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Abstract. A student model is a key part of an adaptive educational
system. Research literature offers wide choice of student modeling ap-
proaches, but little guidance on how to choose a suitable model for a
real world application. Which aspects of student modeling are most im-
portant for a particular setting? How to decide whether a model is ready
for application? We study these questions for a particular case study us-
ing generally applicable techniques. Our results illustrate the use of “wide
and shallow” models to identify the most important aspects of student
modeling. The case study (from the domain of mathematics education)
specifically demonstrates that response times deserve more attention in
student modeling.

1 Introduction

Intelligent tutoring systems aim at providing students with personalized, adap-
tively selected content. This behaviour is typically based on a student model,
which estimates the current knowledge of students. The research literature pro-
vides many student modeling ideas, but little guidance on how to choose and
tune a student model for particular application. For developers of real world ap-
plications it is thus difficult to choose a suitable model and this hinders spread
of intelligent techniques in education.

There are many student modeling approaches and many features that we may
include in our model. To illustrate the wide potential of student modeling, we
mention several possible aspects of student modeling with examples of research.
Basic student models focus on correctness of answers and modeling of learning in
different ways (e.g., Bayesian knowledge tracing [2] or models based on logistic
function [7]). Models need to know mapping between items and modeled skills
and potentially relations between skills. This issue is called skill modeling [3] and
can be addressed by wide variety of approaches (e.g., Q-matrix [1] or Bayesian
methods). In addition to correctness of answers we can use other observational
data, e.g., response times [8], common wrong answers [16], or hints usage [15].
Student population is typically not completely homogeneous and thus models
may be improved by student clustering [6]. Research papers typically focus on
detailed analysis of one of these aspect without any consideration of others.

From practitioner point of view there are several important questions which
are not properly addressed in current literature: Which aspects of student mod-
eling are most important for a particular setting? Which aspects are of key



importance and which provide only minor improvement not worth bothering
with? Which techniques should be used to select an appropriate model? Is a
student model ready for practical application? Are model parameters stable?

In this work we try to address some of these issues. As a case study we use
a real adaptive educational system in its early stage of application, where the
choice of student modeling approach is a real, pressing development issue. We
explore a range of modeling approaches, discuss their relations and comparison,
and study parameter stability. The result illustrate the use of “wide shallow”
models to identify the most important aspects of student modeling for a par-
ticular application. Specifically, the results show usefulness of paying attention
to response times and stability of model parameters, which are both neglected
issues in current literature on student modeling.

2 Setting

To explore the issue of model selection we utilize data from a realistic case study
and compare a sample of potential student models.

2.1 The MatMat System

The MatMat system (matmat.cz) is an adaptive practice application for chil-
dren, which covers the area of basic arithmetic (counting, addition, multiplica-
tion, etc.), its functionality is similar to Math Garden [8]. The system is available
freely online (registration is possible, but not required). The application is adap-
tive, its behaviour (used item selection algorithm) and default student model are
described in [14].

The studied application is in many aspects typical online educational system.
One specific aspect of the domain of basic arithmetic is that response times seem
particularly important. For example multiplication of small numbers starts as
procedural knowledge (a child knows that 3-5is 5+ 5+ 5 and is able to do
the calculation using fingers) but ends as declarative knowledge (a child knows
3.5 = 15 without further thoughts). In both cases a child can give a correct
response with high probability, to distinguish between these levels of knowledge
it seems useful to utilize response times.

The currently available data from the system comprise 150,000 answers, the
distribution of answers between users is highly skewed (many users answer only
few questions). The system contains examples divided into 5 high level concepts
(counting, addition, subtraction, multiplication, division), each of these concepts
contains around 50-700 items, over 2,000 items in total. Although the data set
is relatively small (compared to many data sets currently used in research), it
constitutes a realistic case study for the studied questions — developers of new
systems need to make decisions on the use of student models with relatively
small data.



2.2 Student Models

Our purpose in this work is not to find some “optimal” model, but rather to pro-
vide insight into importance and relation of different aspects of student models.
Thus the following list of models is certainly not an exhaustive enumeration of
options feasible for the particular application, but rather a selection of reasonable
approaches.

