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Masaryk University

Brno, Czech Republic
xpelanek@fi.muni.cz

ABSTRACT
The popularity of object-oriented programming has led to
the wide use of container libraries. It is important for the re-
liability of these containers that they are tested adequately.
We describe techniques for automated test input genera-
tion of Java container classes. Test inputs are sequences
of method calls from the container interface. The tech-
niques rely on state matching to avoid generation of re-
dundant tests. Exhaustive techniques use model checking
with explicit or symbolic execution to explore all the possi-
ble test sequences up to predefined input sizes. Lossy tech-
niques rely on abstraction mappings to compute and store
abstract versions of the concrete states; they explore under-
approximations of all the possible test sequences.

We have implemented the techniques on top of the Java
PathFinder model checker and we evaluate them using four
Java container classes. We compare state matching based
techniques and random selection for generating test inputs,
in terms of testing coverage. We consider basic block cover-
age and a form of predicate coverage - that measures whether
all combinations of a predetermined set of predicates are
covered at each basic block. The exhaustive techniques can
easily obtain basic block coverage, but cannot obtain good
predicate coverage before running out of memory. On the
other hand, abstract matching turns out to be a powerful
approach for generating test inputs to obtain high predicate
coverage. Random selection performed well except on the
examples that contained complex input spaces, where the
lossy abstraction techniques performed better.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Reliability, Experimentation, Verification
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1. INTRODUCTION
Object oriented programming is fast becoming the paradigm

of choice in everything from web applications to safety crit-
ical flight control software in the next generation of NASA
manned missions. Modern object oriented languages typi-
cally come with libraries of container classes that are heav-
ily reused without much concern given to the correctness of
these container implementations. To ensure the reliability
of systems built with such containers, they must be tested
adequately. The large number of test inputs for thorough
testing makes automated test input generation imperative.

This paper presents techniques for automated test input
generation of container classes that use state matching to
avoid generation of redundant tests. Test inputs are se-
quences of method calls from the container interface, that
cover the relevant structural and behavioral aspects of the
code. We use a model checker to exhaustively try all combi-
nations of method calls and parameters to these calls up to a
specified limit, but after each call the state of the container
is examined to see if it can be “matched” with a previously
stored state; if so, that sequence is discarded, if not the
search continues with the next call.

During this search the testing coverage is measured and
whenever new coverage is obtained the sequence of calls to
achieve that coverage is recorded. We consider basic block
coverage, as a representative example of simple structural
coverage, and a form of predicate coverage [3] which mea-
sures the coverage of all the combinations of program pred-
icates; predicate coverage is more difficult to achieve than
basic block coverage.

The large amount of input data necessary to test the con-
tainers made us investigate an alternative technique, which
uses symbolic, rather than explicit, execution, i.e. instead of
concrete parameters to interface method calls it uses sym-
bolic parameters. Symbolic execution [22] manipulates sym-
bolic states, representing sets of concrete states, and parti-
tions the input domain of the interface methods into non-
overlapping subdomains, according to different paths that
are taken during symbolic execution. Therefore, this tech-
nique has the potential to yield significant improvement over
the “explicit” exhaustive technique. We describe a method
for examining when a symbolic state is subsumed by another
symbolic state. This is used for state matching to determine
whether a test specific sequence can be discarded by the
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model checker. Furthermore, we show that this approach
scales better than the exhaustive explicit technique.

Even with state matching, the number of test sequences
that needs to be explored with the explicit or symbolic tech-
niques quickly becomes intractable – due to the state space
explosion problem. We therefore define abstraction map-
pings to be used for state matching, to further reduce the
state space explored by the model checker. More precisely,
for each explored state, the model checker computes and
stores an abstract version of the state, as specified by the
abstraction. State matching is then used to determine if an
abstract state is being re-visited. This technique is lossy,
since parts of the feasible input sequences can be discarded
due to abstraction. We introduce here a simple but powerful
abstraction that records only the structure or shape of the
container, while it discards the data stored in the container.
We show that this lossy technique is the most effective with
respect to coverage achieved.

We have implemented the techniques in a unified frame-
work and we evaluate them on several container classes.
The framework is built on top of the Java PathFinder [19,
28] model checker that already supports symbolic execu-
tion. Our framework also incorporates a technique based
on random selection – and we use it as a point of compar-
ison with the other techniques. As mentioned, we evaluate
the techniques in terms of basic block and predicate cov-
erage achieved by the generated test sequences. Predicate
coverage is motivated by the observation that certain sub-
tle program errors (that go undetected in the face of 100%
basic block coverage) may be due to complex correlations
between program predicates [3]. Therefore predicate cover-
age is a good addition to basic block coverage for evaluating
test input generation strategies.

Although there is a lot of related work (presented in Sec-
tion 6), we are not aware of a framework or a study that
implements and compares explicit and symbolic techniques
for test input generation with random selection in terms of
structural coverage, let alone in terms of predicate coverage,
as we do here.

The contributions of the paper are the following:

• Framework for test input generation for Java container
classes. The framework incorporates explicit and sym-
bolic techniques and uses state matching to avoid gen-
eration of redundant tests.

• Automated support for shape abstraction to be used
during state matching. The abstraction can be used
with both explicit and symbolic techniques. The ab-
straction is shown to be the most effective, as com-
pared to all the other techniques.

