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ABSTRACT

Student modeling techniques are evaluated mostly using his-
torical data. Researchers typically do not pay attention to
details of the origin of the used data sets. However, the way
data are collected can have important impact on evaluation
and interpretation of student models. We discuss in detail
two ways how data collection in educational systems can in-
fluence results: mastery attrition bias and adaptive choice
of items. We systematically discuss previous work related to
these biases and illustrate the main points using both simu-
lated and real data. We summarize specific consequences for
practice — not just for doing evaluation of student models,
but also for data collection and publication of data sets.
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1. INTRODUCTION

The way we collect data can have significant influence on
results that we obtain by analysis of the collected data. A
typical example is selection bias — if data are not represen-
tative of the studied phenomenon, results are not general-
izable. In learning analytics research a typical example is
self-selection in massive open online courses or voluntary
questionnaires; techniques for reduction of such bias have
been already studied [4]. The impact of data collection be-
comes particularly challenging issue when the data collection
is done by an adaptive system. Student modeling techniques
are developed with the aim of being applied in adaptive sys-
tems and are typically evaluated on data from such systems.

In student modeling research, however, the potential im-
pact of data collection on results is typically not taken into
account. That is unfortunate because uncritical use of his-
torical data sets is prone to biases and misleading results.
For example, intelligent tutoring systems often used mastery
learning approach, which leads to attrition bias in logged
data. System behaviour (e.g., choice of items or mastery
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detection) is typically done by a student model. The same
model may be used for data collection and during model
evaluation, which may bias the evaluation — it can happen
that the used model does not collect data that would show
its deficiencies. The presence of this feedback loop is an im-
portant difference compared to other forecasting domains.
For example in weather forecasting models do not directly
influence the system and cannot distort collected data. In
student modeling they can.

Potential biases caused by data collection have been dis-
cussed in research in related domains. Research on eval-
uation of recommender systems [13, 14, 37] discussed po-
tential biases in data collection, e.g., by filtering users, and
train/test set issues when using offline data. Proposal for
layered evaluation of adaptive systems [32] includes evalua-
tion of data collection, but does not address specifically its
impact on subsequent steps. The presence of a feedback loop
between data collection and model evaluation has been pre-
viously discussed in the context of “exploration vs exploita-
tion problem” (multiarmed bandits), with applications for
news [20, 43] and advertisement [3, 19] selection.

In the context of student modeling, issues related to data
collection have not been systematically studied before, al-
though specific aspects have already been addressed by pre-
vious work, particularly in the context of learning curves [24]
and mastery learning. When a tutoring system uses mastery
learning, students with high skill drop out earlier from the
system (and thus from the collected data), thus a straight-
forward interpretation of aggregated learning curves may be
misleading [11, 16, 25, 27]. Previous work showed specific
illustrations of confounded learning curves [27], discussed
methods for disagreggation of learning curves [25], and pro-
posed mastery-aligned models [16] to take this bias into ac-
count. Confounding effect of item ordering on learning and
item difficulty has been mentioned in several works [12, 15,
17, 36], but only as a side note.

In this work we provide a systematic overview of potential
biases caused by data collection. We provide discussion of
previous works that mention specific biases over real data
from tutoring systems and present some new illustrations
on our data. We also present specific artificial scenarios,
which are highly simplified (compared to real systems), but
clearly demonstrate the core principles of discussed biases.

Our summary shows that the choice of data used for ex-
periments can make important difference on fitted param-
eter values and results of evaluation. This has important
consequences for research practice, since currently this issue
is neglected and neither research papers nor descriptions of



data set discuss in details the way in which the used data
were collected. To contribute to the improvement of state of
the art we conclude our overview with specific consequences
for research practice.

2. BACKGROUND

Our aim is to illustrate the impact of data collection in
many different contexts, and thus discussion of potential bi-
ases refers to many different student models and experimen-
tal settings. In this section we provide brief overview of used
notions and pointers to more detailed explanations of used
modeling techniques.

