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ABSTRACT
Student models are typically evaluated through predicting the cor-
rectness of the next answer. This approach is insufficient in the
problem-solving context, especially for student models that use
performance data beyond binary correctness. We propose more
comprehensive methods for validating student models and illustrate
them in the context of introductory programming. We demonstrate
the insufficiency of the next answer correctness prediction task,
as it is neither able to reveal low validity of student models that
use just binary correctness, nor does it show increased validity of
models that use other performance data. The key message is that
the prevalent usage of the next answer correctness for validating
student models and binary correctness as the only input to the
models is not always warranted and limits the progress in learning
analytics.
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puting → Interactive learning environments.
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1 INTRODUCTION
Student modeling is a key step in the development of adaptive
learning environments [28]. Based on data about student perfor-
mance, a student model provides an estimate of a student state. This
estimate is used to drive adaptive behavior, such as challenging
students with appropriately difficult problems. Student models are
often evaluated using predictive accuracy, using metrics like RMSE
and AUC for the task of predicting the next answer correctness
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[27]. This approach to evaluation is, however, quite narrow [15].
We care about more general properties of the models: their validity
and reliability. Predictive accuracy is just a proxy for these general
properties.

The simplified approach to evaluation may be reasonable for
models that utilize data from simple exercises like multiple-choice
questions. In the case of more complex problem-solving activities,
its limitations become apparent. For illustration, consider the fol-
lowing scenario. Imagine you are developing an online learning
system to teach introductory programming. The system contains
several exercises, such as turtle graphics and Python programming.
Each exercise contains dozens of problems (e.g., draw a triangle,
compute factorial), and you want to order them from the easiest
to the most difficult. The system also features a teacher mode that
should support ordering students by their programming skill so
that teachers can instantly see who is struggling. Finally, you want
to show predicted problem-solving times to provide students with
a personalized challenge to overcome themselves [31].

In the case of programming exercises, many aspects of student
performance are potentially informative about student state: not
just the correctness of answers, but also response time, the number
of edits, or the length of code. Which of them are useful and which
only make models more complicated? How should we compare
models which utilize different aspects of performance? If wewant to
use predictive accuracy for evaluation, which aspect of performance
should we predict? When we choose a single aspect of performance,
we implicitly favor models that focus on this performance aspect.
When we consider the various uses of student models (outlined in
the previous paragraph), it is clear that there is not a single objective
criterion that can serve as a measure of model quality.

Drawing inspiration from psychometrics [6, 8], we propose meth-
ods for assessing the validity and reliability of student models. We
demonstrate these methods in a case study of estimating problems’
difficulties and students’ skills in programming exercises. To ex-
plore the generalizability of the presented results, we use six types
of programming exercises (e.g., turtle graphics realized in block-
based programming or textual programming in Python). Our case
study illustrates the insufficiency of the binary correctness predic-
tion task, as it is neither able to reveal the low validity of student
models that use just binary correctness, nor does it show increased
validity of models that use other performance data.

We compare binary correctness with non-binary performance
measures primarily to illustrate the methods for assessing valid-
ity and reliability. As a secondary contribution, the results of the
comparison confirm that the prevalent usage of the binary correct-
ness as the only input to the student models is not warranted in
the problem-solving context. Our case study provides evidence of
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non-binary performance measures’ utility since they increase the
validity and reliability of skill and difficulty estimates.

2 RELATEDWORK
We first describe the general concepts of validity and reliability
as they are used in psychometrics and then review the current
approaches for evaluating student models.

2.1 Validity and Reliability
In psychometrics, the validity of a measurement tool is defined
as the degree to which the measurements can be interpreted as
representing the underlying construct with respect to the intended
purpose of the measurement1 [6, 8]. In learning analytics, construct
might be a programming skill, measurement tool a student model,
and the purpose to order students in an overview for a teacher.

2.1.1 Validity through Utility. Unlike most of the properties pre-
dicted by machine learning models, skills and other psychological
constructs are not directly observable. Measurement tools, there-
fore, cannot be validated simply by comparing the measurements to
the ground truth labels; there is no ground truth. Instead of seeking
for measurements that are “true,” we should strive for measure-
ments that are useful [4]. This means that we cannot establish the
validity of a measurement tool without considering its intended
uses [23]. One measurement tool can have multiple uses and be
valid for some of them, while invalid for others [19]. Therefore, to
validate a measure, we should ask about the practical consequences
of the measurements [6, 19, 23].

For example, to validate a student model that estimates skills, we
need to know how the measured skills affect decision making. For
ordering the students in an overview for a teacher, specific values
are irrelevant, while placing all struggling students at the top of
the list is crucial. For deciding on mastery [32], the ordering of
students is irrelevant, while the specific values for students close
to the mastery threshold are crucial.