Basic Modeling Approach As a baseline for comparisons we use a simple item
average model, which predicts performance based on the percentage of correct
answers for the particular item (ignoring student characteristics).

As the basic modeling approach, which is further studied and extended, we
use student modeling based on logistic function. Note that Bayesian knowledge
tracing [2], the currently dominant student modeling approach, is not suitable for
the studied application — the binary skill assumption is unrealistic and incorpo-
ration of difficulty of items and timing information is possible, but complicated.
The modeling approach based on logistic function naturally allows incremental
increase in skill (which is expected in the domain of basic arithmetic) and can
quite easily incorporate different additional aspects.

Specifically, we use the Elo rating system [4, 11], which can be seen in its basic
form as a heuristic for parameter estimation of the Rasch model (it gives nearly
the same parameter estimates [11]). We use the Elo rating system due to its
many practical advantages (a key factor for real world application) — parameter
fitting is done naturally online, it is easy to implement and extend.

The model has a student skill parameter 6 and an item difficulty parameter
d. The probability that a student answers correctly is estimated using a logistic
function of a difference between the skill and the difficulty: P(correct|d,d) =
1/(1 4 e=(=D). After observing the student’s response the parameters are up-
dated as follows: 6 := 0+U-(correct— P(correct|0,d)), d := d+U-(P(correct|0,d)—
correct), where correct € {0,1} denotes whether the question was answered cor-
rectly and U specifies sensitivity of parameter estimates to the last attempt.
Based on previous research [9-11] we use an uncertainty function U(n) = a/(1+
fBn), where n is the number of previous updates to the estimated parameters and
a, f are meta-parameters (fitted using a grid search: « = 1.0, 5 = 0.1).

Domain Modeling An important modeling aspect is domain modeling, par-
ticularly choosing the granularity of the model and the item-skill mapping. For
the studied system, the items that are presented to students are for example:
“5 x 37, “24 37 (with additional visualization), or “choose a number 6 on the
number line”. There are many ways how to model this domain; for the evalua-
tion we have chosen three representatives. All of them have difficulty parameter
for each item, they differ in the way they model student skills:

— Basic model — for each student there is a single skill.
— Concept model — for each student there are skill parameters for each of the
5 main concepts, these skills are assumed to be independent.



— Hierarchical model — skill of each student is described in tree-like structure
(see Fig. 1) with 3 levels of concepts and sub-concepts (described in [14]).
Due to this structure skills for different concepts are interconnected.
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Fig. 1. The structure of the hierarchical model. The basic model and the concept model
can be viewed as selected independent concepts without dependencies.

Response Times Most student modeling approaches consider only correctness
of answers. Response times, however, can provide useful information about stu-
dent knowledge, particularly for the studied domain. In this work we use the
following approach to incorporating response times to student models. We com-
bine correctness and response time into single performance measure r. For wrong
answers we ignore response times (i.e., r is constantly equal to 0). For correct
answers we transform the value 1 into an interval [0, 1] by one of the following
functions (see Fig. 2):

— noTime — no use of time, r = 1.

— thresholdTime — response is classified as fast or slow (based on the threshold
7 seconds, the median response time in system); r = 1 for fast responses,
r = 0.5 for slow responses.

— expTime — similar to the previous one; for fast responses r = 1, for slow
responses r decreases exponentially (see [14] for more details).

— linearTime — response is linearly decreasing with increasing time (until it
reaches 0): 7 = maxz(0,1 —t/14).

There are, of course, other possible approaches to modeling time. For example
a similar approach based on the Elo rating system uses a “high speed high stakes”
rule [8], which takes time into account even for wrong answers. A conceptually
different approach is based on separate modeling of correctness and speed [13].
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Fig. 2. Variants of response time based transformations of performance measure r for
correct answer.

Wrong Answers Another potentially useful source of information about stu-
dent knowledge is the specific answer, i.e., in the case of incorrect answer we can
look at the specific mistake that was made. Previous research for example stud-
ied differences between common wrong answers and other mistakes [16]. Analysis
of answers from the studied system shows that there is large proportion of miss-
ing answers. Moreover, these answers often have very short response times and
are often present in sequences (i.e., users are sometimes skipping sequences of
items).

