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Abstract. Mastery learning is a common personalization strategy in
adaptive educational systems. A mastery criterion decides whether a
learner should continue practice of a current topic or move to a more ad-
vanced topic. This decision is typically done based on comparison with
a mastery threshold. We argue that the commonly used mastery criteria
combine two different aspects of knowledge estimate in the comparison
to this threshold: the degree of achieved knowledge and the uncertainty
of the estimate. We propose a novel learner model that provides concep-
tually clear treatment of these two aspects. The model is a generalization
of the commonly used Bayesian knowledge tracing and logistic models
and thus also provides insight into the relationship of these two types
of learner models. We compare the proposed mastery criterion to com-
monly used criteria and discuss consequences for practical development
of educational systems.
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1 Introduction

A common approach to personalization in educational systems is mastery learn-
ing, which is an instructional strategy that requires learners to master a topic
before moving to more advanced topics [15]. A key aspect of mastery learning
is a mastery criterion – a rule that determines whether a learner has achieved
mastery [13]. A typical application of mastery criterion within a modern edu-
cational system is the following. A learner solves problems or answers questions
in the system. Data about learner performance are summarized by a model of
learner knowledge or by some summary statistic. This number is compared to
a threshold that specifies the strictness of the criterion. A simple example of
such a criterion is “N consecutive correct” – performance is summarized as the
number of correctly answered question in a row and the threshold is a natural
number N . The choice of the threshold involves a trade-off between unnecessary
over-practice and the risk of premature declaration of mastery.

But what exactly is the meaning of the threshold? Does it specify how large
portion of the practiced topic the learner has mastered? Or does it specify how
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certain can we be that the learner has sufficiently mastered the topic? The main
point of this work is that it is useful to explicitly differentiate these two aspects
of mastery: degrees of knowledge and certainty of knowledge estimation.

The current state-of-the-art makes the issues of threshold choice and inter-
pretation obfuscated. There are two influential families of learner models: models
based on Bayesian knowledge tracing (BKT) and family of logistic models [12].
These approaches estimate knowledge using different assumptions, which leads
to significantly different interpretations of mastery thresholds.

The BKT model [3] makes a key simplifying assumption that knowledge can
be modeled as a binary state (known/unknown). The model provides a proba-
bility estimate quantifying the certainty that the learner is in the known state.
This estimate is commonly compared to a threshold 0.95, which leads to a clear
interpretation that there is 95% chance that the learner has already mastered the
topic. This interpretation, however, holds only under the idealistic assumption
of binary knowledge. The assumption may be reasonable for very fine-grained
knowledge components with homogeneous items (e.g., “addition of fractions with
the same denominator”). In many practical cases, however, learner models are
applied to more coarse-grained knowledge components, where the assumption
of binary knowledge is far from satisfied. This degrades the performance of the
model, and – for our discussion more importantly – it obfuscates the interpre-
tation of the model estimate and the threshold. In these cases the BKT incor-
porates the degrees of knowledge aspect into the skill estimate, which thus loses
the clear probabilistic interpretation.

Another common learner modeling approach is the family of models based
on the logistic function, e.g., Rasch model, Performance factor analysis [10], or
the Elo rating system [11]. These models utilize assumption of a continuous
latent skill θ and for the relation between the skill and the probability of correct
answer use the logistic function σ(θ) = 1

1+e−θ . The skill is estimated based on the
learner’s performance, for example in the Performance factor analysis model the
skill is given by a weighted combination of correct and incorrect responses. These
models thus utilize continuous knowledge scale, but do not explicitly quantify
the uncertainty of estimates – they typically provide only a point estimate of
the skill, which combines uncertainty and knowledge estimate into one number.

To address these issues, we propose a relatively simple model that generalizes
both BKT and logistic model and provides clear differentiation of the degrees
of knowledge and the uncertainty of estimates. The model is a special case of
the hidden Markov model that uses a logistic function for specifying emission
probabilities. The model leads to a conceptually clear mastery criterion with two
thresholds. The first threshold specifies what degree of knowledge we consider to
be sufficient for mastery. The second threshold specifies the degree of uncertainty
we are willing to tolerate in the mastery decision. We then compare this criterion
to other mastery criteria and discuss relation to previous work.
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2 Modeling Uncertainty and Degrees of Knowledge

The BKT model provides a conceptual treatment of uncertainty, but does not
address the degrees of knowledge, whereas logistic models model different degrees
of knowledge, but do not address uncertainty in systematic way. We can address
both these aspects by using a more general hidden Markov model than BKT.