2.1.2 Sources of Validity Evidence. Providing strong evidence of the
utility of a measure is often infeasible in an early stage of research,
as the consequences of the decisions based on the measurements
take a long time to manifest. As an alternative, we can provide
evidence for the validity of the intended interpretations of the
measurements, using multiple sources such as the internal structure
and content of the measurement tool, thought processes of students
(through think-aloud), and relationships to related variables, which
is denoted as criterion validity [6, 8].

Two special cases of criterion validity are convergent and predic-
tive. The convergent validity argument is based on high correlations
between measurements of related constructs. Convergent validity
was used to reduce the number of items in a questionnaire for
measuring intrinsic motivation in ASSISTments, ensuring that the
shorter questionnaire still measures the same construct as the orig-
inal long one [24]. The predictive validity argument is based on the
ability of the measurements to predict related variables measured in
the future, e.g., a score on the final exam. Predictive validity is the

1Measurements are also denoted as scores, and measurement tool as a measure, scale,
instrument, inventory, questionnaire, or test.

most common (and usually the only) evidence of validity provided
in student modeling research.

As an example of providing multiple sources of evidence for
validity, let us look at validating a language-independent CS1 as-
sessment [33]. First, the authors created an assessment specification,
which was reviewed by experts to ensure that all relevant CS1 con-
cepts are covered (content validity). The test was then administered
to students of four introductory courses, and both performance
data and think-aloud interviews were collected. The assessment’s
internal structure was evaluated using Item Response Theory to
ensure that all problems are appropriately difficult, discriminate
between students, and have a low guessing rate. Students’ mental
processes captured in think-aloud interviews were examined to see
whether they used the intended programming concepts to solve the
problems. The authors also provided a predictive validity argument
by comparing their assessment results to the final CS1 exam scores.
The original paper did not show evidence of the assessment’s util-
ity, but it was since then used to help to answer several research
questions [26, 34].

2.1.3 Reliability. In psychometrics, the reliability of a measure-
ment tool is defined as the consistency of the measurements [6, 8].
For example, a reliable test of intelligence should result in the same
score if taken repeatedly by the same person. There are many types
of reliability since there are many variables that we may want our
measurements to be independent of. We may desire consistency of
the measurements through time (test-retest reliability) [8], between
raters (inter-rater reliability) [16], between multiple variants of
the measurement tool (alternate forms reliability) [8], or between
subsets of items in the measurement tool (internal consistency) [6].

For each of these general types of reliability, there are several
specific ways to quantify them. For example, the inter-rater relia-
bility can be quantified by percent agreement or by Cohen’s Kappa,
which accounts for the agreement by chance [22]. Yet other metrics
are needed in case of multiple raters or non-nominal scales [16]. As
a second example, consider the internal consistency between items.
One way to quantify the internal consistency is a split-half method,
i.e., computing correlation between measurements obtained using
two disjoint subsets of items [21]. If all items are supposed to mea-
sure the same construct, Cronbach’s alpha is often used to quantify
the agreement between all individual items by a single number [7].

Consistency is only needed over those variables that we want
our measure to be independent of [19]. For example, as the students
in online learning systems are learning, we do not expect skill
measurements of a single student to be stable through time.

2.1.4 Validity vs. Reliability. Reliability can be considered as one
type of validity evidence [6]. High reliability is necessary but not
sufficient for validity [6, 19]. For instance, using problem IDs as
difficulty estimates is completely reliable — the IDs do not change
between repeated measurements — but clearly invalid. The inter-
action between validity and reliability is, however, more subtle.
For example, by increasing the coverage of programming concepts,
we might increase the validity of a test at the cost of reducing its
reliability [17]. The desirable trade-off depends on the use of the
measurement: for high-stake tests, reliability is crucial; for frequent
summative assessment, it is not.
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2.2 Evaluation of Student Models
Measuring the validity and reliability of psychological constructs
is difficult, but it is even more so in the context of online learning
systems. Students are learning, so we only observe a single attempt
for a given student before her skill changes — a rather extreme data
sparsity! Furthermore, each student solves only a subset of available
problems, and neither the subset nor the order of the problems is
random, resulting in various data collection biases [29].

There is no standard approach to assess the reliability of adaptive
tests [9], let alone the reliability of student models that account
for learning. In contrast, there is a standard approach to assess the
validity of student models: through the performance on the next
answer correctness prediction task [27]. This approach, however,
has been criticized as potentially misleading because increasing
predictive accuracy does not always increase the model’s utility
[15].

We can demonstrate the utility of a student model using a ran-
domized controlled trial, but there is still a need for methods to
validate student models in isolation using just collected perfor-
mance data. Such layered evaluation [5, 25] has three advantages
compared to a randomized controlled trial: (1) it disentangles the
effects of various components in the learning system, allowing us
to diagnose specific weak points, (2) it allows us to evaluate many
student models early, quickly, and without negatively impacting
students, and (3) by using data from multiple exercises and learning
systems (and even simulated data), we can explore the behavior of
the model in many situations, ensuring its reusability.