• Evaluation of test generation approaches on four non-
trivial Java container classes measuring the perfor-
mance in achieving both a simple structural coverage
and a form of predicate coverage. The evaluated ap-
proaches range from exhaustive testing, partition test-
ing using symbolic execution and random testing.

2. BACKGROUND
We describe here the Java PathFinder (JPF) tool [19, 28]

and its extension with a symbolic execution capability. Sec-
tion 4 shows how to use JPF for test input generation.

2.1 Java PathFinder
JPF is an explicit-state model checker for Java programs

that is built on top of a custom-made Java Virtual Machine
(JVM). JPF handles all the Java language features and it
also supports program annotations that are added to the
programs through method calls to a special class Verify.
We used the following methods from Verify:

beginAtomic() ... endAtomic() specify that the execution of
the enclosed block should proceed atomically.

random(n) returns values [0, n] nondeterministically.

ignoreIf(cond) forces the model checker to backtrack when
cond evaluates to true.

By default, JPF stores all the explored states and it back-
tracks when it visits a previously explored state. Alterna-
tively, the user can customize the search (by forcing the
search to backtrack on user-specified conditions) and it can
specify what part of the state (if any) to be stored and used
for matching. We used these features to implement our test
generation techniques that use model checking with abstract
matching and random search. JPF also supports various
search heuristics [13], that can be used to guide the model
checker’s search.

2.2 Symbolic Execution
Symbolic execution [22] allows one to analyze programs

with un-initialized inputs. The main idea is to use sym-
bolic values, instead of actual data, as input values and to
represent the values of program variables as symbolic ex-
pressions. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs.

The state of a symbolically executed program includes the
(symbolic) values of program variables, a path condition (PC)
and a program counter. The path condition is a (quantifier
free) boolean formula over the symbolic inputs; it accumu-
lates constraints which the inputs must satisfy in order for
an execution to follow the particular associated path.

In previous work [21], we have extended JPF to perform
symbolic execution for Java programs. The approach han-
dles dynamically allocated data, arrays, and multi-threading.
Programs are instrumented to enable JPF to perform sym-
bolic execution; concrete types are replaced with correspond-
ing symbolic types and concrete operations are replaced with
calls to methods that implement corresponding operations
on symbolic expressions. A Java implementation of the
Omega library [25] is used to check satisfiability of numeric
path conditions (for linear integer constraints).

3. TEST INPUT GENERATION
In this section we present our framework for generating

test inputs for Java container classes. We illustrate our ap-
proach on a Java implementation of a binary search tree (see
Figure 1). Each tree has a root node. Each node has an
integer elem field and left and right children. Values are
added and removed from the tree using the add and remove

methods respectively.
A test input for BinTree consists of a sequence of method

calls in the class interface (e.g. add and remove), with cor-
responding method arguments, that builds relevant object
states and exercise the code in some desired fashion. Here
is an example of a test input for BinTree:
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class Node { ...

public int elem;

public Node left, right;

}

public class BinTree {

private Node root;

...

public void add(int x) { ... }

public boolean remove(int x) { ... }

}

Figure 1: Java declaration of a binary tree

API

add
remove

Java container
...

SUT

M = sequence length

ENV

N = max parameter values

M, N

MODEL CHECKING
Test Suite

Java PathFinder

Figure 2: Test Generation Framework

BinTree t = new BinTree();

t.add(1); t.add(2); t.remove(1);

3.1 Framework
The framework for test input generation is illustrated in

Figure 2. For each container (the system under test SUT)
we built a nondeterministic environment ENV, i.e. a test
driver that executes all sequences of API method calls up
to a user-specified size M. JPF is used to enumerate all these
sequences. The model checker’s state matching capability
avoids the exploration (and generation) of redundant tests.

The framework implements the following techniques (they
are described in detail in the next section):

• exhaustive explicit execution with state matching

• explicit execution with abstract matching

• symbolic execution with subsumption checking

• symbolic execution with abstract matching

• random selection (no state matching).

For the techniques that use explicit execution or random
selection, the user also needs to specify the range of val-
ues for the method parameters [0, N-1]. N is not needed
when performing symbolic execution, since in this case the
methods are executed with symbolic parameters.

3.2 Testing Coverage
The model checker analyzes the nondeterministic environ-

ment and it generates method sequences that achieve the
desired testing coverage. We use basic block coverage, as a
representative example of a widely used structural coverage
measure. At each basic block, we also measure the cov-
erage of all the combinations of a set of predicates chosen

static int M; /* sequence length */

static int N; /* parameter values */

static BinTree t = new BinTree();

public static void main(String[] args) {...

1: for (int i=0;i<M;i++) {

2: Verify.beginAtomic();

3: int v = Verify.random(N-1);

4: switch (Verify.random(1)) {

5: case 0: t.add(v); break;

6: case 1: t.remove(v); break;

}

7: Verify.endAtomic();

8: /* Verify.ignoreIf(store(abstractMap(t))); */

} }

Figure 3: Environment for explicit search

from conditions in the source code. We refer to the latter
as predicate coverage, although it is strictly speaking only
a simplified version of the predicate coverage as defined in
[3] – where all predicates in the code are used rather than a
subset as done here. For our purposes this is sufficient, since
we are not measuring the adequacy of a test suite, but rather
use it as a measure to compare test generation strategies.

The code of the methods is instrumented to record the
coverage, e.g. basic block or predicate coverage. Whenever
the model checker executes an uncovered block (or a new
predicate combination), it outputs the current test sequence.

