
Interpretable Clustering of Students’ Solutions
in Introductory Programming

Tomáš Effenberger and Radek Pelánek

Masaryk University Brno
Czech Republic

tomas.effenberger@mail.muni.cz, pelanek@fi.muni.cz

Abstract. In introductory programming and other problem-solving ac-
tivities, students can create many variants of a solution. For teachers,
content developers, or applications in student modeling, it is useful to
find structure in the set of all submitted solutions. We propose a generic,
modular algorithm for the construction of interpretable clustering of stu-
dents’ solutions in problem-solving activities. We describe a specific re-
alization of the algorithm for introductory Python programming and
report results of the evaluation on a diverse set of problems.

1 Introduction

Learning environments often provide problem-solving activities, where students
construct solutions that are automatically evaluated for correctness while still
allowing for multiple approaches. We focus on introductory programming in
Python, but similar types of problems are common in computer science edu-
cation (e.g., regular expressions, SQL), mathematics (geometry constructions,
logic proofs), or physics (gravity, electrical circuits).

Even for a simple problem, there may be many solutions; see Fig. 1 for a
specific illustration for introductory programming. All these programs passed
functionality tests, yet they differ significantly in their style and quality. Online
learning environments collect a large number of solutions, and it is not feasible to
analyze all of them manually. It is thus useful to use machine learning techniques
to uncover structure in the solution set, particularly to cluster similar solutions.

Such clustering has several use cases. To teachers, it provides a summary of
students’ approaches, examples of poor style, or inspiration for class discussion
[6]. The understanding of students’ solutions is also valuable for content authors;
the clustering can reveal that a problem is solved in an unexpected way, which is
helpful for guiding revisions and the development of new content [13]. Another
application is automating feedback to students [17,18]. If we are able to find
sufficiently coherent clusters, we can use the same feedback message for the
whole cluster. Clustering can also be used to improve student models since the
cluster into which a solution belongs provides additional information about the
student’s state beyond the commonly used answer correctness and response time.
For example, a solution to a programming problem can contain evidence of a
misconception or insufficient understanding of some programming concepts.

def count_a(text):
 count = 0
 for i in text.lower():
 if i == "a":
 count += 1
 return count

def count_a(text):
 x = text.count('a') \
 + text.count('A')
 return x

def count_a(text):
 count = 0
 for i in text:
 if i == "a" or i == "A":
 count = count + 1
 return count

def count_a(text):
 text = text.upper()
 count = 0
 for letter in text:
 if letter == "A":
 count += 1
 return count

def count_a(text):
 n = 0
 for i in text:
 if i == 'a' or \
 i == 'A':
 n += 1
 return n

def count_a(text):
 x = 0
 for i in range(len(text)):
 if text[i] == "A" or \
 text[i] == "a":
 x += 1
 return x

b ca

d e f

Fig. 1. Examples of students’ solutions to the following programming problem: “Write
a function that counts the occurrences of letters ‘a’ and ‘A’ in a text.”

Clustering of students’ solutions has been tackled before, even specifically
for the introductory programming [3,5,21]. Yet, no algorithm was developed that
would lead to a small number of interpretable clusters, as needed for many of the
outlined use cases. Consider, for instance, feedback writing. Having a guarantee
that all solutions in the cluster contain for and if, and do not contain ord can
save you from manually inspecting all the solutions.

Previously proposed algorithms that consider interpretability are based on
some notion of exact matching (e.g., equivalence after canonicalization), which
leads to hundreds of small clusters [6,9,14]. With so many clusters, the complete
clustering is not well-interpretable, even if the individual clusters are. Another
substantial limitation of these previous attempts is that they were evaluated
on just 3 or 4 similar problems, and it is not at all clear how well they would
generalize beyond them.

Outside of the educational domain, several interpretable clustering algo-
rithms have been proposed. They describe clusters using either branches in a
decision tree [2,4,15], frequent patterns [19], or the most relevant features in ma-
trix decomposition [8]. These algorithms cannot be used off-the-shelf for cluster-
ing students’ solutions since they are not designed to utilize varying importance
of solution’s features, e.g., the occurrence of recursion vs. addition.