2.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) [7, 40] is a model of
learning which assumes a sudden change in knowledge. It is
a hidden Markov model where skill is a binary latent vari-
able (either learned or unlearned). The basic version of the
model has 4 parameters: Pj,;: is the probability that the
skill is initially learned, Piesr, is the probability of learning
a skill in one step, Ps;p is the probability of incorrect an-
swer when the skill is learned, and Pjuess is the probability
of correct answer when the skill is unlearned. The estimated
skill is updated using a Bayes rule based on the observed an-
swers; the prediction of student response is then done based
on the estimated skill. Estimation of model parameters (the
tuple Pinit, Prearn, Psiip, Pguess) can be done using several dif-
ferent techniques (the expectation-maximization algorithm,
stochastic gradient descent, exhaustive search). For experi-
ments in this work we use Yudelson’s implementation [44].
The model has many extensions, but for our purposes (illus-
tration of biases) the basic version is sufficient.

2.2 The Rasch Model and the Elo Rating Sys-
tem

The Rasch model is used typically in item response the-
ory [9]. It assumes a constant student skill (no learning) and
items with varying difficulty. Probability of correct answer
for a student with skill § and item with difficulty d is given
by o(0 — d), where o is a logistic function o(z) = H%

The Elo rating system [10] has been originally proposed
for rating chess players, but recently it has been used also
for student modeling [34]. It is closely related to the Rasch
model since it also uses the same equation for predicting
the probability of correct answers. The main difference is
in the approach to parameter estimation. The estimation of
parameters of the Rasch model is typically done using some
iterative maximal likelihood procedure [9], whereas the Elo
rating system uses simple update equations suitable for on-
line updates. Previous research [34] showed that the ob-
tained estimates are very similar.

2.3 Models of Learning based on Logistic Func-

tion

Models based on logistic function can be also extended to
incorporate learning. For generating simulated data we con-
sider a simple linear growth of the skill. More specifically,
for the initial skill 89 we assume normally distributed skill
0o ~ N(u,0?) and we model the change in skill by linear
learning: 6, = 6o+ k- A, where A is either a global parame-
ter or an individualized learning parameter (in that case we
assume a normal distribution of its values). This model is a

simplified version of the Additive Factors Model [5, 6, 16];
the original additive factor model uses multiple skills. A dif-
ferent variant of this model [38] uses “random walk learning”:
9k+1 =0 + €, € NN(M,U2).

For estimating student skills from data a commonly used
technique based on logistic function is Performance Factor
Analysis (PFA) [33]. The skill estimate is given by a lin-
ear combination of the initial skill' and past successes and
failures of a student:

P(correctlk) =o(B+v- sk + 0 fr)

where B is the initial skill, s and fr are counts of pre-
vious successes and failures of a student during the first k
attempts, v and § are parameters that determine the change
of the skill associated with a correct and incorrect answer.
Parameters 3,~, 6 can be easily estimated using standard lo-
gistic regression. Note that originally the technique was for-
mulated in terms of vectors, as it uses multiple knowledge
components [33]. In our setting only the one-dimensional
version is relevant.

3. TRACE LENGTH AND MASTERY ATTRI-
TION BIAS

One commonly used approach to adaptation in educa-
tional systems is to let students solve varying number of
items (problems, questions) of similar type and difficulty.
Typical approach is mastery learning — students solve items
until they master the topic. The “termination decision”
(mastery detection) can be done by some simple rule (e.g.,
“3 correct in a row”) or by a student model (e.g., “probability
of knowing the skill is at least 95%”).

A consequence for the collected data is that students have
different trace length (solve different number of items) and
this difference is not random. This creates a “mastery at-
trition bias”®, which can influence several aspects of model
evaluation and interpretation.

3.1 Learning Curves

One popular approach to evaluation of educational sys-
tems are learning curves [24]. Learning curve plots the error
rate (or another student performance measure like response
time) as a function of number of attempts. A decreasing
learning curve is evidence of learning, curves can be used to
compare models or find ill-specified knowledge components.

Learning curves are based on aggregating behaviour across
students and this aggregation may complicate their interpre-
tation [24]. Particularly, learning curves based on data from
adaptive systems are prone to the mastery attrition bias.
This issue has been discussed in recent research [16, 25, 27],
but is not taken into account sufficiently in the current prac-
tice. For example a recent work on mixture modeling using
learning curves [39] does assume constant length of trace
and would require significant modification to work correctly
in the presence of mastery attrition.