We should note that basic block coverage is a simple struc-
tural coverage whereas predicate coverage requires more be-
haviors (paths) to be followed through the code to obtain
good coverage – this is in part due to the predicates coming
from different portions of the code.

Also note that we have no way of computing the optimal
predicate coverage for each SUT (hence we will refer to the
highest observed coverage as the optimal). We use the rate
of increase in the number of predicate combinations covered
to evaluate whether a particular testing technique is helpful
in covering paths not previously executed.

3.3 Testing Oracles
Method post-conditions can be used as test oracles to

check the correctness of container methods. JPF also sup-
ports partial correctness properties given as assertions in the
code and temporal logic specifications. In the experiments
reported in this paper, we used JPF to check just absence
of run-time errors, e.g. absence of uncaught exceptions.

4. TEST GENERATION TECHNIQUES
In this section we describe the techniques that are imple-

mented in the test input generation framework, namely ex-
haustive explicit execution, explicit execution with abstract
matching and symbolic execution (with subsumption check-
ing and with abstract matching). We also describe how to
use random selection for test input generation and we dis-
cuss the search order used in the model checker.

4.1 “Classical” Exhaustive Explicit Execution
We illustrate this technique using the BinTree example in-

troduced in the previous section. The testing environment
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Figure 4: Abstraction recording shapes

is illustrated in Figure 3. The environment executes atomi-
cally all the sequences of add and remove methods up to the
pre-specified sequence size M. The input values are chosen
nondeterministically from range [0, N-1]. Line 8 is dis-
cussed in Section 4.2. As discussed, “classic” explicit state
model checking is then used to search the state space of the
program defined in Figure 3. The model checker’s default
state matching capability is used to avoid exploration and
generation of redundant test sequences.

This straightforward approach does not scale well for large
values of M and N – the number of possible test sequences be-
comes quickly intractable (the state space explosion prob-
lem). One way to address this problem is to use heuristic
search; JPF supports several heuristics (guided search, beam
search). Another solution is to perform explicit execution
with abstract matching as described below.

4.2 Explicit Execution with Abstract Matching
The idea is to use the model checker to perform the ex-

plicit execution of all the possible method sequences (as
above) but to store abstract versions of the explored program
states, and use these abstract states to perform state match-
ing (and to backtrack if an abstract state has been visited
before). This effectively explores an under-approximation of
the space of possible method executions.

In order to apply this technique for BinTree we use the
environment illustrated in Figure 3, in which statement 8:

Verify.ignoreIf(store(abstractMap(t))) is included.

abstractMap computes an abstraction of the concrete con-
tainer state of the binary tree referenced by t;

store directs the model checker to store the computed ab-
straction;

Verify.ignoreIf directs the model checker to backtrack if
it has seen this abstraction before.

Note that state matching is now performed only on the
state of the container object (referenced by t). This allows
us to abstract away the information that is irrelevant to test
generation, i.e. the values of local variables i and v are no
longer considered to be part of the state.

JPF provides automated support for two powerful abstrac-
tions, that we have found useful in the analysis of containers.

• The shape abstraction records only the (concrete) heap
shape of a container, while it abstracts away the data
fields from each container element. The abstraction
is illustrated in Figure 4, which depicts two binary

static int M; /* sequence length */

static BinTree t = new BinTree();

public static void main(String[] args) {...

1: for (int i=0;i<M;i++) {

2: Verify.beginAtomic();

3: SymbolicInt v = new SymbolicInt(’’v’’+i);

4: switch (Verify.random(1)) {

5: case 0: t.add(v); break;

6: case 1: t.remove(v); break;

}

7: Verify.endAtomic();

8: Verify.ignoreIf(checkSubsumptionAndStore(t));

} }

Figure 5: Environment for symbolic search

search trees. Circles denote tree nodes; numbers in-
side circles denote the elem values; null nodes are not
represented. The trees have the same heap shape -
hence they will be matched during model checking
(although the actual elem values are not the same).
Heap shapes are represented in a normalized form, as
sequences of integers (depicted in rectangles in Fig-
ure 4), and are obtained through a process called lin-
earization [18, 32]. The linearization of an object (e.g.
the tree root) starts from the root and traverses the
heap in depth first search order; it assigns a unique
identifier to each object and it backtracks when it de-
tects a cycle; null pointers have values 0. Comparing
shapes reduces to comparing sequences. Linearization
has complexity O(n) (where n is the number of heap
nodes that are reachable from the root) and it can be
performed efficiently during garbage collection.

• The complete abstraction records the shape of the con-
tainer together with all the data fields from each con-
tainer element. Strictly speaking, this is not really an
abstraction (there is no information loss) but rather
a canonical complete encoding of the container state,
similar to the linearization used for representing the
complete concrete heap (shape plus data), to achieve
heap symmetry reduction in model checking [18].

4.3 Symbolic Execution with State Matching
The test generation techniques that we have presented

so far use concrete values for the method parameters. We
now present an alternative technique, which assigns sym-
bolic values for the input parameters, and it uses JPF to
perform symbolic execution of the data structure’s methods.
The model checker manipulates symbolic states which de-
scribe sets of concrete states. As a result, this technique has
the potential to yield significant improvements over explicit
execution techniques.