In this paper, we formulate the problem of interpretable clustering of stu-
dents’ solutions in terms of desirable properties of such clustering. We then
propose a generic algorithm to solve this problem, describe its specific realiza-
tion for introductory programming in Python and report the results it gives for
a diverse set of problems.

2 Interpretable Clustering Problem

The general aim of interpretable clustering of students’ solutions is to compute
clusters of solutions that are useful for the intended applications where the in-
terpretability is indispensable. To facilitate interpretability, the output should
consist of not just the clusters of solutions but also their succinct description. An

2

example of such description is “for, if, or, no [i]” for solutions that use
for, if, and or and do not use indexing. Although the utility of a clustering de-
pends on the specific application, we can formulate three general key properties
of any interpretable clustering: homogeneity, interpretability, and coverage.

Homogeneity. Each cluster should be compact, i.e., the solutions within the
cluster should be similar to each other. In addition, the clusters should be well
separated from each other, i.e., the solutions from different clusters should be
dissimilar. These two requirements apply to non-interpretable clustering as well,
and many metrics to quantify them have already been proposed, e.g., variance
ratio, Xie-Beni index, and Silhouette coefficient [16]. Many of these metrics de-
fine homogeneity as the ratio between within-cluster compactness and between-
clusters separability. Compactness can be measured, for instance, as the average
distance between two points in the cluster and the separability as the distance
from the cluster centroid to the closest centroid of another cluster.

Interpretability. Each cluster should be accompanied by a succinct de-
scription. These descriptions should provide insight into students’ approaches
and facilitate the writing of useful feedback applicable to all solutions in the
cluster. Some applications require perfect recall of the descriptions, meaning
that the description applies to all solutions in the cluster. Without perfect re-
call, the description could easily mislead the user to write feedback that does
not make sense for some of the solutions. This condition is also referred to as
strong interpretability or 1-interpretability [19]. Ideally, the description should
apply only to the solutions in the cluster being described (perfect precision). We
may, however, trade off precision for improvement in other criteria.

Coverage. Each cluster should cover a reasonable portion of the solutions.
Consequently, a small number of clusters should be sufficient to cover a vast
majority of the solutions. For most applications, we do not need to have complete
coverage — it is sufficient to cover all the typical solutions and report the rest as
atypical. The appropriate number of clusters depends on the application; in our
experience, 4 to 8 clusters are appropriate for writing feedback and providing
insight to authors.

3 Interpretable Clustering Algorithm

In this section, we describe an algorithm that solves the interpretable clustering
problem. The proposed algorithm is flexible — it can be applied to any problem
type just by specifying appropriate features, and it can be adapted to different
use cases by adjusting parameters that determine focus on individual criteria
(homogeneity, interpretability, and coverage). Thus it constitutes a good starting
point against which to compare more complex or specialized approaches.

In the description of the algorithm, we use the following terminology: feature
is a property of a solution (e.g., usage of a concept like if or nested loops),
clause is a single feature with an optional quantifier (e.g., many if, no elif),
pattern is a conjunction of multiple clauses, and label is a short, possibly impre-
cise description of the pattern.

3

selected
features

feature
selection

pattern
mining

candidate
patterns

pattern
selection

pattern
scoring

selected
patterns

clustering
summarization

criteria
weights

data

algorithm

parameters

feature
weights

student
solutions

min. score,
max. patterns

max features,
size limits,
min. diff.

max. patterns,
N features,
size limits

Fig. 2. Overview of the proposed interpretable clustering algorithm.

The input to the algorithm is a set of students’ solutions to a given problem,
represented in the form of a feature matrix. The features should be interpretable
properties of the solutions, such as recursion. The algorithm describes the
clusters by patterns over these interpretable features. In the final stage, the
patterns are converted to short labels by omitting less important clauses.

The algorithm consists of four stages (Fig. 2), which are to a large degree
independent and can be individually improved — or even approached in a dis-
tinctively different way than in our proposal. The four stages are:

1. feature selection: For the given problem, we select a small set of important,
relevant, and distinct features.

2. pattern mining: Combining the selected features, we generate a set of
candidate patterns that capture a large portion of the solutions, with the
preference for short patterns with important features.

3. pattern selection: We score each candidate pattern with respect to its
homogeneity, interpretability, and coverage. We then select the pattern with
the highest score, remove matching solutions and repeat. We stop once we
have enough patterns, or earlier if there is no pattern with a high score.