Figure 1 shows a specific example of the mastery attrition
bias using simulated data. We use simulated students with
probability of correct answer given by (0 + k- 0.15), where
0 ~ N (—2,2) is the initial skill of a student, & is the number

!This is usually denoted as item’s difficulty, but in our set-
ting the item difficulty and initial skill are interchangeable.
2 Attrition bias is a type of selection bias, which is often
present for example in medical experiments.
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Figure 1: Learning curves — impact of mastery at-
trition.

of attempts, and o is the logistic function. When all students
solve all problems, we get a nice learning curve. When we
use mastery attrition (in this case realized by a simple “3
correct in a row” rule), we get much flatter and noisier curve,
which underestimates student learning.

In educational systems, particularly those that are used by
students voluntary, we have have self-selection bias, which
can work in opposite direction to mastery attrition. In many
systems the length of trace is decided by students (rather
than mastery learning or other system rule). In such cases
the length of trace depends on student motivation, which can
be influenced for example by success. As a simple model
scenario consider the following case of heterogeneous stu-
dent population consisting of two subpopulations. Students
in the first subpopulation have constant success rate 50 %,
students in the second subpopulation have constant success
rate 80 %, i.e., students do not learn, they just differ in
their prior knowledge. Now if the length of trace is cor-
related with success rate (as for example in [22, 29]) and
we plot the aggregated learning curve, the curve will show
improvement in student performance — but this is just an
illusory effect caused by student attrition. In some systems
it may even happen that both the mastery attrition bias and
self-selection occur [31], which can make the interpretation
of data highly challenging.

3.2 Fitted Parameters

The length of trace and mastery attrition bias also influ-
ence values of parameters of student models. For illustration
we use two commonly used student modeling techniques de-
scribed in Section 2: Bayesian Knowledge Tracing (BKT)
and Performance Factor Analysis (PFA).

The trace length can have large impact on fitted param-
eters particularly when there is a mismatch between model
assumptions and characteristics of data. If we generate sim-
ulated data by the BKT model and then fit the data by
the PFA model, there is an interesting impact of the trace
length. Fitted PFA parameters (and thus also predictions of
the model) may differ significantly; Figure 2 shows calibra-
tion graphs for different trace lengths (data were generated
by the BKT model with Pinit = 0.15, Pregrn = 0.35, Psiip =
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Figure 2: Calibration of different variants of the

PFA model for data generated by BKT. ‘PFA X’
denotes a model with parameters fitted on traces of
length X.

0.18, Pyyess = 0.25). PFA is able to fit either the beginning
of the trace or the end of the trace, and parameter values
depends on the trace length used for parameter fitting. We
obtain similar result in the opposite direction. We generate
data using logistic function o(0+k-0.4), where 6 ~ N'(—1,1).
When we fit the data using BKT, we get significantly differ-
ent values for some parameters for trace of length 5 (Pinit =
0.25, Prearn = 0.25, Pyyp = 0.29, Pyuess = 0.19,) and length
25 (Pinit = 0.08, Piearn = 0.24, Pjip = 0.03, Pyyess = 0.21).

When we consider mastery attrition, data collection im-
pacts fitted parameters even in the case when the fitted
model exactly corresponds to the way data were created.
Consider data generated by BKT with parameters Pj,i =
0.25, Piearn = 0.08, Pgip = 0.12, Pyyess = 0.3. When data are
collected without attrition bias, the fitted parameters corre-
spond well to the ground truth (e.g., for trace of fixed length
20 we get Pinit = 0.27, Prearn = 0.08,Pslip = O,I,Pguess =
0.27). But when data are collected using the “3 correct in a
row” condition, the fitted parameters are significantly differ-
ent: Pini = 0.72, Piearn = 0.23, Pyip = 0.52, Pgyess = 0.15.

These illustrations show that when researchers attempt to
interpret or further use model parameters, e.g., when doing
“discovery with models” [1], they should carefully investigate
whether fitted parameters are dependent on details of data
collection (trace length, attrition bias). At least researchers
should report properties of the used data set (which is not
the current practice).

3.3 Evaluation of Models

A standard approach for evaluation and comparison of
models is to use historical data, split them into training
and testing set, train model parameters on the training set,
and evaluate the performance of models on testing set using
metrics [35] like RMSE, AUC, or log-likelihood.