To generates test inputs for BinTree (with symbolic exe-
cution) we use the environment illustrated in Figure 5. The
environment is similar to what we had before, except now
the type of variable v is SymbolicInt (rather than int) and
v is assigned a new symbolic value each time the for loop is
executed. Moreover, the code of the add and remove meth-
ods is instrumented to enable JPF to perform symbolic ex-
ecution. State matching (line 8) is discussed below.
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Figure 6: A symbolic state

Here is an example of a generated test sequence:

BinTree t = new BinTree();

t.add(v0);t.add(v1); t.remove(v2);

PC: v2 == v1 && v2 < v0 && v1 < v0;

Solution: v0: 1, v1: 0, v2: 0;

The path condition (PC) encodes the constraints on the
input parameters. JPF also solves the constraints and it
provides numeric solutions to be used as the concrete pa-
rameters for the actual test input. Our implementation is
currently handling linear integer constraints. Other numeric
domains could be handled similarly (provided the availabil-
ity of appropriate decision procedures).

Let us now analyze a symbolic object state at line 8 - as
illustrated in Figure 6. In each node, we write the symbolic
value of the elem field, e.g. e1 : v0 means that the elem

field of node 1 (e1) has symbolic value v0 (v0...v5 denote
the symbolic values that were given as input parameters).
The path condition encodes the constraints on the input
values, and it may refer to symbolic values that are no longer
stored in the tree, e.g. v5. Intuitively, this means that this
particular tree was created by a sequence that contained a
remove call which removed value v5 from the tree.

For state matching, we normalize the representation for
symbolic states, using existential quantifier elimination. In-
tuitively, we are only interested in the relative order of the
elements in the tree. For the example presented in Figure 6,
we write the following constraints:

∃v0, v1, v2, v3, v4, v5 :

e1 = v0 ∧ e2 = v3 ∧ e3 = v2 ∧ e4 = v4 ∧ e5 = v1 ∧ PC

We use the Omega library for existential quantifier elimina-
tion, which results in the following simplified constraints:

e1 > e2 ∧ e2 > e3 ∧ e2 < e4 ∧ e5 > e1 ∧ e4 < e1

The normalized symbolic state (shape plus simplified con-
straints) is used for state storing and comparison. A sym-
bolic state encodes all the concrete states that have the same
shape and whose elements satisfy the constraints.

Since symbolic states represent multiple concrete states,
state matching involves checking subsumption between states.
Let s1 and s2 be two symbolic states, and let γ(s1) and γ(s2)
denote the sets of concrete states represented by s1 and s2

respectively. A symbolic state s1 subsumes another symbolic
state s2, written s1 ⊇ s2, if the set of concrete states repre-
sented by s1 contains the set of concrete states represented
by s2, i.e. γ(s1) ⊇ γ(s2).

We check subsumption of two object states by checking
that they have the same shape (as given by linearization)
and that there is a valid implication between the correspond-
ing constraints - we use the Omega library for checking va-

e1

e3 e4

e5e2

1:

2:

3: 4:

5:

e1

e3 e4

e5e2

1:

2:

3: 4:

5:

Old state: New state:

Constraints:

e1>e2∧e2>e3∧e2<e4∧e5≥e1 ⇐ e1>e2∧e2>e3∧e2<e4∧e5>e1

Figure 7: Two symbolic states

lidity. For example, in Figure 7, Old state ⊇ New state: they
have the same shape and the following implication is valid:

e1 > e2 ∧ e2 > e3 ∧ e2 < e4 ∧ e5 ≥ e1

⇐ e1 > e2 ∧ e2 > e3 ∧ e2 < e4 ∧ e5 > e1

In our framework, we have implemented bi-directional sub-
sumption checking (line 8 in Figure 5). Let news denote a
new symbolic object state, and let olds denote a previously
visited and stored symbolic state:

• If olds ⊇ news, then checkSubsumptionAndStore re-
turns true and the model checker backtracks.

• If news ⊇ olds then olds is replaced with news (news is
“more general” than olds), checkSubsumptionAndStore
returns false and the model checker’s search contin-
ues (it does not backtrack).

Note that for each heap shape, we would like to store a
disjunction of constraints, i.e. to store unions of symbolic
states. In this case the bi-directional subsumption checking
would no longer be needed. However, a small technicality
prevents us (a bug in the Java implementation of the Omega
library that JPF uses).

We should also note that symbolic execution can be used
with abstract matching, i.e. replace line 8 in Figure 5 with
Verify.ignoreIf(store(abstractMap(t))). In particular,
the model checker can use only the shape of a symbolic ob-
ject state, for storing and matching, while discarding the
numeric constraints (see the shape abstraction in the previ-
ous section).

4.4 Random Selection
The environment that we use for random selection is sim-

ilar to the one presented in Figure 3, except that the nonde-
terminism is solved by random choice. When one (random)
run is completed the search is restarted from the initial state
and this process is repeated up to a user specified limit. In
our experiments, we set the limit on the number of runs to
1000. Random search can be run stand-alone or using JPF
– for our experiments we chose to run it inside of JPF. Note
that due to technical reasons of JPF implementation, states
are stored during the search (but they are never used).