2.1 LogisticHMM Model

A general Hidden markov model (HMM) models a process with a discrete latent
state and noisy observations. A state at time t is denoted qt, observation is
denoted Ot. An HMM has the following elements:

– discrete set of latent states {s0, s1, . . . , sn−1} of size n,
– discrete set of of observation {o0, o1, . . . , om−1} of size m,
– transition probabilities Tij = P (qt+1 = sj |qt = si) (a matrix n×n with rows

summing to 1),
– emission probabilities Eij = P (Ot = oj |qt = si) (a matrix n×m with rows

summing to 1),
– initial state probabilities: πi = P (q1 = si).

For discussion of mastery criteria we propose “LogisticHMM” – a special
version of the HMM that is general enough to generalize both the BKT and
logistic models, and yet specific enough to be practically applicable (e.g., it
has a small number of parameters). When modeling knowledge, the n latent
states correspond to skill modeled with n degrees of knowledge. The observations
correspond to learners answers to questions. We consider only the basic case with
two observations: correct and incorrect.

Transition probabilities model learning. The basic version is to consider a
single parameter l (speed of learning) and define the transition function as:

– Tii = 1− l (learning did not occur and learner states in the same state),
– Ti(i+1) = l (a learner learned and moves to the next knowledge states),
– Tij is zero in all other cases (i.e., we model neither forgetting, nor sudden

large increases in knowledge).

The emission probabilities are specified using the logistic function:

P (correct |si) = σ(a(i/(n− 1)− b)) (1)

where σ(x) = 1/(1 + e−x) is the logistic function and a, b are parameters that
specify the difficulty b and discrimination a of the modeled knowledge compo-
nent. Fig. 1 provides an illustration of the emission probabilities.

The model can be easily generalized. For example, we can model forgetting or
more important increases in knowledge in transition probabilities. For observa-
tions we can consider more general distribution functions over more fine-grained
observations, e.g., using partial credit scoring, utilizing response times, or tak-
ing into account difficulty of individual items. Distribution of the initial skill
estimate can be used to incorporate information from other KCs (prerequisite
skills). However, for our discussion of relations of modeling and mastery learning
the presented version is sufficient.
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Fig. 1. Examples of emission probabilities in the LogisticHMM model. Left: A running
example used throughout the paper. Right: An example illustrating that BKT is a
special case of the LogisticHMM model.

2.2 BKT and Logistic Models as Special Versions

BKT and logistic models can be seen as special versions of the model or closely
approximated by special versions of the model. The standard Bayesian knowledge
tracing [3] is a hidden Markov model where skill is a binary latent variable (either
learned or unlearned). The model has 4 parameters: Pi is the probability that
the skill is initially learned, Pl is the probability of learning a skill in one step,
Ps is the probability of an incorrect answer when the skill is learned (slip), and
Pg is the probability of a correct answer when the skill is unlearned (guess). This
can be expressed a special case of our LogisticHMM for n = 2. The probability
that the skill is initially learned and the probability of learning a skill in one
step remain the same. The slip and guess parameters can be transformed into
a, b parameters without loss of generality. Fig. 1 (right) provides illustration of
the basic relation. By substituing n = 2 and i = 0, i = 1 into equation 1 we get:
Pg = σ(−ab); (1− Ps) = σ(a(1− b)). From this we can solve for a, b:

a = logit(1− Ps)− logit(Pg)
b = −logit(Pg)/a

where logit is the inverse of logistic function, i.e., logit(p) = log((1− p)/p).
Logistic models utilize continuous skill, but from practical perspective the

difference between continuous skill and discrete skill with large n is negligible.
Even n = 10 should be in most practical cases sufficient, since the model clearly
involves other, more important simplification with respect to the reality, and
thus the difference between continuous skill and its discretized approximation is
not a fundamental one.

2.3 Using the Model in Mastery Criterion

Given a sequence of observations, the skill estimates can be computed using
the standard forward algorithm for HMMs, i.e., using the Bayes theorem for
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computing the posterior distribution after the observation and updating it with
the transition probability. Specifically, for our case the computation can be per-
formed as follows. The skill estimate after observing t answers is pt – a vector
of length n with a sum one; pti is the probability of student being in the state i
at time t. Initial estimate is given by the initial state probabilities: p0 = π. The
estimate for pt+1 is computed from the estimate pt by:

1. Taking into account the observation ot at t + 1 we compute an auxiliary
estimate p′t+1:

p′(t+1)i ∝ ptiL(ot|si)

where L(ot|si) is the likelihood of observing a given answer, i.e., σ(a(i/(n−
1) − b)) for a correct answer and 1 − σ(a(i/(n − 1) − b)) for an incorrect
answer.