When evaluating a student model in isolation, we should provide
multiple sources of validity evidence [18, 25] — this is analogical to
the common advice in psychometrics. In addition to the predictive
performance, previous studies assessed the plausibility and consis-
tency of fitted model parameters [18] and expected instructional
effectiveness (effort needed to learn a new concept) when coupled
with a specific instructional policy [15].

2.3 Student Models with Performance
Measures

We explore one specific context in which the next answer correct-
ness prediction task is insufficient: comparison of student models
for problem-solving activities that use other performance data be-
yond correctness. If each problem takes a few minutes to solve,
binary correctness provides too little information for meaningful
adaptation. Without richer input, the state-of-the-art student mod-
els might already be close to their ceiling performance [3]. The
importance of the input data is a consistent result; predictive ac-
curacy of various student models was improved by incorporating
response time [14, 20], the number of incorrect attempts [35, 37],
or hints usage [35, 36].

Previous work proposed an answer classification interface be-
tween the data collection layer and applications to facilitate the
reusability and comparability of extended student models [30]. The
detailed observations about a student’s attempt are compressed by
a performance measure into just one of a few performance classes
(e.g., “correct, weak”). Student models then use only these discrete
performance measurements, as illustrated in Fig. 1. Our case study
supports this proposal by showing that the use of such performance

classes can increase the validity and reliability of skill and difficulty
estimates.

3 SETTING
Our case study is an extension of the scenario described in the
Introduction, which poses the following three challenges: (1) to
order problems by their difficulties, (2) to order students by their
skills, and (3) to predict various aspects of future performance such
as problem-solving time. Our aim is not to find the best model to
solve these challenges; instead, we aim to clarify how to evaluate
models in such scenarios properly.

Therefore, we intentionally chose the simplest student models
that allow us to illustrate the evaluation issues clearly. The chosen
student models are based on a simple use of mean performance and
deviations from the mean performance. The only aspect in which
the compared models differ from each other is the performance
measure that prepares input to them (e.g., binary correctness mea-
sure feeds the model with 0s and 1s). To be useful for the posed
challenges, each model: (1) estimates a one-dimensional difficulty
for each problem, (2) tracks a one-dimensional skill for each student
after each attempt, and (3) can predict future performance for a
student-problem pair. Presented evaluation methods are applicable
to any model that can provide these estimates and predictions.

Before we proceed to the details of the models and data, let us
clarify the used terminology. An exercise is a collection of problems
with a shared theme and user interface; an example of an exercise
is turtle graphics with a block-based programming interface. A
problem is a specific instance of an exercise, e.g., drawing a square
using turtle graphics. An attempt is a time-series of student-problem
interactions like edits and code executions without a long break. If
the student has eventually solved the problem, we call the attempt
correct; if not, we call it incorrect. Fig. 1 illustrates the overall context
and used terminology.

3.1 Baseline Approaches
Let us first think about some simple approaches to solve the three
challenges. Problems could be ordered by their success rate. Stu-
dents could be ordered by their success rate as well, but to ac-
count for the difficulty of the attempted problems, we might in-
stead estimate the skill as the mean deviation between the observed
performance (0 or 1) and the success rate of the problem. As for
the time-prediction task, a reasonable non-personalized baseline
is a per-problem average of times, or preferably an average of
log-transformed times since problem-solving times are usually log-
normally distributed [31]. To make the predictions personalized,
we might slightly adjust the per-problem average in proportion to
the estimated skill; we describe one way to do this in section 3.3.

Such baselines would not work particularly well. First, due to the
amount of non-serious attempts, which are unevenly distributed,
the success rate is considerably biased [10]. Second, as most at-
tempts are eventually correct, the skill estimate is based on much
less than one noisy bit of information per each attempt, and there
are typically not so many attempts per student in problem-solving
exercises (each attempt can take up to few minutes). As we will
see in section 4.2, that is not enough information to reliably differ-
entiate between students. Third, the ability to solve a problem is
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problem

C–
initial code:

Write a function that
returns True if a person
is under 18 and drinks beer.

author's solution:

attempt

student's solution:

time: 154 sec
actions: 1 submit
code length: 5 lines

performance
measure students' skills

performance predictions

problems' difficulties

correct
weak

student's
code length

author's
code length> 1.2×

def impose_fine(age, beer):
    return False

def impose_fine(age, beer):
    return age < 18 and beer

def impose_fine(age, beer):
    if age < 18 and beer:
        return True
    else:
        return False

student
model

Figure 1: Example of a problem from Python exercise, a student’s attempt, and a performance measurement based on final
code length. The performance measurement (“correct, weak”) is the only information about the attempt passed to the student
model.

only one aspect of the programming skill; we also care about the
students’ speed and the quality of their code. Note that all these
issues are primarily caused by poor input data, not by the admit-
tedly trivial student model; more complex student models are thus
unlikely to miraculously help. To alleviate these issues, we need to
use additional performance data.