4.5 Search Order
When considering an approach that uses state matching

to prune the search space of test input sequences up to a
fixed length we should note that we prefer to use breadth-
first search order (BFS) rather than depth-first search (DFS)
order. The reason is that DFS can miss portions of the state
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space due to matching states that were created by a shorter
sequence with those previously generated by a longer se-
quence (which was truncated due to hitting the length limit).
This problem is amplified when considering abstract state
matching, i.e. when matching states that are not necessarily
identical. Therefore, all the test input generation techniques
(besides random search) are used with BFS. Of course BFS
also has the desirable characteristic that it produces shorter
input sequences.

5. EVALUATION
As mentioned, we used the JPF model checking tool (ver-

sion 3) to implement our testing framework. In particular,
we used the listener mechanism [19] to observe the sequences
of API calls performed and output the sequence when a spe-
cific coverage goal is reached. This test listener keeps track
of the coverage obtained and calculates the average test in-
put length. The user can specify on the command line the
techniques to be used during the analysis. For the exper-
iments we also added a facility to run tests described in a
configuration file. The results of each run are collected in
a file and a script generates a latex table with the results
sorted by coverage.

5.1 Experimental Set-up
As a system under test we used Java implementations of

four container classes: binary tree (BinTree – 154 LOC),
binomial heap (BinomialHeap – 355 LOC), Fibonacci heap
(FibHeap – 286 LOC), and red-black tree (extracted from
java.util.TreeMap – 580 LOC). The methods of these classes
were instrumented to measure basic block coverage (which
implies statement coverage). At each basic block, we also
measure predicate coverage. As mentioned, we have no way
of computing the optimal predicate coverage. Therefore, we
refer to the highest obtained coverage as optimal. Also note
that our coverage numbers are absolute and not percentages
as is commonly the case for test adequacy measures.

Note that we only focus here on obtaining code coverage
and not on finding errors – this was a conscious decision to
avoid bias from different fault seeding approaches. However
in the future we would like to investigate whether the tests
that obtain high coverage are also likely to detect faults.

Each container class is augmented with an environment
as described in Section 4. For BinTree and TreeMap we only
considered add and remove API calls. For FibHeap we also
considered removeMin and for BinomialHeap we considered
add, remove, extractMin and decreaseKey(x,y). We con-
sidered these additional methods to determine the sensitiv-
ity of the techniques to the complexity of the environment.

We compare all the techniques described in the previous
section. We divide the techniques into two categories: ex-
haustive and lossy. Exhaustive techniques include: explicit
state model checking, explicit execution with complete ab-
stract matching (i.e. linearization of a structure with all
fields included) and symbolic execution with subsumption
checking. Lossy techniques include: explicit and symbolic
execution with abstract matching based only on shape and
random selection.

For the techniques that use abstract matching, the or-
der in which the state successors are generated can impact
the search performance significantly. Therefore, we consider
here successors taken in random order and we repeat each
experiment 10 times. We run each technique for different

values of sequence length M (from 1 to 30). For techniques
which perform explicit execution we also need to specify the
number of input parameters (N). In order to make the ex-
periments tractable, we always set M = N. Note that this
decision is quite justified in the context of containers, since
the sequence length typically defines the size of the con-
tainer, if each value added to the container is unique. If M >

N then containers of size M cannot be generated. For random
search we considered sequences up to length 50 and for each
length we perform 1000 runs – as with the other lossy tech-
niques each configuration is repeated 10 times. Since we use
longer sequences for random it might be argued that M = N

is unfair, and therefore we did some additional experiments
where M > N when using random search (discussed later in
the section).

5.2 Results
The results for exhaustive vs. lossy techniques measuring

basic block and predicate coverage are reported in Tables 1–
4. These results were produced from more that 10000 runs
that took two months CPU time to complete. The results
are split into four tables to show the difference in basic block
coverage and predicate coverage during exhaustive and lossy
search. The exhaustive experiments were preformed on a
2.66GHz Pentium machine running Linux and the lossy ex-
periments on a 2.2Ghz Pentium running Windows 2000. In
all cases memory was limited to 1GB.

For each technique we report the best result, i.e. the best
coverage that was obtained at the shortest sequence length
without running out of memory. Due to the randomization
in the lossy techniques, it may happen that some results
are obtained “luckily”. We report only “stable” results, i.e.
results achieved by all runs with a given parameter. The ex-
ception is random selection, where we report the best result,
even if it happened only on one run. It turned out that the
best results were always stable (of course excluding those for
random selection), i.e. all 10 runs reported the same results.

We report the coverage, the sequence length (the mini-
mum sequence length at which the coverage was obtained),
the time taken (in seconds), memory used (in MB) and the
average test sequence length. For the lossy techniques, the
time, memory and average length are calculated by taking
an average of the 10 runs. Numbers in bold show the maxi-
mum sequence length for which exhaustive results could be
obtained.

5.3 Discussion
We will follow each discussion segment with some concrete

conclusions (given in italics).

