrics are equivalent since averaging and square
root are monotone operations. �e exact equivalence however does
hold only for the global computation. In the case of per skill or per
student averaging the result may slightly di�er. In some domains
(particularly in weather forecasting) the mean square error (RMSE
without the square root) is called a Brier score [6, 35] or a qua-
dratic scoring rule [11]. �e Brier score is sometimes decomposed
into additive components [25], which provide further insight into
behaviour of predictive models.



�e ROC curve and AUC metric are successfully used in many
di�erent research areas, but their use is criticized for several rea-
sons [19, 23], e.g., because the metric summarizes performance
over all possible thresholds, even over those for which the classi�er
would never be practically used. Marzban [24] discusses AUC in
the meteorology context and shows that “AUC discriminates well
between good and bad models, but not between good models”.

Fawce� [8] provides a detailed discussion of the ROC curve and
the AUC metric, discussing also averaging issues (with a focus on
the construction of the ROC curve). Hamill and Juras [18], using the
context of meteorology, discuss the issue of metric interpretation
in the case when the frequency of observed events is not invariant
in all samples (which is closely relevant to varying success rates
for di�erent skills in student models).

4 ILLUSTRATION OF METRIC PROPERTIES
We use arti�cial simpli�ed examples to highlight issues with metric
computation. To do so we use a very simple model of learning
– simple error curve model, where the probability of an error by
a student decreases exponentially with the number of a�empts.
�is model can be easily used for both generating data and as a
predictive model. All reported experiments use 10,000 simulated
students.

4.1 Absolute and Relative Values of Metrics
Before we consider issues connected to averaging, we provide a
clari�cation related to interpretation of absolute and relative values
of metrics (by relative value we mean the di�erence in values of
two models). Sometimes these values are used to make judgments
about the quality of a model or about the signi�cance of a model
improvement. Such use of metrics is, however, rather misleading.
From the perspective of model evaluation it makes sense to consider
only the ordering of metric values; the magnitude and di�erences
of metrics values are dependent mainly on the data available, not
on the quality of models.

For the RMSE metric, the value of the metric is closely related
to the average error rate. When average error rate is near 50%, the
RMSE value will be near 0.5, unless we have very good predictor,
which is in the case of predicting student noisy behaviour unlikely.
If the average error rate is low, the RMSE value will go towards
zero even for a simple constant predictor. For the AUC metric, the
value will be high (near 1) even for a simple model when there is
high heterogeneity in data (e.g., di�erences among skills, students,
or pronounced learning leading to large di�erence between the
beginning and the end of each student’s sequence). With homoge-
neous data the AUC value will be typically low (near 0.5) even for
a complex model.

As a speci�c example, consider the error curves in Figure 1. We
consider only cases where we �t the data by the same model that
generated them. If we consider only the curve A, the metric values
are poor: RMSE 0.492, AUC 0.593. If we consider only the curve B,
RMSE is much be�er: 0.160 (because the error rate is low). If we
consider model with both curves A and B, AUC is much be�er:
0.834 (because of the heterogeneity in data). Note that in all cases
we are evaluating optimal predictions, i.e., the di�erences in metric
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Figure 1: Error curves used for illustration of metric values.

values are not caused by inherent changes in predictive ability of
models, but by the characteristics of data.

We typically use metrics for model comparison and the focus
is thus not on their absolute values, but on relative performance
of models (di�erence between metric values for di�erent models).
�ese relative values also cannot be easily interpreted. Speci�cally
with the AUC metric we can have vastly di�erent models and obtain
the same or nearly the same values of the metric. For example, if we
divide all predictions by two, the value of AUC metric remains the
same, since the metric considers only relative ordering of predic-
tions. In the error curve model with single skill, even an arbitrary
model for which error predictions decrease with k achieves the
same AUC value as the optimal model. A solid di�erence in AUC
typically means a model improvement, but a lack of di�erence in
AUC clearly does not mean “absence of improvement” (see also
discussion in [24]). �is means that by relying solely on the AUC
metric, researchers can miss important results!

4.2 Averaging Across Students
Now we turn to discussing issues related to di�erent averaging
methods, starting with averaging across students. �e di�erences
in global computation of metrics and averaging across students
are important in cases where the number of available data from
individual students is unevenly distributed. �is corresponds to a
rather typical case in any user data – typically we have many users
with few responses and few users with many responses. �e global
computation of metrics gives the same weight to all responses,
whereas averaging across users gives the same weight to all users
(and thus lower weight to responses by users with many responses).