3.2 Performance Measures
We compare eight performance measures. Our goal is an illustra-
tion of diverse options, not a systematic treatment of performance
measures. In addition to the standard binary correctness, we define
one continuous measure based on solving time, three discrete mea-
sures based on solving time, two discrete measures based on code
length, and one combined measure that uses both time and code.
The discrete measures adhere to the answer classification interface
proposed in [30], using the following five classes: correct excellent
C+, correct normal C0, correct weak C−, incorrect normal I0, and
incorrect non-serious I−.

The measures and their thresholds are described in Table 1. We
do not focus on the development of performance measures. Issues
such as the choice of performance criteria and suitable thresholds
are addressed in [12, 30]. Since we aim to study how to compare
student models, not how to optimize them, we set the thresholds
manually using just a few meta-parameters per measure.

The continuous and time-Q measures are relative with respect to
the problem difficulty, as they base their measurements on within-
problem median or other quantiles. This makes the measurements
informative about the relative skill of a student compared to others,
but less about the absolute difficulty of the problem — except for the
information about the proportion of incorrect attempts. Time-H is
a hierarchical measure that combines median times within problem,
level (a group of problems of similar difficulty), and exercise, making
the measurements more informative about the difficulties. Time-L
exploits the length of the author’s solution. It estimates “good time”
as the solution length divided by the average speed (the number
of lines per second) computed per exercise. In problems with a
block-based programming interface, we count only the blocks that
correspond to new lines. In problems with scaffolding (initial code),
we count the scaffolded lines as only 0.5.

Code-L and code-D base their measurement on the length of
the student’s solution, compared to the author’s solution. Their
measurements differ only in the problems with scaffolding; code-
D counts just the added lines, not the initial code. The combined

measure provides an example of a conjunctive condition onmultiple
criteria: it requires both a short time and a short code to achieve
good or excellent performance. The thresholds are the same as in
time-L and code-L measures.

3.3 Student Models
We extend the baseline approaches based on mean performance
(section 3.1) with the performance measures (section 3.2). The use
of arbitrary performance measurements instead of just binary cor-
rectness is the only change to the baseline student model; the rest
is the same: we average performance measurements to estimate
difficulties, we average the deviations between performances and
difficulties to estimate skills, and we adjust per-problem average
baseline by an amount proportional to the skill to estimate future
performance.

To compute the difficulty — or rather easiness — as the mean
performance on a given problem, we need to assign numerical
values to the performance classes. We assign the values uniformly
(I0,C−,C0,C+) = (0, 0.5, 1, 1.5). We do not assign any value to
non-serious attempts; instead, we filter them out to reduce noise in
the estimates. Denoting the set of students who seriously attempted
problem p as Ap and the observed performance of a student s on a
problem p as yps , the estimated difficulty is:

dp =
1

|Ap |

∑
s ∈Ap

yps

The skills are tracked online, i.e., the model updates the estimated
skill after each observed attempt. The skill is estimated as the mean
deviation between the measured performances and difficulties of
the attempted problems, regularized by 5 pseudo-attempts with 0
deviations.2 For example, after solving two problems with difficul-
ties 1.1 and 1.2, both with excellent performance, the estimated skill
would be ((1.5 − 1.1) + (1.5 − 1.2))/(2 + 5) = 0.1. Denoting the
set of seriously attempted problems of a given student by As the
estimated skill is:

θs =
1

|As | + npseudo

∑
p∈As

(yps − dp )

To predict future performance (e.g., log-time) of a student s on a
problemp, we start with a per-problem average of the predicted per-
formance aspectyp and adjust it by an amount directly proportional

2This can be seen as a simplified version of a Bayesian model with a normal prior on
student skill centered at zero.
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Table 1: Performance measures and their thresholds. All thresholds are computed per problem. Variables д, h, l , and d are also
computed per problem, and they refer to a good time, hierarchical good time, length, and delta, respectively. The Q, H, L, and
D in the names stand for quantile, hierarchical, length, and delta, respectively.

Measure C± thresholds (excellent and weak attempts) I− threshold (non-serious)

binary no thresholds; all correct attempts are classified as C0 —
continuous no thresholds; performance = max(1 − time/(2 ×median), 0) —
time-Q 0.3 and 0.7 quantiles within the problem 0.05 quantile (correct attempts)
time-H 0.5h and 2h, where h = exp(mean(log-median-times within the problem, level,

and exercise))
h/3 (min 15s, max 60s)

time-L 0.5д and 2д, where д = (solution length)/(median speed) д/3 (min 15s, max 60s)
code-L l and 1.2l , where l = length of the author’s solution 0.2l
code-D d and 1.2d , where d = l − scaffolding length 0.2d
combined 0.5д and 2д for time, l and 1.2l for code length д/3 and 0.2l

to z-normalized skill zs :

ŷps = yp + k · zs

The proportionality constant k controls the sensitivity of the pre-
dictions to the skill, i.e., how much is the predicted performance
higher for the student with skill one standard deviation above av-
erage. This constant is shared for all problems in the exercise but
differs between exercises and between prediction tasks. We choose
the optimal constant key for exercise e and prediction target y to
minimize the sum of squares between the observed and predicted
performance with L2 penalty (using regularization strength α = 1)
over all attempts Ae in the exercise:

key = argmin
k


∑

p,s ∈Ae

(yps − yp − k · zs )
2 + α · k2


This sum can be minimized using regularized linear least squares
regression with a single feature (the z-normalized skill zs ), without
intercept, and with targets being the baseline residuals yps − yp .