5.3.1 Exhaustive vs. lossy techniques
It is interesting to first note the complexity of some of

the analyzed containers. For example, one needs sequences
of length 14 to obtain basic block coverage (therefore also
statement coverage) for BinomialHeap – 21 is the optimal
coverage. From the exhaustive techniques only the symbolic
execution approach using subsumption achieved this cover-
age. For FibHeap the optimal coverage is 25 and none of
the exhaustive techniques could obtain this coverage before
running out of memory. For BinTree and TreeMap the ex-
haustive techniques fared better and only model checking
failed to get the optimal coverage for TreeMap. It is inter-
esting to note that the two cases for which the exhaustive
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Table 1: Exhaustive Techniques – Basic Block Coverage
Container Technique Coverage Seq. Length Time (s) Memory (MB) Avg. Length

Model Checking 14 3 1 4 2.2
BinTree Complete Abstraction 14 3 1 3 2.2

Symbolic Subsumption 14 3 1 4 2.2
Model Checking 17 5 35 129 2.8

BinomialHeap Complete Abstraction 17 5 8 29 2.8
Symbolic Subsumption 21 14 910 1016 4.2

Model Checking 20 5 55 214 3.7
FibHeap Complete Abstraction 24 7 8 19 4.2

Symbolic Subsumption 24 7 15 54 4.2
Model Checking 37 6 38 243 4.2

TreeMap Complete Abstraction 39 7 9 34 4.3
Symbolic Subsumption 39 7 15 22 4.3

Table 2: Lossy Techniques – Basic Block Coverage
Container Technique Coverage Seq. Length Time (s) Memory (MB) Avg. Length

Shape Abstraction 14 4 1 3 2.2
BinTree Symbolic Shape Abstraction 14 3 1 4 2.2

Random Selection 14 3 7 3 2.4
Shape Abstraction 21 15 7 8 4.3

BinomialHeap Symbolic Shape Abstraction 21 14 1084 1016 4.2
Random Selection 21 32 59 9 13.2
Shape Abstraction 25 12 26 34 4.4

FibHeap Symbolic Shape Abstraction 25 12 216 608 4.5
Random Selection 25 25 41 9 10.2
Shape Abstraction 39 10 2 6 4.6

TreeMap Symbolic Shape Abstraction 39 7 7 22 4.3
Random Selection 39 10 18 5 7.1

techniques fare better have simpler environments than the
two cases where these techniques perform less well. All the
lossy techniques achieved the optimal basic block coverage
and where comparable, they achieved it faster and with less
memory than the exhaustive techniques.

We anticipated that the exhaustive techniques would eas-
ily generate all tests to obtain basic block coverage – this is
clearly not the case. The lossy techniques seem better suited
for achieving code coverage. “Classic” model checking scales
poorly even for the basic block coverage.

5.3.2 Symbolic execution
With the exception of BinTree – which is the simplest

example – none of the exhaustive techniques obtain the op-
timal predicate coverage. With one exception, the symbolic
execution with subsumption performs the best of the ex-
haustive techniques for both coverage measures. This is to
be expected since the symbolic reasoning covers infinitely
more cases than the explicit execution.

Symbolic execution with subsumption checking is, as an-
ticipated, the most effective exhaustive technique. For the
TreeMap example it achieves good predicate coverage, even
considering the lossy techniques.

5.3.3 Abstract matching
State matching based on the shape abstraction is a lossy

technique that performs the best of all the techniques: not
only does it obtain the highest coverage (joint with others
in some cases), but it obtains it for shorter sequences and
it is faster. Only random selection, that essentially has no

memory footprint, uses less memory when coverage is the
same. We conjecture that for the analyzed containers, the
shape is a very accurate representation of its state and hence
the shape abstraction is appropriate here. It is an open
question whether this will hold for general programs – it is
likely to be the case for programs that manipulate complex
data.

The complete abstraction that takes the shape and all
fields into account performs almost as well, but uses more
time and memory. This technique also performs consistently
better than “classic” model checking which is closely re-
lated, but takes more than just the state of the container
in consideration for state matching. Note that the complete
abstraction also includes what is called a (data) symmetry
reduction in model checking [18], and points to the fact that
this kind of reduction is very useful in analyzing containers
through API calls as we do here.

Shape abstraction as a means for state matching performs
better than the other techniques considered. We conjecture
that for the analyzed containers, the shape is a very accurate
representation of its state. When doing test input generation
for programs that manipulate complex data, this should be
tried before other, more expensive, techniques.

5.3.4 Random selection
This is a traditional approach to test case generation; it is

not based on state matching, hence it is the dual of the other
methods suggested here and forms a useful point of compari-
son. Interestingly, in the related literature, it is almost never
included in this kind of comparison. Here random search got
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Table 3: Exhaustive Techniques – Predicate Coverage
Container Technique Coverage Seq. Length Time (s) Memory (MB) Avg. Length

Model Checking 54 6 81 251 3.5
BinTree Complete Abstraction 54 6 14 84 3.5

Symbolic Subsumption 54 6 19 39 3.5
Model Checking 34 5 43 130 3.4

BinomialHeap Complete Abstraction 39 6 93 365 3.8
Symbolic Subsumption 84 14 954 1016 6.8

Model Checking 31 5 59 208 4.0
FibHeap Complete Abstraction 89 11 733 1016 6.8

Symbolic Subsumption 76 9 187 582 6.1
Model Checking 55 6 38 229 4.5

TreeMap Complete Abstraction 95 10 271 844 5.8
Symbolic Subsumption 104 12 594 896 6.3

Table 4: Lossy Techniques – Predicate Coverage
Container Technique Coverage Seq. Length Time (s) Memory (MB) Avg. Length

Shape Abstraction 54 9 4 11 3.6
BinTree Symbolic Shape Abstraction 54 6 21 35 3.5

Random Selection 54 8 15 4 6.2
Shape Abstraction 101 29 42 26 9.0

BinomialHeap Symbolic Shape Abstraction 84 14 1050 1016 6.8
Random Selection 94 48 85 13 32.8
Shape Abstraction 93 15 243 292 7.1