Results of such comparison are typically interpreted as
ability of models to fit “student behaviour”. However, these
results can be influenced not just by student behaviour,
but also by the way data were collected, specifically by the



length of trace and the stopping condition (mastery learn-
ing). Models may differ in they ability to model “initial
phase of learning” and “plateau of performance”. For exam-
ple if we generate data using the logistic function (o(6 +
k-0.1), where § ~ N (—0.4,2)) and compare the fit of PFA
and BKT models (using RMSE), we get that PFA has better
performance if we use constant trace length, whereas BKT
has better performance if data are collected using mastery
learning (“k correct in a row”).

Another aspect of evaluation, which should be treated
with caution, is the division of data between train and test
set. In the context of student modeling there are multi-
ple possibilities how to approach this division (e.g., student
stratified, item stratified). One approach researchers have
used (e.g., [17]) is to put the last 20% of attempts of some
students in test set. This approach to evaluation is dis-
putable because it evaluates ability of models to fit only
part of student behaviour. It can be problematic particu-
larly if the used data set was collected using mastery learning
— in that case the last attempts in each sequence would be
biased towards correct answer (whatever mastery learning
criterion is used, it is based on seeing correct answers). This
can bias results of model comparison. As a model situation,
consider students who answer completely randomly and two
student models: model A predicting probability of success
0.5, model B predicting probability of success 0.7. Since
students answer randomly, the unbiased model A is better.
However, if we perform evaluation on the last attempts of
data collected by simple mastery learning condition “3 cor-
rect in a row”, model B will achieve better performance as
correct answer will dominate in this test set, even though
their occurrence is just due to the data collection condition,
not due to some inherent aspect of student behaviour.

4. ITEM ORDERING AND SELECTION

Another approach to personalization is to adaptively choose
items to suit needs of a particular student. This selection
is often done with respect to difficulty, i.e., stronger stu-
dents get more difficult items quickly, weaker students keep
practicing easier items.

Similarly to mastery learning, adaptive choice of items
complicates evaluation and can bias results if untreated. As
a specific example consider models build using tabulating
“success rate for the next problem” as used in several AS-
SISTment papers (e.g., [41, 42]). These models would not
work in the case of an adaptive choice of items, where the
educational system actively tries to achieve a given target
success rate. The application of such models is thus limited
to (implicitly assumed) properties of a particular data set.

4.1 Item Ordering

In educational systems, it is quite natural that the order
of items is related to their difficulty — students solve easier
items first and then proceed to more difficult ones. If all stu-
dents solve items in similar order, it may be impossible to
disentangle increase in problem difficulty and student learn-
ing. This confounding effects has been in different forms
noted in several recent works [12, 15, 17, 36].

To make this effect clear, let us consider the following
model scenario. Assume that students’ skill linearly in-
creases (0 = 6o+ k- A, where k is the order of an attempt),
items are ordered in a fixed order with linearly increasing dif-
ficulty (dr, = do + k- A’), and probability of correct answer

is given by a logistic function with respect to the difference
of skill and difficulty: P(correct|k) = 1/(1 + e~ ~9)), In
this situation parameters are non-identifiable, we get iden-
tical probabilities of correct answers for completely differ-
ent situations, e.g., no learning and fixed difficulty of items
(A = A’ = 0) and significant learning and large increase in
difficulty of items (A = A" = 0.5).

The ordering of items may influence collected data also in
other ways. There may be a “local transfer” between con-
secutive items, e.g., when math problems with very similar
structure are asked in sequence or due to short term mem-
ory in factual knowledge learning. Such effects can have
large impact on correctness of answers, but provide little ev-
idence about long term learning. Items in the beginning of
a sequence may have lower success rate (or higher response
times) just due to user interface issues (students have to get
used to peculiarities of a particular system). Last items may
have lower success rate due to fatigue.

It may be hard to overcome item ordering effects. We may
try to incorporate some variability into item ordering for in-
dividual students, but typically the basic “easier to difficult”
progression is desirable. We should nevertheless take this
issue into account and at least analyze the collected data
to understand its properties and potential limitations. Use-
ful descriptive statistics for this purpose include analysis of
mean presentation order of each item (used in [17]), anal-
ysis of correlation between orderings of different students
(used in [36]), or analysis of transitions between items (used
in [23)]).

4.2 Adaptive Choice of Items

The goal of many adaptive educational systems is to se-
lect items of suitable difficulty (neither too difficult, nor too
easy) to keep students in the flow state [8]. This adaptive
choice of items can have important impact on evaluation of
models. We illustrate this impact on data from our widely
used application for learning geography [30].