This simple model could be improved in many ways. We could
make the model more flexible by learning non-uniformly spaced
values of the performance classes or fitting proportionality constant
k for each problem instead of exercise. We could model knowledge
components or aggregate performance in a more sophisticated way
than just by averaging (e.g., to account for learning). But we stop
here and focus on the essential question: How to assess the validity
and reliability of such a model? Is the model with a performance
measure any “better” than the baseline?

3.4 Data
We use data from six diverse introductory programming exercises
from two online learning systems, which allows us to discuss the
generalizability of the results. Table 2 provides a summary of the
exercises. Each exercise contains 40–100 problems divided into
5–12 levels. After filtering active students (those with at least 10
attempts), an average student attempts 18–32 problems, depending
on the exercise. All problems require at most 20 lines of code (or
blocks). Most of the attempts are eventually correct (0.87–0.97 de-
pending on the exercise). Per-exercise median times range from 36
seconds (Arrows) to nearly 3 minutes (Python).

Table 2: Exercises and data used in the case study after filter-
ing active students (with at least 10 attempts).

Exercise Problems Students Attempts
Arrows 94 10,300 322,000
Spaceship 85 6,000 119,000
Shapes 54 1,900 35,000
Blockly Turtle 77 6,100 126,000
Python Turtle 46 1,100 23,000
Python 73 800 20,000

Each exercise targets a different age group, from the primary
school (Arrows) to the university (Python). The exercises differ
in the programming interface, scaffolding, and adaptive behavior.
In the Arrows exercise, students put directions directly into the
grid world; in the Spaceship, Shapes, and Blockly Turtle, they use
block-based programming interface with snapping code blocks [2];
and in the last two exercises, they program in Python. Some prob-
lems include scaffolding — an initial program to complete (as in
Fig. 1). The Python and Python Turtle are scaffolded heavily, while
the Arrows and Spaceship do not use any scaffolding at all. The
Spaceship features an adaptive algorithm for problem recommen-
dation [11], while the other exercises recommend the problems in
a fixed order (the ordering is occasionally updated based on the
collected performance data). In all exercises, the students do not
have to follow the problem recommendation.

Due to the limited space, we sometimes include plots with only
a subset of these six exercises. In such cases, we comment on the
generalizability of the results across the other exercises and provide
complete results with all exercises as supplementary materials at
github.com/adaptive-learning/lak2021.

4 RELIABILITY
In this section, we present methods to assess the reliability of stu-
dent models. These methods are applicable to any model that pro-
duces a one-dimensional estimate of difficulty for each problem
and a one-dimensional estimate of skill after each attempt.

github.com/adaptive-learning/lak2021
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Figure 2: Split-half reliability of difficulties (top) and odd-even reliability of skills (bottom) in 4 exercises. See supplementary
materials for other exercises. In the Python exercise, there are not enough students to create two disjoint sets of more than
400 students, so the reliability is, in this case, approximated by drawing students with replacement.

4.1 Split-half Reliability of Difficulties
Our goal is to see how much data we need to collect to obtain a
consistent ordering of problems. For this purpose, we adapt the
split-half method used in psychometrics [21]. A similar approach
was used previously to compare the stability of difficulty indica-
tors such as success rate and the number of executions in a single
programming exercise [10].

For a given exercise and the number of students N , we draw two
disjoint sets of N students. For each of these groups, we estimate
difficulties using the mean performance student model described
in section 3.3. This includes computing thresholds of performance
measures described in Table 1 using the attempts of the selected
students. For example, for the time-Qmeasure and each problem, we
compute the 0.05, 0.3, and 0.7 quantiles of solving times from correct
attempts for this problem. These thresholds are used to classify the
attempts into the five performance classes, which are fed to the
mean performance model. The reliability is then computed as the
Spearman correlation coefficient between the two lists of difficulties,
which is equivalent to the Pearson correlation coefficient between
the induced problem orderings. We repeat the whole computation
10 times (resampling the students each time) and report the mean
correlation.

For larger values of N , we did not have enough students in some
exercises to create two groups of N students, so we approximated
the reliability by drawing students with replacement. We explored
the impact of this choice on the values of N for which we could
afford to create two disjoint sets. The difference in reliability due to
sampling with replacement was small and not optimistically biased
(the mean difference between the measurements with and without
replacement was -0.0001).