FibHeap Symbolic Shape Abstraction 92 13 539 1016 6.9
Random Selection 90 39 65 12 20.2
Shape Abstraction 106 20 281 1016 7.2

TreeMap Symbolic Shape Abstraction 102 13 1309 1016 6.2
Random Selection 106 39 78 17 25.5

the optimal basic block coverage, but as expected for longer
sequence lengths than the other techniques. In two cases,
it also got the optimal predicate coverage, but for the other
two it got considerably less than optimal. Again it is in-
teresting to note that the two it fared worse in are the two
examples with more complex environments (BinomialHeap
and FibHeap). This supports the belief that random selec-
tion suffers when the environment is not only large, but only
a (small) subset of the options will produce the desired re-
sult: note that the environment for basic block coverage is
the same as for predicate coverage, but predicate coverage
requires very particular sequences to obtain high coverage.

It is probably human nature to want the simplest solu-
tion also to perform the best. With this in mind we also
wanted to improve on the results obtained for random selec-
tion. It was conjectured that picking M = N might adversely
affect random search since the number of choices increase at
higher values of M and N although the space of useful values
(i.e. the ones that can obtain the optimal coverage) in-
crease much slower. Therefore we repeated the experiments
for predicate coverage with M being fixed at the value we
found the coverage from Table 4, but with N being brought
down from M to the smallest value we knew could still get
the coverage according to the other results obtained. For
example for TreeMap this meant running with M = 39 and
N varying from 39 down to 20 (a conservative lower-bound
seen for the shape abstraction analysis).

Note that these results are somewhat biased towards get-
ting good results for random selection. Ironically, the re-
sults indicate that random selection is less effective, when

we add one more dimension to the quality criteria, namely,
frequency of highest coverage obtained. Originally we mea-
sured the coverage once during any run of the random se-
lection, and that is what is reported in Table 4. However
doing all the additional experiments, and taking into ac-
count only runs that could obtain the optimal coverage we
found that the percentage chance of getting the optimal cov-
erage for random (note, not necessarily the optimal cov-
erage for all techniques) were as follows: 1.5%(6/400) for
TreeMap, 0.38%(2/520) for FibHeap and 0.17%(1/600) for
BinomialHeap. Note that again the reduction in chance of
finding optimal coverage follows the order of the complexity
of the environments, where TreeMap’s environment is sim-
pler than FibHeap’s environment which in turn is simpler
than BinomialHeap’s environment.

Considering the likelihood of obtaining the optimal results,
random search performed poorly for obtaining high predicate
coverage. We believe that the reason is that the input search
space is complex/large and only a selected subset gives opti-
mal results; in these situations the techniques based on shape
abstractions yielded superior results.

5.3.5 Complex data structures as input parameters
Here we did not consider API calls that take structured

data as input. In prior work [30] we analyzed TreeMap with
structured inputs with a black-box test input generation
technique similar to Korat [7] and a white-box symbolic ex-
ecution technique based on lazy initialization. These tech-
niques would be applicable in the current evaluation too.
However, we believe that it is unlikely that they would scale
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to large enough structures to get the optimal coverage ob-
tained here. Furthermore, we believe that random search
will also not work well for complex data, since the domain
of possible structures will be very large, whereas the subset
of these that are valid structures will be small. However, we
need to do more experiments to validate these claims.

5.3.6 Challenge
In addition to the techniques and results reported here we

also performed some experiments using the heuristic search
facilities in JPF [13]. For the most part, the results were
similar to what was reported here. However, using heuris-
tic search for FibHeap with symbolic shape abstraction pro-
duced predicate coverage of 141 for sequence length 23 (bet-
ter coverage than any other result here). This result indi-
cates that there are more interesting test input generation
techniques that need to be explored. In light of this we
will make all our sources available on the JPF open-source
website [19] for others to try additional techniques.

6. RELATED WORK
The work related to the topic of this paper is vast, and

for brevity we only highlight here some of the closely related
work. The most closely related works to ours are tools (and
techniques) that generate test sequences for object oriented
programs. We summarize them first.

JTest [20] is a commercial tool that generates test se-
quences for Java classes using “dynamic” symbolic execu-
tion, which combines concrete and symbolic execution over
randomly generated paths. Unlike our work, this tool gener-
ates tests that may be redundant (exercise the same code),
with little guarantees in terms of testing coverage. However,
as we have seen in our experiments, random selection turns
out to be pretty effective.

The AsmLT model-based testing tool [12] uses concrete
state space exploration techniques and abstraction mappings,
in a way similar to what we present here. Rostra [32] also
generates unit tests for Java classes, using bounded-exhaustive
exploration of sequences with concrete arguments and ab-
straction mappings. While both these tools require the user
to provide the abstraction mappings, we provide automated
support for shape abstractions that we have found very use-
ful (see the experiments).

In previous work [30], we showed how to use model check-
ing and symbolic execution to generate test inputs to achieve
structural coverage for code that manipulates complex data
structures, such as TreeMap. The approach was used in
a black-box fashion (but it required an input specification
written as a Java predicate – similarly to the Korat [7] tool)
or in a white-box fashion (in which case only the source code
for the method under test was needed). However, this ap-
proach was not used to generate method sequences (as we do
here), but rather to build complex input structures that ex-
ercise the analyzed code in the desired fashion. Similarly, [4]
discusses techniques to build complex input for testing red
black tree implementation. On the other hand, Symstra [33]
is a test generation tool that uses symbolic execution and
state matching for generating test sequences for Java code –
this is similar to our technique that uses symbolic execution
and subsumption checking. Our paper contributes a novel
combination of symbolic execution with abstraction, evalua-
tion on Java container classes in terms of predicate coverage
and comparison with random testing.