We utilize data from an experiment which compares four
question construction algorithms with different degree of
adaptivity [31]. Questions used by the system are of the form
“What is the name of the highlighted place?” and “Where
is X?”. The question construction process has two phases:
at first, selection of the question stem (e.g., Rwanda), at
second, decision how many options to use for the multiple-
choice question and what distractors to use (e.g., Burundi
and Tanzania). For each step two choices were considered:
random and adaptive. The decisions of the adaptive algo-
rithm are done using predictions of a student model based
on the Elo rating system [30, 28], aiming at a specific tar-
get success rate [29] and using the most confusing distrac-
tors. Users of the system were allocated randomly into
one of four versions of the question construction algorithm:
adaptive-adaptive, adaptive-random, random-adaptive, and
random-random. During this experiment we collected be-
tween 200 000 and 250 000 answers for each of the four
groups. Every data set was split into a train set (20%)
and a test set (80%) in a student-stratified manner. Since
all models work online and update their parameters during
evaluations, the choice of the size of the train set does not
have big influence on reported results.

Figure 3 shows comparison of several models over these
data sets. As our point is not to study models, but to
show impact of data collection, we have chosen simple mod-
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els (predictors of student performance): constant predic-
tor (given by global average), student average, item aver-
age, and the Elo-based model used in the actual applica-
tion [30]. The figure show several interesting results. With
higher adaptivity in question construction, the RMSE val-
ues are higher (prediction is more difficult) and closer to-
gether (naive predictors have similar performance as better
models since questions are constructed to be off a specified
difficulty). We also see a swap in ordering of models — the
relative performance of two models (item average, student
average) depends on what data are used to compare them.
These results clearly illustrate the impact of the method that
is used to collect data on model comparisons done using the
data set.

4.3 Feedback Loop between Student Model and

Data Collection

The evaluation described in the previous section is a spe-
cific illustration of a feedback loop between student model
and data collection — a model influences which data are col-
lected, the collected data are used to evaluate the model.
To explore this feedback loop in more detail we performed
experiments with a simulation of a simplified version of an
adaptive question answering systems described in the previ-
ous section. Details of the simulation are described in [26],
the basic idea of the experiment is that we choose one stu-
dent model and use it as an input for the adaptive choice of
items. At the same time we let other models do predictions
as well and log answers together with all predictions. Since
we are using simulated data, we know the ground truth and
we can compare models with optimal predictions.

Figure 4 shows the resulting RMSE for each model in indi-
vidual runs (data collected using specific model). The figure
shows the same basic results that we have seen for real data.
When the data are collected using the optimal model, the
RMSE values are largest (at least for more sophisticated
models) and closest together; even the ordering of models
is different from other cases. In this case even the constant
model provides comparable performance to other models —
but it would be very wrong to conclude that “predictive ac-
curacy of models is so similar that the choice of model does
not matter”, since in the simulated system different models
lead to different choice of items and consequently to differ-
ent student experience. The reason for small differences in
RMSE is not similarity between models, but characteristics

of data (“good choice of suitable items”), which make pre-
dictions difficult and even a naive predictor comparatively
good.

In real systems, the content is often organized in knowl-
edge components (KCs, also called concepts or skills), and
this domain model is also used by student models. The
relation between items and knowledge components can be
generally described by a Q-matrix [2] or — in case of the
strict division of items to components — by item-KC map-
ping. The quality of a Q-matrix (or a item-KC mapping)
can have strong impact on adaptive behaviour of the sys-
tem [18], but this quality is difficult to measure. The dif-
ference in performance of models with different Q-matrices
can be — as demonstrated by following hypothetical scenario
— relatively small. Consider two Q-matrices, one of them is
‘correct’ and has 10 knowledge components, the other one is
‘incorrect’” and merges two of the skills together. The differ-
ence between performance metrics of these two models will
be necessarily small, since in most cases their predictions
will be identical. The difference is, however, of practical
significance, because if a system uses the incorrect model,
students may miss practice of one of the concepts. A realis-
tic scenario of this type is reported in [21].