4. clustering summarization: We summarize each cluster by a short label
derived from the pattern, together with a few examples of specific solutions
from the given cluster.

A useful tool for understanding, implementing, and improving the algorithm
is the feature matrix visualization with a column for each solution and a row for
each feature (Fig. 3). If we cluster the solutions according to the selected feature
patterns, we can see homogeneity and coverage of individual clusters at a glance.

3.1 Feature Selection

Different problem types need different features. For regular expressions problems,
individual letters might be sufficient, while for programming problems, letters
would be useless. Instead, we can extract keywords and compute statistics such
as the number of variables from the abstract syntax tree of the program [7,17,20].
A completely different set of features can be obtained by similarity analysis, e.g.,
edit distances to other solutions [12,21], or dynamic analysis, e.g., variable values
sequences [6,9].

Many of these features might be useful for non-interpretable clustering, but
only the ones that are interpretable by themself are suitable for the interpretable

4

a b c d e f

for-if
count
upper
lower

ord
list
[i]

aux.var.
elif

else
short
long

or
+=

in

count, shortfor-if, [i], or for-if, lowerfor-if, no [i], or, += for-if, no [i], or, no +=for-if, no lower, no or, += other

Fig. 3. Clustered feature matrix for the problem Count A with highlighted solutions
a–f from Fig. 1. Each column corresponds to one solution, each row to one feature.
Color hue denotes presence of features in solutions. Darker colors denote features in
the corresponding pattern.

clustering. The more comprehensive and interpretable features, the better the
output of the clustering algorithm, which is why some authors hand-crafted very
specific features such as shape of the memoization array for dynamic program-
ming problems [14], or whether a given sorting function is in-place [20].

Our algorithm can utilize domain knowledge about importance (interpretabil-
ity) of the features in the form of feature weights. Instead of setting them man-
ually, the weights can also be estimated from the data, e.g., based on the preva-
lence of the feature in the solutions.

If we define the features and their weights for a problem type, then only a
fraction of these features might be relevant for any specific problem. Therefore,
in the first stage, we select a set of useful features for the given problem. We use
a greedy approach: considering one feature at a time, starting with the feature
with the highest weight, we select the feature unless it is either extremely rare,
used in nearly all solutions, or too similar to one of the already selected features.
To measure the similarity between two features, we use the Jaccard coefficient
(ratio of intersection and union) of the sets of solutions containing these features.

To illustrate the feature selection, let us consider the Count A problem (Fig.
1). The algorithm — assuming thresholds discussed later in section 4.1 — selects
15 features that are listed in Fig. 3. It skips 10 rare features, e.g., recursion,
which was used in only 4 out of 240 solutions. It also skips 6 features too similar
to other already selected, e.g., if, which closely coincides with more specific
for-if.

3.2 Pattern Mining

The next step is to generate frequent patterns using the selected features. In
contrast to the well-known apriori algorithm and other general pattern mining
techniques [10], we take into account the interpretability of the patterns by
preferring fewer clauses and important features (i.e., features with high weights).
Our approach is similar to the depth-first tree projection algorithm for mining
frequent itemsets [1], using feature weights for the ordering of the features.

5

We generate the candidate patterns recursively, starting from an empty pat-
tern. For each feature and each possible quantifier, we try to extend the parent
pattern by one clause (quantified feature). We then check whether the extended
pattern is sufficiently frequent (i.e., whether there are enough solutions that
match the pattern) while simultaneously not too similar to the parent pattern
(i.e., whether there are enough solutions that match the parent pattern but
not the extended pattern). If both conditions are met, we include the extended
pattern into the candidate set and search for more specific patterns recursively.

The search tree can differ a lot between problems, so it is impossible to
have a single set of universal thresholds. We circumvent this issue by iterative
deepening : we start with tight thresholds, run the search and iteratively loosen
the thresholds until we find a sufficient number of patterns (e.g., 1000).

We introduce two additional modifications that increase the interpretability
of the generated patterns. First, we increase the thresholds on the pattern in-
clusion in proportion to the length of the pattern, expressing the preference for
shorter patterns. Second, we increase the number of considered features in each
iteration (iterative broadening), expressing the preference for important features.