2. Updating p′t+1 by transition probabilities we obtain the new estimate pt+1:

p(t+1)i ∝
∑
j

p′(t+1)jTji

Both vectors p′t+1 and pt+1 need to be normalized to sum to 1. Note that the
procedure is just a slightly more general version of the commonly used procedure
for computing skill estimate under the Bayesian knowledge tracing model [12].

Fig. 2 shows a specific illustration using our running example from Fig. 1
with the learning speed l = 0.3. The initial distribution is depicted in the first
graph; the other three graphs show the estimated skill distribution after 5th,
10th, and 19th answer.

With this model we can do mastery detection with systematic treatment of
uncertainty and degrees of knowledge. The mastery criterion has two parameters:

– threshold Tm specifying which state is sufficient for mastery,
– threshold Tu specifying how certain we want to be.

We declare mastery when the probability that the skill is larger than Tm is
larger than Tu, i.e., P (θ ≥ Tm) ≥ Tu. For the example in Fig. 2 with Tm = 6
and Tu = 0.95 mastery is declared after the 19th answer.

3 Comparison with Other Mastery Criteria

The presented model provides a conceptually clear approach to thresholds in
mastery criteria. Is this just a conceptual tool for thinking about mastery, or
does the usage of the model also lead to practically important differences in
mastery decisions?

Evaluation of mastery criteria is very complex. For data from real systems
we do not have “ground truth”, so it is difficult to perform fair comparison of
different criteria [13]. Moreover, the performance of criteria interacts with issues
like parameter fitting of used models. Therefore, to explore our question we
perform experiments with simulated data – comparing the behavior of criteria
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answers: 

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1
P(mastery) = 0

P(mastery) = 0.01 P(mastery) = 0.26 P(mastery) = 0.97

initial state probabilities

estimate at t = 5 estimate at t = 10 estimate at t = 19

Fig. 2. Example of model estimates for a sample sequence of answers. The diagrams
show estimated skill before the first attempt (i.e., the initial distribution π) and after
the 5th, 10th, and 19th attempts. The probability of mastery is computed for the
mastery state 6 (Tm = 6).

based on the LogisticHMM model with other commonly used criteria. We use
the following approach. Using the LogisticHMM model we generate simulated
learner data. For the generated data we perform mastery decision using both
the LogisticHMM model and other mastery criteria. We compare the decision
to the ground truth and analyze their agreement.

This is, of course, a simplified setting. It is also optimistic for the Logis-
ticHMM model, since we avoid the issue of parameter fitting and use the same
model parameters for generating the data and making the mastery decisions. Our
purpose, however, is not to evaluate whether the LogisticHMM is better than
other criteria, but whether it could be better and under what circumstances.

3.1 Comparison with N Consecutive Correct Criterion

If the noise in observations is low (parameter a in the LogisticHMM model is
high), then even the the basic N consecutive correct (NCC) criterion leads to
good estimates. By a suitable choice of N in the NCC criterion we can achieve
nearly the same decisions as by the LogisticHMM model. In these cases the ad-
vantage of the LogisticHMM model is only the better interpretability of threshold
parameters.

The NCC criterion has worse performance when observations are noisy (pa-
rameter a in the LogisticHMM model is low). Intuitively, this is because the
NCC criterion has very limited “memory” – once incorrect answer is observed,
the counting of correct answers starts from zero and all information about pre-
vious attempts is forbidden. When observations are noisy, incorrect answers are



Conceptual Issues in Mastery Criteria 7

Table 1. Best EMA parameters for different setting of threshold parameters for the
running example from Figure 1 (with l = 0.1 and the initial state distribution same as
in Fig. 2 ).

Best fitting parameter α

Tm \Tu 0.6 0.7 0.8 0.9 0.95 0.98

5 0.85 0.85 0.9 0.85 0.9 0.9
6 0.85 0.85 0.9 0.9 0.85 0.9
7 0.9 0.85 0.9 0.9 0.95 0.9

Best fitting parameter T

Tm \Tu 0.6 0.7 0.8 0.9 0.95 0.98

5 0.65 0.7 0.65 0.8 0.75 0.8
6 0.8 0.85 0.8 0.85 0.95 0.92
7 0.85 0.92 0.9 0.92 0.85 0.97

relatively common even for skilled learners and thus it is advantageous to re-
member a summary of previous performance, which the LogisticHMM model
does using the estimated skill distribution.