Our simulated experiment suggests that this naturally
small but important difference in performance metrics is also
influenced by the used data set (resp. method used to collect
the data). To highlight the point we use a simple setup: two
knowledge components, every item is assigned to exactly one
of these KCs and every student has two independent skills
corresponding to these KCs. The basic “Elo” model does not
consider item division and assumes only one KC, the “Elo
concepts” model considers correct item-KC mapping, and
the “Elo wrong concepts” model contains random mistakes
in its item-KC mapping. Figure 4 shows that models with
concepts achieve nearly the same performance (i.e., models
seem to be of the same quality), when data are collected by
the most sophisticated models (models with concepts and
optimal one). But over other data sets, the difference be-
tween the two models becomes more apparent and the re-
sults clearly show that “Elo concepts” model is better. Note
that the data are able to better distinguish between models
if they are actually collected by worse models.

Similarly, it can be difficult to detect wrongly specified
prerequisites if we are using them to collect our data. To
illustrate this point we consider the following simple sce-
nario. We wrongly assume that a concept A is prerequisite
for a concept B. It would be possible to detect this error by
observing students who are able to solve problems from the
concept B but have difficulty solving problems from the con-
cept A. However, if our adaptive system uses the wrongly
specified prerequisite, it offers problems from the concept B
only to students who have mastered the concept A and thus
is not able to collect data which would provide evidence that
the specified prerequisite is wrong.

4.4 Parameter Estimation

In Section 3.2 we have shown how the length of trace
and attrition bias can influence estimated parameter values.
Adaptive choice of items can also have impact on parameter
estimates. In previous work [34] we have shown this effect
using simulated data, here we illustrate the effect using real
data.

We use the same data as in Section 4.2 — experiment with
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adaptive and random question selection in geography prac-
tice system. We compare two techniques for estimating dif-
ficulty of individual items — a naive “percent correct” tech-
nique and a variant of the Elo rating system that is used in
the actual implementation [30]. Figure 5 shows distributions
of the estimated difficulties (expressed as probability of cor-
rect answer for an average student) for European countries
(which have most answers in the used data set). The figure
shows differences between the used techniques, particularly
the ability of the Elo rating system is to better differenti-
ate the difficulty of individual items in the case of adaptive
data collection. But the impact of the data set is much
larger than the impact of the used model.

This experiment clearly illustrates that the way data are
collected may have much larger influence on the fitted pa-

rameters than a choice of the model. This is important
particularly for “discovery with models” [1], in which model
parameters are further utilized and interpreted. Such analy-
sis needs to take the data collection mechanism into account.

S. CONSEQUENCES FOR PRACTICE

We have described different ways how data collection mech-
anism influences interpretation and evaluation of student
models. These issues have direct consequences not just for
the realization of evaluation of models, but also for publica-
tion of data sets and the way we collect data in our systems
in the first place.

5.1 Publication of Data Sets

Currently, most published data set document only the
data itself, but not the way in which the data were collected.
As the data collection can have important impact on the in-
terpretation of the data, it is necessary to document data
collection mechanism as well.

The behaviour of adaptive systems is quite complicated
(e.g., many parameters often influence the exact choice of
items) and it may not be feasible to document the data col-
lection mechanism up to all details. But authors of data
sets should explicitly discuss all major issues and potential
limitations due to the data collection mechanism, particu-
larly attrition bias and algorithms used for item ordering
and selection.

5.2 Evaluation and Interpretation of Models

Researchers who use published data that they did not col-
lect themselves should inquire into details of the used data
collection mechanism. It is useful to perform exploration of
data set properties to get understanding of the data and its
potential biases.

When doing evaluation and interpretation of student mod-
els (and their parameters), special attention should be paid
to the influence of properties of the used data set. We should
make sure that our results are not superficially created by
the data collection mechanism. Careful attention should be
paid particularly to division of data between train and test
set as data collection mechanism can easily cause bias, which
may lead to poor generalization of results.

In order to avoid biases caused by data collection, it is
useful to probe stability of achieved results (comparison of



model performance, fitted parameter values). What hap-
pens when we use artificially shorter trace lengths? Do re-
sults stay the same (similar)? In some cases it may be im-
possible to perform such probes — for example if we have
access only to offline data and we care about ordering of
items for different student, we cannot perform experiments
with different orderings. In such cases it is important to
explicitly discuss limitations and future work should try to
replicate results with newly collected data overcoming stated
limitations.

5.3 Data Collection

Our results also have consequences for the data collection
itself. We have repeatedly illustrated how the use of adap-
tive techniques leads to data set, which make it difficult or
even impossible to compare student models and find mis-
takes in their specification (e.g., in knowledge components
or prerequisites). The adaptive behaviour is the purpose of
student modeling and is beneficial for students, it is, how-
ever, detrimental for evaluation purposes.