3.3 Pattern Selection

To select patterns, we use a greedy approach known as sequential covering [11].
In each iteration, we score all candidate patterns, select the best, and remove
matching solutions. This process is repeated until we select a prespecified number
of patterns or until there is no pattern with a score above a prespecified threshold.
Instead of using a constant threshold for the minimum score, we can increase it
in each iteration; this is useful when the problems are diverse: starting with a
low threshold ensures that at least some patterns are selected, while increasing
it after each iteration avoids selecting an excessive number of patterns.

Pattern scoring reflects the desirable properties of homogeneity, interpretabil-
ity, and coverage. We operationalize these properties using scores with a value
between 0 and 1; a higher value is better. In the following discussion, we highlight
the high-level idea and rationale behind each part of the scoring function. We
also briefly mention specific formulas used in our realization of the algorithm.

Homogeneity consists of two aspects — hard and soft — which are av-
eraged. Hard homogeneity is the degree to which all solutions in the cluster
share some features (or their absence). Hard homogeneity is closely related to
interpretability and actionability of clusters since exact matches are easy to un-
derstand and act upon (e.g., in feedback). We quantify hard homogeneity as
the sum of weights of the shared features, normalized by the sum of weights of
all relevant features selected for the problem. Soft homogeneity is the degree to
which solutions in the cluster are similar and differentiated from other clusters.
Soft homogeneity also applies to non-interpretable clustering, but the standard
measures like Silhouette coefficient [16] must be adapted to work with an incom-
plete clustering. We quantify soft homogeneity as max(0, 1 −Din/Dout), where
Din is the mean distance from a solution within the cluster to the centroid, and
Dout is the mean distance from a solution outside the cluster to the centroid.

6

Interpretability considers four properties of the pattern; the interpretabil-
ity score is the product of the individual criteria. The pattern should be short
(long patterns are harder to interpret) and contain features that are important
and positive (negative clauses are harder to interpret). The fourth aspect is pre-
cision, which expresses the preference to avoid “false positives,” i.e. solutions
matching the pattern that are already assigned to one of the previous patterns.
Specifically, the length score is bL−1, where L is the number of clauses and
b = 0.95; the importance score is the average of the maximum and mean fea-
ture weights, normalized by the maximum weight over all selected features; the
positivity score is 1− c · (proportion of positive clauses), using c = 0.5; and the
precision is the ratio of the number of solutions in the cluster to the number of
all solutions matching the pattern.

Coverage is based on the size of the cluster. A straightforward approach
would be to make the coverage score equal to the relative size r of the cluster.
However, it is more important to distinguish clusters of the sizes 3% and 6%
than clusters of sizes 53% and 56%, so it is preferable to use a nonlinear scoring
function. We use a simple, one-parametric piecewise linear function. Specifically,
the coverage score is 1−k

k r for r < k and k
1−k r+1− k

1−k for r ≥ k, using k = 0.2.
Overall score. To combine these three criteria into a single score, we take

their harmonic mean. The harmonic mean is more sensitive to the lowest value
than the arithmetic mean, which better suits the requirement that all three
criteria should be reasonably satisfied — even perfect coverage cannot make
up for poor interpretability. If one of the criteria is more important for the
considered use case, weighted harmonic mean can be used.

3.4 Clustering Summarization

Finally, it is useful to provide a short description of each cluster, as the full pat-
terns are sometimes too long. A basic step is to remove implied features (e.g.,
for-if implies if). We can also simplify patterns by omitting some less impor-
tant clauses. For example, negative clauses like no import are only informative
if the feature appears in many solutions; otherwise, the user is likely to assume
that the feature is not used unless specifically mentioned in the pattern.

4 Application to Python Programming

We have developed a proof-of-concept implementation of the algorithm and ap-
plied it to introductory Python programming data. The data come from an online
learning environment umimeprogramovat.cz, which is used by both high school
and university students. The environment offers quite a standard interface for
solving programming problems: students see a problem statement and a sample
testing data, write the code inside the browser, and after each submission, their
solution is evaluated on hidden tests. If the submitted program is incorrect, the
student can improve it and submit again. In this work, we consider only the
correct solutions (i.e., the solutions that passed the tests).