We incorporate this insight into student models in the following simple way.
We compute probability of missing answer based on the number of immediately
preceding missing answers of a student. Overall prediction is the product of the
original model prediction and the probability of not missing an answer. This new
prediction is also used in the update of model parameters.

3 Evaluation

We analyze the described models on the data from the MatMat system — we
start with comparison of prediction accuracy of models and continue with more
detailed analysis of parameter values.

3.1 Prediction Accuracy

For comparison of predictive accuracy of models we use rather standard evalua-
tion setting: repeated random cross-validation (20 runs) with student stratified
train/test set division (70%/30%). As the basic performance metric for compar-
ing model we use Root Mean Square Error (RMSE), which is a standard choice
in the case of predicting correctness of answers [12].

Fig. 3 gives comparison of different domain modeling approaches and of the
impact of explicit treatment of missing answers. With respect to domain mod-
eling, we see that more complex models are able to improve predictions, al-
though increasing complexity of models brings only diminishing improvements.
The figure also shows that explicit treatment of missing answers can signifi-
cantly improve accuracy of some models. This very straightforward and simple
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Fig. 3. Comparison of domain modeling approaches and of the impact of utilization of
missing answers. Error bars show 95% confidence intervals.

technique brings large improvement for baseline model, nontrivial impact on the
basic model and the concept model, but only minimal impact on the hierarchical
model, which is more flexible and can quickly adapt to the students who are just
skipping items. This shows that different aspects of student modeling are partly
compensatory, i.e., novel modeling ideas should not be judged (only) by their
ability to improve simple baselines.
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Fig. 4. Model comparison according to RMSE and AUC with and without time in-
formation. Error bars show 95% confidence intervals. Note that for the RMSE metric
lower values mean better performance, whereas for the AUC metric higher values are
better. Also note that the RMSE values of different time uses are not straightforwardly
comparable because models are trained to predict different absolute values.

The evaluation of models which consider timing information is more difficult.
Standard performance metrics [12] consider only binary information about cor-
rectness, but the point of models with timing information is to also distinguish
between slow and fast responses. The full discussion of this issue is beyond the



scope of this paper, here we report just three selected metrics to provide basic
insight into model behaviour. At first, we use the standard RMSE (i.e., the per-
formance metric ignores the timing information). At second, we use “ternary”
version of RMSE where observations are labeled as 0 (wrong), 0.5 (correct, slow),
and 1 (correct, fast). At third, we use the Area Under the ROC Curve (AUC)
metric [12], which ignores the timing information, but considers the prediction
only in relative manner.

The comparison of models according to these metrics is shown in Fig. 4. With
respect to domain modeling the results are similar to results presented in Fig. 3.
Also note that the modeling of timing information is rather orthogonal to domain
modeling. With respect to different variants of modeling response times, we see
large differences between models, but these differences are not easy to interpret
due to the impact of used metric. The results for the two variants of RMSE are
not very surprising, since RMSE takes into account absolute values of predictions
and different models are trained to predict different values, e.g., models with
linearTime have much higher RMSE since they are trained to give much smaller
predictions (with different meaning). The best models with respect to reported
RMSE metrics are those that match the performance metric used for evaluation.
The interesting part of results is the comparison with respect to AUC. Although
the evaluation metric does not take response time into account, the best results
are achieved using linearTime model variants. This modeling approach improves
the relative order of predictions (slower students are relatively more likely to
make mistake than faster students with the same overall correctness).

3.2 Impact on Estimated Parameters

The summary metrics for predictive accuracy are notoriously hard to inter-
pret [12]. How important are small differences in RMSE values? To get insight
into differences between models we analyze correlations between parameter val-
ues, particularly the item difficulty parameters, which have clear interpretation
and direct impact on the adaptive system behaviour (e.g., adaptive selection of
items or provided feedback for students).

Fig. 5 shows correlations between item difficulties for different models. Darker
color means higher correlation, i.e., more similarity in difficulty estimates (less
important difference between models). Unsurprisingly, there is a large gap be-
tween the baseline model and other more sophisticated models. The impact of
domain modeling is nontrivial, but not pronounced. Different utilization of time,
however, brings considerably different parameters. The degree of change is pro-
portional to the intensity of time utilization, linearTime extension is the most
different. Also note that the figure contains repetitive 4 x 4 pattern corresponding
to different time usage. This means that domain modeling and time modeling
are almost independent modeling aspects and provide change (and possible im-
provement) in different directions.