The results vary quite a bit between exercises (Fig. 2). For exam-
ple, binary and code-based measures behave differently in different
exercises, from being ones of the most reliable to ones of the least re-
liable. The speed of convergence also differ; in particular, Spaceship
needs many more students than other exercises to achieve consis-
tent problem ordering. Some trends do generalize across exercises.
Time-L and combined measures are robustly reliable once we have
a few hundreds of students, and relative performance measures
lead to the lowest reliability.

4.2 Odd-Even Reliability of Skills
In contrast to difficulties, student skills change after each attempt.
Thus, we do not want to measure how consistent is the skill of a
student over time, but rather at a given time. To do so, we adapt the
split-half method to the situation with temporal patterns, making
the two halves as comparable to each other as possible. Specifi-
cally, we split all previous attempts of the student (at a given time)
into two groups: odd and even. Then we use the student model
to compute skills using separately only odd/even attempts. For a
given number of attempts N , we compute the Spearman correlation
coefficient between the skills computed from N odd and N even
attempts for all students.

The results are strikingly different from the reliability of difficul-
ties (Fig. 2). Relative measures (continuous and time-Q) lead to the
most reliable skill estimates. This suggests that students’ relative
performance (who is faster or slower) is a relatively stable attribute.
Code-based measures are less reliable than time-based measures
in all six exercises, especially in Arrows and Spaceship, where the
code length variability is low. The combined measure is also less
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reliable than time-based measures, but only slightly. The binary
measure provides unreliable skill estimates in all exercises.

There are several limitations of the presented method. Taking
only every other attempt creates possibly unrealistic students,
which might be especially problematic for models that assume
learning. By computing correlation only between skills estimated
after the same number of attempts, it fails to capture whether the
student model can reliably distinguish between students with a
different level of activity. Even if we manage to overcome these
limitations, the odd-even reliability of skill estimates needs to be
interpreted with caution: it is just a measure of the estimates’ con-
sistency, not of their validity. A model can provide highly reliable
estimates of skills that are not valid at all, e.g., because it measures
some stable characteristics of the student rather than the ability to
solve programming problems (a trivial example is the length of the
student’s name).

5 VALIDITY
The validity of a student model depends on its uses. Although we
might not anticipate all future uses of a model, we should always
have some of them in mind when validating a model and explicitly
declare them. In our case study, we assume that the estimated skills
and difficulties are used to order students and problems and to
display predicted performance.

We present methods that require only collected performance
data. This allows us to validate many student models early, but it
does not allow us to provide definitive evidence of their utility. Our
methods provide weaker validity evidence through convergent and
predictive validity arguments described in section 2.1.2.

5.1 Convergent Validity
Correlation analysis is a simple yet powerful diagnostic tool. Even
without any external measurements of difficulties and skills (such
as final exam scores), we can still examine correlations between
skill/difficulty estimates by various student models. If two models
behave similarly across exercises, we do not need to continue to
consider both of them. On the other hand, pairs of models with low
correlation are worth exploring.

5.1.1 Difficulty Estimates Correlations. In most exercises, the dif-
ficulty estimates induce similar problem ordering (measured by
Spearman correlation) for all performance measures (Fig. 3). The
two code-based measures have a correlation close to 1 across all
exercises. The time-based measures have high correlations as well,
and the relative performance measures (time-Q and continuous)
also highly correlate with the binary performance measure. How-
ever, there is a prominent exception, which provides a warning
about premature generalization claims: in Python exercise, the con-
tinuous measure has a low correlation with all other measures, and
the time-L measure is more similar to the code-based measures
than to other time-based measures.

Let us illustrate a follow-up exploration informed by the cor-
relation analysis. We zoom to the low correlations in the Python
exercise. Fig. 4 shows the difficulty of problems according to all
performance measures. There is a clear group of outlying prob-
lems with unexpectedly high difficulties according to some of the
measures. None of these problems has a suspicious success rate,

but students write long programs because they miss the “return
value of logic expression” idiom (see example in Fig. 1). This issue
is detected by code-based measures and also — since the students
need more time than suggested by the short author’s solution —
by time-L and combined measures. This is an example of utility
evidence because these models give us an actionable insight; we
might add an explanation or impose limits to force students to use
the intended programming idiom.

5.1.2 Skill Estimates Correlations. Fig. 3 also provides correlations
for skill estimates. All four time-based measures lead to similar
orderings of students, and the same holds for the two code-based
measures. The correlation between these two groups is weak in
some exercises, especially in Python. The combined measure is a
rather robust compromise between the time-based and code-based
measures, having a high or moderate correlation with all other
measures across all examined exercises. On the other hand, the
low correlations between binary and time-based and code-based
measures suggest that the binary measure is insufficient to capture
these other facets of programming skill.

5.2 Predictive Validity
Predictive validity is based on the ability of the models to predict
future performance. In addition to the next attempt correctness, we
use three other prediction tasks. These tasks reflect a potential use
of a model to flag problems that are predicted as too difficult for
the student and to display a personalized challenge on the solving
time and the number of lines in the solution.