7

The problems in the environment cover most topics typically included in the
first university programming course (CS1). The simplest problems are one-line
programs, such as writing a logic condition. The most difficult ones can still be
solved with up to 15 lines of code but involve non-trivial concepts like lists and
nested loops and take an average student around 15 minutes. The number of
collected solutions ranges from 80 to 550 per problem.

4.1 Methodology and Setting

We have developed the algorithm iteratively using 11 problems (2 358 solutions).
We have manually labeled a subset of solutions from these problems to clarify
the desirable output of individual stages and perform experiments to refine the
algorithm and find reasonable values for parameters. After this design phase, we
reached the algorithm as described above. Then, we tested the algorithm on 11
new problems (2 598 solutions) without any change to the algorithm, parameter
values, or feature weights. The number of problems may seem small, but our
dataset is actually much more diverse than the datasets used in previous work
[6,9,14], which contain just 3 or 4 similar problems.

The algorithm requires specification of features relevant for a given problem
type, together with their weights. We automatically extract about 100 features
from the abstract syntax tree. Most features correspond directly to a node in
the abstract syntax tree (e.g., for, if), but a few are derived from relationships
between multiple nodes (e.g., recursion, for-if). In addition, we use features
short and long for programs that are below the first or above the last quartile
in the number of lines for a given problem.

To set the feature weights, we used a semi-automatic approach. We started
with weights estimated by a heuristic based on how soon and how frequently the
feature appears in students’ solutions (considering the ordering of problems in
the learning environment), and then we manually adjusted some of the weights
according to our experience with feedback writing.

To set values for other parameters, we used the training set of 11 problems.
The advantage of the modular approach is that individual stages are largely in-
dependent, and thus each parameter can be set by analyzing inputs and outputs
of a single stage. Using this approach, we reached the following setting:

– feature selection: max. 20 features, rel. size limit 0.02, min. difference 0.1,
– pattern mining : max. 1000 patterns; 12 + i features and relative size limit

0.09− 0.01 · i in the i-th iteration (i ∈ 1, 2, . . . , 8),
– pattern scoring : unit weights in the harmonic mean; coverage score function

with k = 0.2, length score base b = 0.95, positivity effect c = 0.5,
– pattern selection: max. 10 patterns, min. score 0.05 · i in the i-th iteration.

4.2 Results

Fig. 4 contains a compact overview of the obtained clusters for the 22 problems.
The problems are displayed in the same order in which they appear in the learn-

8

good solutions

Big Even

Middle Number

Horseshoes

Rock Paper Scis.

Even Numbers

Factorial

Divisors

Print Products

Digit Sum

Fibonacci

Empty Square

Chessboard

Big N

Pyramid

Count A

First Letters

Censorship

Alphabet

Multiples of Five

Unique Items

Print Primes

Most Common

elif, and if, and, or if, else, long ! no if, and ! max ! if, no elif,
no or

elif, else, many logic ops elif, no and, logic ops sorting ! if, many and elif, else,
long

if,
no elif

elif, else elif, % elif, aux. var. no elif elif,
no else abs

elif, else, many and, or many elif, and elif, else,
long, no and

no else,
many and, or ! elif, else, or no elif,

no or

for-if no for-if, * aux. var.,
no for-if

recursion for ! no rec.,
no for

! for-if

for-for-if %, // %, no long, / ! %, long

while, += for, no list, [i] while, no += ! for, no [i] sum

for, short for, no if, no short for, if,
no if-for while if-for

! for-for-if for-if,
no nested loops outer-if for-if-for ! no for-if,

no if-for

! nested-for, for-if, no if-for for-if-for-if ! no for-for-if,
no if-for ! outer-if

for-for-if no for-for, str-mult, short no def, str-mult, no short def !
for-for-if str-mult, short no for-for-if, for-for str-mult,

aux. var.
no for-for-if, str-mult,
no aux. var.

for-if, [i], or for-if, no [i], or, += count, short for-if,
lower ! for-if, no lower,

no or, +=
for-if, no [i],
or, no +=

for-if, no aux. var., and no for-if, aux. var. for-if,
aux. var., and split, no aux.var. for-if,

split for-if, no and

for-if, str-add, [i] ! for-if,
no str-add, [i]

for-if,
no [i], += [a:b] !no for-if

aux.var.