In a short paper [29], we discuss the use of explicit state
model checking and abstractions for generating input test
sequences for red black trees. In this paper we extend that
work in several ways: we discuss the use of abstraction in
the context of symbolic execution for test input generation
and we provide an extensive evaluation using several Java
container implementations (in addition to red black trees).

The Korat [7] tool, see also TestEra [23], supports non-
isomorphic generation of complex input structures. Unlike
the work presented here, this tool requires the availability of
constraints representing these inputs. Korat uses constraints
given as Java predicates (e.g. repOK methods encoding class
invariants). Similarly, TestEra [23] uses constraints given in
Alloy to generate complex structures.

The ASTOOT tool [9] requires algebraic specifications to
generate tests (including oracles) for object oriented pro-
grams. The tool generates sequences of interface events
and checks whether the resulting objects are observation-
ally equivalent (as specified by the specification). Although
here we were only interested in generating test sequences,
using an algebraic specification to check the functional re-
quirements of the code is a straightforward extension.

A set of techniques, not investigated in this paper, use
optimization based techniques (e.g. genetic algorithms) for
automated test case generation [27, 5]. In the future, we
plan to compare these optimization based techniques with
the state matching based techniques that are implemented
in our framework.

The work presented here is related to the use of model
checking for test input generation [1, 10, 15, 17]. In these
works, one specifies as a (temporal) property that a specific
coverage cannot be achieved and a model checker is used
to produce counterexample traces, if they exists, that then
can be transformed into test inputs to achieve the stated
coverage. Our work shows how to enable an off-the-shelf
model checker to generate test sequences for complex data
structures. Note that our techniques can be implemented in
a straightforward fashion in other software model checkers
(e.g. [11, 8]).

Recently two popular software model checkers, BLAST
and SLAM, have been used for generating test inputs with
the goal of covering a specific predicate or a combination of
predicates [6, 3]. Both these tools use over-approximation
based predicate abstraction and use some form of symbolic
evaluation for the analysis of (spurious) abstract counterex-
amples and refinement. We use under-approximation based
abstraction – hence no spurious behavior is explored. The
work in [3] describes predicate coverage as a new testing
metric – we use a simplified version here; [3] also describes
ways to measure when the optimal predicate coverage has
been achieved (this a direction for future work that we would
like to pursue).

The idea of using abstractions during model checking has
been explored before. In [16], the abstractions need to be
provided manually, while [24] uses automatic predicate ab-
straction for state matching during the the explicit execu-
tion of concurrent systems. In [2] we present a method for
checking subsumption during symbolic execution; further-
more, shape abstractions are used to prune the search state
space. Subsumption checking in [2] is more general than here
(it handles partially initialized heap structures and summary
nodes). However the abstractions in [2] can only handle lists
and arrays, and not tree structures as we do here.
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There is a lot of work on comparing random with par-
tition testing in terms of cost effectiveness, e.g. [31, 14].
The verdict is still uncertain: [31] seems to suggest that
random testing could be superior to partition testing un-
der certain assumptions, while [14] suggests that, under dif-
ferent assumptions, partition testing is superior. Although
fairly preliminary, we hope that our experiments will shed
some light on this controversy, in the context of testing of
data structures. Abstract matching can be seen as a form
of partition testing (the state space explored by the model
checker is partitioned according to the abstraction mapping)
and seems superior to the other techniques.

7. CONCLUSIONS
We presented test input generation techniques that use

state matching to avoid generation of redundant tests. The
techniques range from exhaustive techniques such as classic
model checking and symbolic execution with subsumption
checking, through lossy abstraction techniques that use the
shape of a container for state matching. We evaluated the
techniques in terms of testing coverage achieved by the gen-
erated tests and we also compared them to random selection.

For the simple basic block coverage the exhaustive tech-
niques are comparable to the lossy ones while for predicate
coverage (which is more difficult to achieve) the lossy tech-
niques fared better at obtaining high coverage. Random
selection performed well except on the examples that con-
tained complex input spaces, where the shape abstractions
performed better. However, one should not lose sight of the
strong guarantees that an exhaustive search, such as sym-
bolic execution with subsumption, can provide: up to the
maximum sequence length that allows exhaustive analysis,
one can show that the implementation is free of errors.

For the future, we plan to investigate whether the shape
abstraction that proved to be effective here, will also work
for generating tests for other (more general) Java programs.
We also plan to investigate other abstractions for our frame-
work, e.g. abstractions used in shape analysis [26], and we
plan to extend our evaluation to Java methods that take
complex data structures and arrays as inputs.

Another direction for future research is to investigate the
use of predicate abstraction for the automatic generation of
different abstraction mappings. Towards this end, we plan
to extend our work on automatic derivation of under ap-
proximation based abstractions [24], where we used a (back-
ward) weakest precondition based calculation for automatic
abstraction refinement. In the current setting we plan to
adapt this algorithm to use (forward) symbolic execution.
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