5.2.1 Prediction Tasks. In each task, the goal is to predict some
aspect of performance on the next attempt for a given student and
a problem.

correctness The goal is to predict whether the problem will
be eventually solved. This is the most common prediction
task for student model evaluation.

too difficult The problem is considered too difficult if the stu-
dent either fails to solve it or solves it withweak performance.
The performance is assessed using conjunctive criteria on the
solving time and code length as specified by the combined
performance measure. Only serious attempts are used for
evaluation; i.e., attempts classified as non-serious according
to the combined performance measure are filtered out.

solving time The time is capped at 15 minutes to avoid the
negative impact of outlying solving times and log-transformed
to obtain a less skewed distribution. Only correct attempts
are used for evaluation.

code length We use relative length compared to the author’s
solution, clipped between 1 and 2. Only correct attempts are
used for evaluation. In introductory programming, the code
length is a proxy for the solution’s quality since a longer
code is typically associated with an unapplied programming
pattern (e.g., iteration, function abstraction). This prediction
task is specific to introductory programming, but other prox-
ies for the solution’s quality are applicable in other domains.

5.2.2 Within-Fold RMSE Normalization. To obtain a stable estimate
of models’ performance and its variability, we use 10-fold student-
level cross-validation [29], reporting mean RMSE and standard
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Figure 4: The difficulty of the first 20 items in the Python exercise. The difficulty is z-normalized to allow comparison between
different performance measures. The highlighted items 8–14, which are disproportionately difficult, belong to the same level.

deviation across folds. As noted in a recent study on the impact of
methodological choices [13], the variability in RMSEmight be domi-
nated by the differences between the data in individual folds (which
we are not interested in) instead of the differences between models
(which we are interested in). To reduce the impact of between-folds
variability, we normalize RMSE within each fold, as suggested in
the study [13]. Within each fold, we calculate RMSE relative to the
per-problem average baseline:

rRMSE =
RMSE(ŷsp )

RMSE(yp )
=

√
1
n
∑
sp (ysp − ŷsp )2√

1
n
∑
sp (ysp − yp )

2

We include both absolute (unnormalized) and relative (normal-
ized) RMSE in supplementary materials. Relative RMSE is less noisy,
making it easier to see which models perform consistently better
than others. Relative RMSE is also easier to compare across exercises
and prediction tasks, as it can be interpreted as relative performance
compared to the baseline, with the value of 1 always corresponding

to the baseline performance. Relative RMSE is closely related to
the commonly used coefficient of determination R2, which can be
similarly interpreted as relative improvement of a full model over
a reduced model [1]:

R2 = 1 −
SSfull

SSreduced
= 1 −

∑
sp (ysp − ŷsp )

2∑
sp (ysp − y)2

Relative RMSE differs from R2 by not subtracting the relative error
from 1 (the lower the rRMSE, the better the model), monotonically
transforming the sums of squares (RMSE =

√
SS/n), and normaliz-

ing the error by a stronger baseline (the per-problem average yp
instead of the global average y).

It is still worth taking a look at the absolute RMSE as well. For
example, in the code length prediction task for the Arrows and
Spaceship exercises, all models achieve RMSE close to 0 due to
low variability in the length of possible solutions. The low RMSE
explains why all models perform similarly; there is simply no room
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for improvement over the baseline. The evaluation of predictive
validity should explore other choices that could impact the results
and their interpretation, e.g., the choice of metric and its averaging
across students or problems [13].

5.2.3 Results. Fig. 5 shows the results for Blockly Turtle. Although
the specific values differ, the trends are similar across all exercises,
except for code-based measures and code length prediction task in
Arrows and Spaceship. As already discussed, these two exercises
have low variability in the length of the submitted solutions.

Not surprisingly, to predict response time, it is best to use time-
based measures, to predict code length, it is best to use code-based
measures, and to predict too difficult problems, it is best to use per-
formance measure whose criteria for weak performance matches
the criteria for detecting too difficult problems. Even the binary
correctness is best predicted by the binary performance measure;
using additional performance data seems even to harm the perfor-
mance. For each measure, we can construct a prediction task in
which it is the best — this is exactly what makes a fair evaluation
difficult.

Since using any single metric would be misleading, we recom-
mend to look at multiple prediction tasks, which represent proxies
for various potential uses of a model. In our case, the combined
measure seems to be a robust compromise, improving RMSE com-
pared to the binary performance measure for all prediction tasks
except for the correctness prediction.

6 DISCUSSION
The aim of this paper is to contribute to the methodology of student
model evaluation. We explored methods for assessing the validity
and reliability of student models for problem-solving activities. As
a side product, our case study demonstrates that binary correctness
is insufficient in the problem-solving context and that using other
aspects can increase validity and reliability of the student models.