3.2 Comparison with Exponential Moving Average

Simple, yet flexible and pragmatically advantageous approach to mastery deci-
sion is the exponential moving average (EMA) approach [13]. With this approach
we compute the exponentially weighted average of past answers and compare
this statistics to a threshold. The moving average can be, of course, consider
also with other weights; the exponential weighting has the advantage that it can
be computed without the need to store and access the whole history of learners
attempts. It can be computed using the update rule θk = α · θk−1 + (1− α) · ck,
where θk is the skill estimate after k-th answer, ck is the correctness of the k-th
answer, and α is a discounting parameter, which controls the relative weight of
recent attempts. The mastery criterion is the basic comparison to a threshold:
θk ≥ T .

This approach overcomes the NCC limitation of “limited memory” – the skill
estimate θk now summarizes the whole history of answers, just giving the more
recent attempts more weight. The approach has two parameters: α and T . Re-
sults of experiments with simulated data suggest that by tuning these parameters
the EMA approach can quite well imitate the LogisticHMM – the correlation of
their decisions is often over 0.9. However, the exact setting and interpretation of
these parameters is not straightforward. For example, the optimal value of α de-
pends not just on both the requested degree of mastery and level of uncertainty,
but also on the the expected speed of learning (if learning is fast, α should be
low, so that the estimate is not influenced much by old data).

Table 1 provides a specific illustration. For the LogisticHMM illustrated in
Figure 1 (with l = 0.1), we have fitted the optimal values of α and T of the EMA
approach. The values were fitted using a grid search while trying to optimize the
agreement of mastery decision between the LogisticHMM model and the EMA
approach (for 1000 simulated learners). As we can see, both these parameters
change depending on both Tm and Tu, i.e., they are not easily linked to the
interpretable parameters of the LogisticHMM approach.
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3.3 Comparison with Bayesian Knowledge Tracing

The BKT model is typically used for detecting mastery using the basic threshold
policy. The model estimates the probability of being in the learned states and
declares mastery when this probability is over a given threshold T (with the
commonly used value 0.95). Under the assumption of binary knowledge state,
this method has a clear interpretation – it uses a threshold on the uncertainty
of the skill estimate. However, when the learner performance is based on mul-
tiple degrees of knowledge, the BKT model estimate starts to combine both
uncertainty and degrees of knowledge and becomes hard to interpret.

As a specific example, consider our running example from Figure 1 (with
l = 0.3) and let us use the BKT model to do mastery decisions for this case. At
first, we need to estimate the BKT parameters. Note that the fitted parameters of
BKT depend on the number of attempts per learner that we use for fitting (this
aspect has been previously noted [14], but mostly it is not taken into account in
literature):

init learn guess slip
15 attempts per learner 0.01 0.10 0.12 0.31
50 attempts per learner 0.00 0.11 0.18 0.07

In both cases we can notice the relatively high guess and slip parameters.
These do not correspond to the behaviour of learners – according to the model
that generated the data, learners who really know the topic have very high
probability of answering correctly. The high guess and slip parameters are due to
the simplifying binary assumption of BKT. BKT parameters reported in research
paper often have high guess and slip parameters. As this example illustrates, the
reason for this may be inappropriateness of the model assumptions rather than
high propensity of students to slip or guess.

If we use the common 0.95 threshold under these circumstances, BKT model
leads to premature declaration of mastery for all learners. Fig. 3 provides illus-
tration that shows the results for our running example. Each dot corresponds to
one simulated learner. The x axis shows the ground truth mastery (when did the
learner reach the mastery state). The y axis shows when the mastery was de-
clared according to the BKT model and according to the LogisticHMM (which
uses the same parameters as the ground truth model, but estimates mastery
from the generated noisy observations). Both the LogisticHMM and BKT model
use the threshold 0.95 on uncertainty. As we can see, the LogisticHMM mastery
estimates lag behind the ground truth moments of mastery. This is necessary –
if we want to detect mastery with reasonable certainty from noisy observations,
there is a necessary lag. The BKT model, on the other hand, nearly always de-
clares mastery too early, which is an unwelcomed behaviour that is caused by
the unsatisfied assumptions of the model.
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Fig. 3. Comparison of mastery decisions made by the LogisticHMM model and th BKT
model with the threshold on uncertainty 0.95.

4 Discussion and Related Work

We presented a proposal for conceptual approach to mastery learning based
on a specific version of the hidden Markov model and compared the mastery
criterion based on this model to several common mastery criteria. We now discuss
consequences of this work to practical applications and relations to previous
research.