no nested loops, for-if, chr no for-for, no for-if, chr, % ! for-for ! no nested loops, [i] while-for

! for-if while-if

for-if, not in ! for-if, in nested
loops !no in,

no not in

def, while-if while-for-if, while-if ! nested-for while-if-for!no nested-for,
no while-if

for-for-if ! for-if, count, no sorting ! for-if, sorted ! for-if, sort Counter ! no for-for-if,
no count, no sorting

*

*

*

*

*

*

*

*

*

*

*

* training set weak feedback

strong feedback

! slightly non-homogeneous

! unsuitable cluster computed homogeneity

0 1Annotations

Fig. 4. Overview of clusters found by the algorithm, together with a manual rating of
their quality. The gray rectangles correspond to the remaining unclustered solutions.

ing environment, i.e., approximately from easier to more difficult. The problems
used for training are marked by an asterisk.

Each rectangle represents one cluster: width corresponds to coverage, color
to computed homogeneity, and the label can be used for basic assessment of
cluster interpretability. For each cluster, we created a detailed report — com-
plete patterns and a sample of solutions belonging to the cluster. Based on these
reports, we manually classified each cluster into one of five categories: good so-
lutions (a homogeneous set of solutions that do not require feedback), strong
feedback (a set of solutions for which we can provide clear and useful advice that
is applicable to all of them), weak feedback (similar to strong feedback, but the
feedback is rather a hint or a suggestion), slightly non-homogeneous (the cluster
makes sense, but is not completely homogeneous), and unsuitable cluster (highly
non-homogeneous or hard to interpret).

Overall, the results show that the algorithm can generate useful and inter-
pretable clusters. For many clusters, we can provide strong feedback, e.g., in
the Count A problem, there is a large “for-if,or,[i]” cluster (Fig. 1a) for

9

which we can provide the following feedback: “This problem can be solved more
elegantly without indexing.” Negative clauses are often indicative of useful feed-
back, especially if the feature in question is important and used by most of the
other solutions. For example, in the Rock Paper Scissors problem, the 3rd cluster
contains long solutions that use many nested ifs. Useful feedback is to show how
the solution to such problem can be greatly simplified using logical operators.
Similarly, students in the 6th cluster write complicated code without elif; they
might even not know this useful construct.

As another example, consider the simplest problem in the dataset: Big Even
(“Write a function that returns True if the larger of the two numbers is even.”)
Students were expected to solve this problem with one line of code. These com-
pact solutions are in the cluster “no if, and,” which is slightly non-homogeneous
due to presence of a few longer solutions. The output of the algorithm reveals
that students solve the problem in other ways than anticipated and provides
useful impulse for system designers (e.g., for the development of new, scaffolded
problems). The three largest clusters also afford clear and useful feedback.

The algorithm sometimes produces clusters that are not sufficiently homo-
geneous or satisfactory. This is mostly the case of the last clusters. These cases
could be partially resolved by further tinkering with the algorithm parameters,
but partially it is a consequence of the basic greedy strategy used in the al-
gorithm. The problematic cases are distributed relatively uniformly among the
training and test set, i.e., it is not the case that we have overfitted the training
set, but rather a sign that some problems would require a more tuned or im-
proved algorithm. However, for some cases, it would be challenging to provide a
high-quality interpretable clustering even for a human expert.

5 Discussion

The central aim of this work is to highlight the issue of interpretability in the
context of clustering of students’ solutions in problem-solving activities. For this
purpose, we propose a generic, modular algorithm and demonstrate its applica-
tion to data from introductory Python programming. The algorithm is able to
produce useful, interpretable, and actionable clusters — they provide useful in-
sight for content authors and allow efficient distribution of feedback to students.

The limitation of the presented work is that it is based solely on qualitative
evaluation by the algorithm authors. The algorithm also contains quite a few
choices and parameters. Although our experience suggests that the approach is
reasonably robust and we have not observed any significant degradation of per-
formance on the test set, the setting of the algorithm parameters needs further
exploration. Since the presented algorithm is able to produce reasonable clus-
ters, it provides a good starting point for a search for improved versions. These
improvements can take the form of better parameter optimization, but also of
non-greedy alternatives to individual stages or even significantly different ap-
proaches. Another important direction for future work is the exploration of the
generalizability of the proposed algorithm to other problem-solving activities.