To provide better intuition beyond the summary evaluation metrics and cor-
relations, we provide a specific illustration of the model impact on parameters of
simple addition and subtraction items. Fig. 6 presents comparison of estimated
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Fig. 5. Spearman correlation coefficient for estimated item difficulty parameters of
different models.

parameters for a model with and without timing information. The estimated
parameters are only weakly correlated and there are significant differences (e.g.,
“1-1” and “8-5" have the same difficulty according to model without response
times, but quite different difficulty according to the model with time). Particu-
larly, note the highlighted subtraction examples of the type “X-X”, which the
model with timing information systematically rates as easier than the model
without time.

3.3 Parameter Stability

Before we use a model in an adaptive educational system we want to be sure
that its parameters are reasonably stable. For example in Fig. 6 we can see that
the estimated parameters are probably not yet completely stable (one would
intuitively expect for example that the items “X-X” would either have very sim-
ilar difficulty or be ordered). How to objectively judge parameter stability? How
quickly do parameter values stabilize? How much do different models different
in their speed of convergence? Such questions do not get much attention in stu-
dent modeling. A recent exception is the proposal for multifaceted evaluation
of student models [5], where authors include parameter stability as a criterion
for model evaluation, but they discuss only a specific model (BKT) and do not
focus on dynamics of parameter stability.

To evaluate these questions we performed the following experiment. We took
two data samples D1, Dy of size K (student stratified, without intersection). We
consider a particular model type M and train an instance M; using the data set
D, and an instance M using the data set Dy. Then we evaluated the correlation
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Fig. 6. Comparison of estimated difficulties of selected items by the basic model with
and without time usage. Note that absolute values of difficulties are not entirely com-
parable because models are trained to predict different values.

of parameters of M; and My (we use only item difficulty parameters since the
data sets are student stratified).

Fig. 7 shows increase in parameter stability with the number of answers
used for training the model. The figure compares different domain modeling
approaches and different time uses. The left part of the figure shows that the
hierarchical model is slightly more stable than simpler models as it can better
carry information across items. The right part of the figure shows high increase
in stability of models which utilize response times. Fig. 6 provides a specific illus-
tration, note that the group of similar items of the form “X-X” have very similar
difficulty according to the model utilizing response time, but widely different dif-
ficulties for model without response times. This increase in stability (resp. faster
convergence) is probably mainly due to the use of more “bits of information”
per each answer. Increase in stability is also proportional to intensity of time
utilization — linearTime extension makes the most significant use of response
times.

4 Discussion

For the studied case study, the main conclusion is that differences in modeling
of response times have larger impact than differences in domain modeling. The
results give actionable insights for practical application and directions of further
analysis (e.g., separate treatment of correctness and speed may be useful).
From the wider perspective, the case study highlights issues with practical
applications of research results. The focus of current research is mostly on de-
tails of one particular aspect of student modeling (e.g., domain modeling or
different ways of modeling learning). For applications of student models in real
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world contexts, we need more focus on relations of different aspects of student
modeling and on their combinations. Our results show that incorporation of dif-
ferent aspects of student modeling (even in simple way) may be more important
than detailed modeling of one particular aspect. Different modeling aspects are
not, however, always orthogonal. An approach that brings large improvement
over baseline (when studied in isolation) may have negligible impact when in-
corporated into a more complex model — in our experiments this is the case of
treatment of skipped answers. From application point of view, more attention
also needs to focus on “production readiness” of models.

These concerns are not just pragmatic, development issues, they have impor-
tant consequences for research, e.g., comparison with baseline not sufficient to
show that a modeling technique will improve also more complex models. They
can also inspire interesting scientific questions. Can we devise compositional
modeling approaches allowing simple combination (and evaluation) of different
aspects of student modeling? To what degree is the importance of individual
aspects domain specific? Can we formulate any generally applicable guidelines?
What is the best way to study stability of model parameters and how can it help
in model comparison?
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