It should be possible to find a reasonable compromise be-
tween our different goals. We can modify behaviour of our
educational systems in a way that would enable easier evalu-
ation without hampering their main goal (i.e., student learn-
ing). Specifically, we may employ controlled use of random-
ization. If some items are chosen randomly (from a reason-
ably defined set of items), the impact on user experience may
be negligible and the collected data can be used for evalua-
tion in much more straightforward manner than adaptively
chosen items.

6. ACKNOWLEDGMENTS

This publication was written with the support of the Spe-
cific University Research provided by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic.

7. REFERENCES

[1] R. S. Baker and K. Yacef. The state of educational
data mining in 2009: A review and future visions.
Journal of Educational Data Mining, 1(1):3-17, 2009.

[2] T. Barnes. The g-matrix method: Mining student
response data for knowledge. In Educational Data
Mining, 2005.

[3] L. Bottou, J. Peters, J. Quinonero-Candela, D. X.
Charles, D. M. Chickering, E. Portugaly, D. Ray,

P. Simard, and E. Snelson. Counterfactual reasoning
and learning systems: The example of computational
advertising. The Journal of Machine Learning
Research, 14(1):3207-3260, 2013.

[4] C. Brooks, O. Chavez, J. Tritz, and S. Teasley.
Reducing selection bias in quasi-experimental
educational studies. In Learning Analytics And
Knowledge, pages 295-299. ACM, 2015.

[5] H. Cen, K. Koedinger, and B. Junker. Comparing two
irt models for conjunctive skills. In Intelligent
Tutoring Systems, pages 796—798. Springer, 2008.

[6] H. Cen, K. R. Koedinger, and B. Junker. Is over
practice necessary?-improving learning efficiency with
the cognitive tutor through educational data mining.
Frontiers in Artificial Intelligence and Applications,
158:511, 2007.

[7] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253-278, 1994.

[8] M. Csikszentmihalyi. Flow: The psychology of optimal
ezxperience. Harper Perennial, 1991.

[9] R. De Ayala. The theory and practice of item response
theory. The Guilford Press, 2008.

[10] A. E. Elo. The rating of chessplayers, past and
present, volume 3. Batsford London, 1978.

[11] S. E. Fancsali, T. Nixon, A. Vuong, and S. Ritter.
Simulated students, mastery learning, and improved
learning curves for real-world cognitive tutors. In
AIED Workshops, 2013.

[12] J. Gonzélez-Brenes, Y. Huang, and P. Brusilovsky.
General features in knowledge tracing: applications to
multiple subskills, temporal item response theory, and
expert knowledge. Fducational Data Mining, 2014.

[13] A. Gunawardana and G. Shani. A survey of accuracy
evaluation metrics of recommendation tasks. The
Journal of Machine Learning Research, 10:2935-2962,
20009.

[14] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, 22(1):5-53, 2004.

[15] P. Jarusek, M. Klusicek, and R. Peldnek. Modeling
students’ learning and variability of performance in
problem solving. In Educational Data Mining, pages
256-259, 2013.

[16] T. Késer, K. R. Koedinger, and M. Gross. Different
parameters-same prediction: An analysis of learning
curves. In Fducational Data Mining, 2014.

[17] M. M. Khajah, Y. Huang, J. P. Gonzdlez-Brenes,

M. C. Mozer, and P. Brusilovsky. Integrating
knowledge tracing and item response theory: A tale of
two frameworks. Personalization Approaches in
Learning Environments, page 7, 2014.

[18] K. R. Koedinger, J. C. Stamper, E. A. McLaughlin,
and T. Nixon. Using data-driven discovery of better
student models to improve student learning. In
Artificial Intelligence in Education, pages 421-430.
Springer, 2013.

[19] J. Langford, A. Strehl, and J. Wortman. Exploration
scavenging. In Proceedings of the 25th international
conference on Machine learning, pages 528-535. ACM,
2008.

[20] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased
offline evaluation of contextual-bandit-based news
article recommendation algorithms. In Web search and
data mining, pages 297-306. ACM, 2011.

[21] R. Liu, K. R. Koedinger, and E. A. McLaughlin.
Interpreting model discovery and testing
generalization to a new dataset. In Educational Data
Mining, pages 107-113, 2014.