4.1 Consequences for Practice

Although we present a new learner model, the point is not that this model should
be used in implementations of educational systems. The use of the model would
require additional steps, for example the choice of the number of states and
parameter estimation, which we have not discussed. Based on our analysis of
simulated data and on the general experience in the field of educational data
mining, we do not expect that the model would bring a significant improve-
ment in predictive accuracy or significantly different mastery decisions in real
applications.

The main point of the model is that it provides conceptually clear way to
think about mastery criteria and thresholds. Our experiments with mastery cri-
teria suggest that simple criteria (specifically exponential moving average) may
be expressive enough for practical purposes. However, such pragmatic approaches
have parameters, which do not have clear interpretation and which are hard to
set. We propose the LogisticHMM model primarily as tool for clarification and
better usage of such more pragmatic approaches.

One specific clarification that our analysis brings concerns the interpretation
of BKT in mastery learning. Based on the current research literature, one may be
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tempted to use the BKT model, fit it to the available data and use it for mastery
decisions with a threshold 0.95 with an interpretation “mastery is declared when
there is 95% certainty that the learner mastered the skill”. This interpretation
is, however, misleading. Unless the data correspond very closely to the strong
assumptions of the BKT model, the interpretation is incorrect (possibly quite
seriously).

The pragmatic conclusion for developers of educational systems can be for-
mulated as follows: Instead of using a complex model that presents summary of
knowledge as a single number, it may be preferable to utilize a simple approach
that explicitly separates the estimated degree of knowledge the uncertainty of
the estimate. Even using statistics like “average performance” and “number of
attempts” may be in some cases sufficient. Such approach may lack statistical
sophistication, but it can possibly provide similar decisions as complex models,
clearer interpretability, and easier setting of thresholds.

4.2 Learner Modeling

Another purpose of the proposed LogisticHMM model is that it connects and
clarifies previous research on learner modeling using BKT and logistic models.
Our discussion highlights the simplifying assumption of binary knowledge state
in the BKT model. On one hand, this assumption is quite clear and explicit in
the model and was appropriate for the original use of the model in cognitive
tutors [3]. However, the model is now widely used, often in situations where the
assumption of binary knowledge is not appropriate. Previous work has proposed
BKT extension with multiple states (“spectral BKT”) [4], but such work is
currently marginal in the field.

Recently, several works have tried to combine BKT and models based on lo-
gistic function. This has been done specifically in two closely related approaches:
one based on incorporation of features to knowledge tracing [5], another using in-
tegration of latent-factors and knowledge tracing [8]. Although these approaches
enable inclusion of “learners ability” into BKT and utilize the logistic function
for predictions, they still keep the basic BKT assumption of binary knowledge
state. Moreover, these works focused on predicting learner performance and not
on mastery criteria.

A fully conceptual approach to treatment of uncertainty and skill estimation
is to use dynamic Bayesian networks [2, 6], which can be used to capture relations
between skill. Bayesian networks provide clean conceptual approach, but are
difficult to apply in a practical implementation (e.g., it is difficult to specify or
fit model parameters). Existing realization thus typically revert to simplifying
assumptions, specifically to the assumption of binary knowledge state for each
skill.

Bayesian methods in connection with mastery criteria have been used in
computerized adaptive testing [9, 18]. But the context of testing has several
differences from the context of online educational systems, the main difference is
learning – in the context of testing the models typically assume that knowledge is
not changing during the test; in educational systems the main goal is to increase
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knowledge during practice and thus the change of knowledge is a fundamental
aspect of models.

4.3 More General Stopping Criteria

In this work we have studied the problem of stopping practice in the case of mas-
tery. The stopping problem can be formulated more generally – we may want to
stop the practice once asking more questions does not have any merit. Specifi-
cally, in addition to mastery we may want to detect “wheel-spinning learners”
who are unable to master a topic [1]. Previous research have proposed crite-
ria that can deal with this more general problem: instructional policies called
predictive similarity [16] and predictive stability [7]. These works, however, pay
little attention to the choice of thresholds. Specifically, they add a parameter ε,
which specifies the size of the difference in model predictions that is considered
large enough to warrant further practice. It is not clear how to set and interpret
this parameter.

A more conceptual approach to the general stopping problem could be mix-
ture modeling, which has been previously proposed for modeling individual learn-
ing curves [17]. We can use a mixture model, with one component specifying
learners who are improving and are able to eventually reach mastery and a sec-
ond component specifying wheel-spinning learners. Using such model we can
estimate the probability that a learner belongs to each class. This leads to a
stopping criterion where thresholds are probabilities with clear interpretation.
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