6.1 Evaluation of Student Models
The next answer correctness prediction task is insufficient to val-
idate student models in the problem-solving context. In the pre-
sented case study, if we evaluated the models using just the next
answer correctness, we would conclude that the model with binary
correctness input is the best option and that non-binary perfor-
mance measures not only do not help, they are even harmful (Fig. 5).
This interpretation would be misleading; a more comprehensive
evaluation shows that non-binary performance measures do in-
crease the validity of the student model.

We conjecture that the misleading evaluation stems from two
properties of the binary correctness in our context: class imbal-
ance (few attempts are incorrect) and noise (incorrect attempts are
frequently caused by other factors than low skill). Accounting for
the imbalance in the evaluation (e.g., using average precision met-
ric) and reducing the noise (e.g., by filtering non-serious attempts
detected by a previously validated performance measure) could
improve the next answer correctness prediction task and make it
actually informative.

But even then, there would still be a more fundamental limita-
tion of the next answer correctness. To assess validity, we need to
consider the uses of the model. In the problem-solving context, we

care about other aspects of performance than just the ability to pro-
duce correct solutions; the students’ speed and the quality of their
solutions are often important as well. This would not be an issue
if the ability to produce correct solutions would highly correlate
with the other performance aspects; however, our exploration of
the convergence validity (Fig. 3) suggests that, in some cases, the
correlation is weak.

We do not offer an easy solution to this fundamental limitation
of the next answer correctness; we do not believe there is an easy
solution. Instead, we advocate a more comprehensive evaluation of
studentmodels since any single evaluationmetric can bemisleading,
especially if the model is used for more than one purpose. For
example, we have seen that a performance measure that leads to
reliable skill estimates (time-Q) can lead to unreliable difficulty
estimates, and vice versa.

Drawing inspiration from psychometrics, we proposed several
methods for assessing validity and reliability of student models:
split-half reliability of difficulty estimates, odd-even reliability of
skill estimates, convergent validity comparing estimates of multiple
student models, and predictive validity using multiple prediction
tasks. All these methods use only collected performance data. How-
ever, there are other potential sources of validity evidence: thought
processes of the students observed through think-aloud, an inspec-
tion of the estimated skills by teachers, external skill estimates
such as exam results and post-test performance, and utility of an
improved student model in a randomized control trial. These other
sources of evidence require substantially more effort, so an impor-
tant question is when we need them and when a comprehensive
evaluation of the collected performance data (as done in this paper)
is sufficient.

6.2 Utility of Performance Measures
The same reasons that make binary correctness an insufficient
prediction task also make it an insufficient input to the student
models for problem-solving activities. Due to the class imbalance
and noise, we need many attempts for the estimates of skills and
difficulties to become reliable. This is a concern especially for skill
estimates since the number of attempts per student is low (Fig. 2).

Reliability aside, the validity of the skill and difficulty estimates
computed from just binary correctness is also questionable. If we
care about other performance aspects, we obtain substantially differ-
ent skill estimates (Fig. 3). Difficulty estimates are more consistent,
but in a few cases, important differences do exist. For example, we
have seen how binary correctness hides a systematic issue in code
quality that deserves an intervention (Fig. 4). Finally, skills based on
binary correctness were not much useful for predicting too difficult
problems, solving times, or code length (Fig. 5).

The reliability and validity of student models can be increased
using performance measures based on criteria relevant for a given
exercise. The best performance measure depends on the specific
exercise and use, but it would be convenient to have as fewmeasures
as possible. A straightforward combined measure (conjunction on
all relevant performance criteria) seems to be a robust compromise.

The generalizability of the presented observations about perfor-
mance measures requires further work. For introductory program-
ming, we believe that our experiments provide good coverage of
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Figure 5: Predictive accuracy of performance measures in Blockly Turtle exercise on four prediction tasks. The height of the
bars and the length of the vertical black lines show the mean and standard deviation of the relative RMSE across 10 folds. The
lower the relative RMSE, the better the model. Results for the other exercises are included in supplementary materials.

the domain — we used data from six types of exercises covering
a wide range of introductory programming activities. As a next
step, it would be useful to explore other domains to understand
better when are non-binary performance measures beneficial. We
believe that in many contexts, advancing methods for designing
and evaluating performance measures have much more potential
than the usage of more complex student models (e.g., Bayesian
models or models based on neural networks).

7 CONCLUSION
The next answer correctness is an overused prediction task, which
is insufficient to validate student models. The solution is a more
comprehensive evaluation, e.g., using multiple prediction tasks,
comparing estimates of multiple student models, and exploring
the reliability of the estimates. Binary correctness of answers is an
overused performance measure, which is insufficient to construct
valid and reliable student models for problem-solving activities.
A solution is to employ discrete performance measures based on
performance criteria relevant for the given exercise.

SUPPLEMENTARY MATERIALS
Results for all exercises are available as supplementary materials at
github.com/adaptive-learning/lak2021.
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