For speci�c illustration let us consider the case illustrated in
Figure 2. �e data are generated according to the curve A with an
uneven distribution of number of answers among students: 70% of
students have only 5 a�empts, 30% of students have 60 a�empts.
Data are ��ed by two models, the �rst one (curve B) �ts only the
beginning of a sequence, the second one (curve C) only the end of
the sequence. If we compare the models with respect to the RMSE
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model RMSE RMSE
global per student

B 0.40 0.46
C 0.35 0.48

Figure 2: Illustration of the per student computation. Data
are generated according to curveA,with 70% of students hav-
ing 5 attempts and 30% of students having 60 attempts. �e
table compares predictions by curves B and C.

metric computed globally, model C is be�er. If we compare the
models with respect to the RMSE metric averaged across students,
model B is be�er.

�e use of the AUC metric with averaging across students brings
one additional problem. �e AUC metric is not well de�ned when
all responses are the same (e.g., all answers are correct). When
we consider the computation of the metric per student, such cases
are likely to happen (particularly for students with small number
of answers). It is not clear how to treat these cases. �e basic
approach is to ignore these unde�ned cases (as done for example
in [34]), which is however, not completely fair – we want predictors
to behave well even for these students and thus we want to take
these predictions into account.

4.3 Averaging Across Skills
�e basic di�erence between global computation and averaging
across skills is the same as with the averaging across students – each
method distributes di�erently weights to the available data points.
�e issue can be again quite pronounced for practical systems,
as o�en the distribution of responses among skills is very highly
uneven – in the case of skills even more than in the case of students,
popular basic skills o�en have orders of magnitude more responses
than speci�c or advanced skills.

�e AUC metric again brings some speci�c issues. When AUC
is computed per skill, the metric does not require any calibration
of the model, since the metric only considers relative ordering of
predictions. For example, in our simple error curve model, the only
important aspect of predictions is that they are decreasing, it does
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model AUC AUC
global per skill

A1, B2 (correct) 0.73 0.63
A2, B1 (speed mismatch) 0.60 0.63
A1, C (negative learning) 0.68 0.45

Figure 3: Illustration of the impact of AUC computation.
Data generated by a model with skills A1, B2 and �tted by
three models.

not ma�er what is the exact shape of curve (all decreasing curves
lead to the same value of the AUC metric). �e global computation
of the AUC metric takes into account the relative calibration among
skills, e.g., if predictions for one of the skills are too low relative to
other skills, it will decrease the metric value. However, in this case
the overall AUC is easily dominated by “di�erences among skills”
with only limited e�ect of the “ability to predict within skill”.

As a speci�c example, consider the case demonstrated in Figure 3.
We generate the data with a model with skills A1 and B2 (full lines).
For model comparison we consider three models and compare the
AUC values when computed globally and averaged across skills.
A model with “speed of learning mismatch” (using skills A2, B1)
achieves the same performance as the correct model when AUC is
computed per skill, whereas for globally computed AUC it achieves
poor performance (because the curves A2 and B1 cross, whereas
the correct curves A1 and B2 do not). A model which uses one
correct skill (A1) and one very poor skill (C, which models “negative”
learning) has the results other way around – it achieves very poor
AUC when computed across skills (due to the inappropriate model
of negative learning), whereas it achieves quite good AUC when
computed globally (due to large di�erences between skills which
are captured correctly in the model).

5 DISCUSSION
As the presented examples clearly demonstrate, there can be large
di�erences between di�erent methods (“global”, “per skill”, “per
student”) of computation of metrics of predictive accuracy. A natu-
ral question is: “Which method is the correct one?” Unfortunately,



there is no simple answer to this question – the choice of an appro-
priate method depends on the speci�c use case. In some applications
we may care mainly about “long-term users” and we do not worry
about users who just try a system for a short while, e.g., for systems
used schoolwide in a formal educational se�ings. In other cases
the “initial impression” is important and we want the model to
work well even for users with few responses, e.g., for commercial
systems targeting individual students where the initial impression
in�uences the decision whether to buy a licence. Each of these cases
requires di�erent approach to evaluation of predictive accuracy.

�us the solution is not to choose a single universal metric and to
apply it in all user modeling research. �e choice of metric, however,
clearly deserves more a�ention in research. Researchers should
provide rationale for the choice of metric and also enough technical
details about the computation of the metric to make their research
reproducible. Our analysis of literature suggest that, at least in
student modeling, the current state-of-the-art is inadequate in this
respect – in many cases it is not possible to determine whether the
reported metric was computed globally or averaged over skills or
students.

Our examples also show that the AUC metric can be potentially
misleading in several ways. Some of these features have been al-
ready noted in research outside of user modeling. In user modeling,
however, the AUC metric remains to be heavily used and in many
studies it is the only metric that is reported. In the light of dis-
cussed de�ciencies, these kinds of results should be reevaluated
using other metrics and taking into account di�erent methods of
metric averaging.

�e points raised in this paper are relevant not only to edu-
cational applications of student modeling or to the two speci�c
metrics discussed. �e issues described illustrate that great care
has to be taken in evaluation of user models and that it is necessary
to pay a�ention to all details of evaluation.
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Knowledge Estimation. In Educational Data Mining.
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