[22] D. Lomas, K. Patel, J. L. Forlizzi, and K. R.
Koedinger. Optimizing challenge in an educational
game using large-scale design experiments. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 89-98. ACM,
2013.



[23]

[24]

[35]

[36]

[37]

[38]

[39]

M. Lopes, B. Clement, D. Roy, and P.-Y. Oudeyer.
Multi-armed bandits for intelligent tutoring systems.
Journal of Educational Data Mining, 7(2):20-48, 2015.
B. Martin, A. Mitrovic, K. R. Koedinger, and

S. Mathan. Evaluating and improving adaptive
educational systems with learning curves. User
Modeling and User-Adapted Interaction,
21(3):249-283, 2011.

R. C. Murray, S. Ritter, T. Nixon, R. Schwiebert,

R. G. Hausmann, B. Towle, S. E. Fancsali, and

A. Vuong. Revealing the learning in learning curves.
In Artificial Intelligence in Education, pages 473—482.
Springer, 2013.

J. Niznan, R. Peldnek, and J. Papousek. Exploring the
role of small differences in predictive accuracy using
simulated data. In AIED Workshop on Simulated
Learners, 2015.

T. Nixon, S. Fancsali, and S. Ritter. The complex
dynamics of aggregate learning curves. In Educational
Data Mining, 2013.

J. Niznan, R. Peldnek, and J. Rihdk. Student models
for prior knowledge estimation. In Fducational Data
Mining, pages 109-116, 2015.

J. Papousek and R. Pelanek. Impact of adaptive
educational system behaviour on student motivation.
In Artificial Intelligence in Education, volume 9112,
pages 348-357, 2015.

J. Papousek, R. Pelanek, and V. Stanislav. Adaptive
practice of facts in domains with varied prior
knowledge. In Educational Data Mining, pages 6-13,
2014.

J. Papousek, V. Stanislav, and R. Peldanek. Evaluation
of an adaptive practice system for learning geography
facts, 2015. Submitted.

A. Paramythis, S. Weibelzahl, and J. Masthoff.
Layered evaluation of interactive adaptive systems:
framework and formative methods. User Modeling and
User-Adapted Interaction, 20(5):383-453, 2010.

P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis-a new alternative to
knowledge tracing. In Proc. of Artificial Intelligence in
Education (AIED), volume 200 of Frontiers in
Artificial Intelligence and Applications, pages 531-538.
10S Press, 2009.

R. Peldnek. Application of time decay functions and
Elo system in student modeling. In Proc. of
Educational Data Mining, pages 21-27, 2014.

R. Peldnek. Metrics for evaluation of student models.
Journal of Educational Data Mining, 7(2), 2015.

R. Peldnek and P. Jarusek. Student modeling based on
problem solving times. International Journal of
Artificial Intelligence in Education, pages 1-27, 2015.
G. Shani and A. Gunawardana. Evaluating
recommendation systems. In Recommender systems
handbook, pages 257-297. Springer, 2011.

A. C. Smith, L. M. Frank, S. Wirth, M. Yanike,

D. Hu, Y. Kubota, A. M. Graybiel, W. A. Suzuki, and
E. N. Brown. Dynamic analysis of learning in
behavioral experiments. The journal of neuroscience,
24(2):447-461, 2004.

M. Streeter. Mixture modeling of individual learning

[40]

[41]

42]

(43]

(44]

curves. In Fducational Data Mining, 2015.

B. van de Sande. Properties of the bayesian knowledge
tracing model. Journal of Educational Data Mining,
5(2):1, 2013.

E. Van Inwegen, S. Adjei, Y. Wang, and N. Heffernan.
An analysis of the impact of action order on future
performance: the fine-grain action model. In Learning
Analytics And Knowledge, pages 320-324. ACM, 2015.
E. G. Van Inwegen, S. A. Adjei, Y. Wang, and N. T.
Heffernan. Using partial credit and response history to
model user knowledge. In Educational Data Mining,
2015.

S. Wager, N. Chamandy, O. Muralidharan, and

A. Najmi. Feedback detection for live predictors. In

Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 3428-3436.
Curran Associates, Inc., 2014.

M. Yudelson. Tool for fitting bayesian knowledge
tracing models, 2014.

https://github.com/IEDMS /standard-bkt.