10

References

1. Ramesh C Agarwal, Charu C Aggarwal, and VVV Prasad. A tree projection
algorithm for generation of frequent item sets. Journal of parallel and Distributed
Computing, 61(3):350–371, 2001.

2. Jayanta Basak and Raghu Krishnapuram. Interpretable hierarchical clustering by
constructing an unsupervised decision tree. IEEE transactions on knowledge and
data engineering, 17(1):121–132, 2005.

3. Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami, Steven Cooper,
and Daphne Koller. Programming pluralism: Using learning analytics to detect
patterns in the learning of computer programming. Journal of the Learning Sci-
ences, 23(4):561–599, 2014.

4. Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Ex-
plainable k-means clustering: Theory and practice. In XXAI Workshop, ICML,
2020.

5. Lei Gao, Bo Wan, Cheng Fang, Yangyang Li, and Chen Chen. Automatic clustering
of different solutions to programming assignments in computing education. In
Proceedings of the ACM Conference on Global Computing Education, pages 164–
170, 2019.

6. Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C
Miller. Overcode: Visualizing variation in student solutions to programming prob-
lems at scale. ACM Transactions on Computer-Human Interaction (TOCHI),
22(2):1–35, 2015.

7. Elena L Glassman, Rishabh Singh, and Robert C Miller. Feature engineering
for clustering student solutions. In Proceedings of the first ACM conference on
Learning@ scale conference, pages 171–172, 2014.

8. Derek Greene and Pádraig Cunningham. Producing accurate interpretable clusters
from high-dimensional data. In European Conference on Principles of Data Mining
and Knowledge Discovery, pages 486–494. Springer, 2005.

9. Sumit Gulwani, Ivan Radiček, and Florian Zuleger. Automated clustering and pro-
gram repair for introductory programming assignments. ACM SIGPLAN Notices,
53(4):465–480, 2018.

10. Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern min-
ing: current status and future directions. Data mining and knowledge discovery,
15(1):55–86, 2007.

11. Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts and tech-
niques, third edition. The Morgan Kaufmann Series in Data Management Systems,
5(4):83–124, 2011.

12. Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas. Syntactic and
functional variability of a million code submissions in a machine learning mooc. In
AIED 2013 Workshops Proceedings Volume, volume 25, 2013.

13. David Joyner, Ryan Arrison, Mehnaz Ruksana, Evi Salguero, Zida Wang, Ben
Wellington, and Kevin Yin. From clusters to content: Using code clustering for
course improvement. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pages 780–786, 2019.

14. Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. Semi-
supervised verified feedback generation. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
739–750, 2016.

11

15. Bing Liu, Yiyuan Xia, and Philip S Yu. Clustering through decision tree con-
struction. In Proceedings of the ninth international conference on Information and
knowledge management, pages 20–29, 2000.

16. Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Under-
standing of internal clustering validation measures. In 2010 IEEE international
conference on data mining, pages 911–916. IEEE, 2010.

17. Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas Guibas.
Codewebs: scalable homework search for massive open online programming courses.
In Proceedings of the 23rd international conference on World wide web, pages 491–
502, 2014.

18. Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sa-
hami, and Leonidas Guibas. Learning program embeddings to propagate feedback
on student code. volume 37 of Proceedings of Machine Learning Research, pages
1093–1102, Lille, France, 07–09 Jul 2015. PMLR.

19. Sandhya Saisubramanian, Sainyam Galhotra, and Shlomo Zilberstein. Balancing
the tradeoff between clustering value and interpretability. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pages 351–357, 2020.

20. Ahmad Taherkhani, Ari Korhonen, and Lauri Malmi. Automatic recognition of
students’ sorting algorithm implementations in a data structures and algorithms
course. In Proceedings of the 12th Koli Calling International Conference on Com-
puting Education Research, pages 83–92, 2012.

21. Hezheng Yin, Joseph Moghadam, and Armando Fox. Clustering student program-
ming assignments to multiply instructor leverage. In Proceedings of the Second
(2015) ACM Conference on Learning@ Scale, pages 367–372, 2015.

12

	Interpretable Clustering of Students' Solutions in Introductory Programming

