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Abstract Adaptive learning systems need large pools of examples for practice—
thousands of items that need to be organized into hundreds of knowledge com-
ponents within a domain model. Domain modeling and closely related student
modeling are intensively studied in research studies. However, there is a gap
between research studies and practical issues faced by developers of scalable
educational technologies. The aim of this paper is to bridge this gap by con-
necting techniques and notions used in research papers to practical problems
in development. We put specific emphasis on scalability—on techniques that
enable relatively cheap and fast development of adaptive learning systems. We
summarize conceptual questions in domain modeling, provide an overview of
approaches in the research literature, and discuss insights based on the devel-
opment and analysis of a widely used system. We conclude with recommen-
dations for both developers and researchers in the area of adaptive learning
systems.

1 Introduction

Instructional design theory predicts trade-offs in the design, development, and
application of educational technology (Reigeluth & Carr-Chellman, 2009b;
Honebein & Honebein, 2015). The overall theme of this work is the balanc-
ing of these trade-offs in the practical development of online learning systems.
Specifically, we focus on the issue of domain modeling—designing an appropri-
ate organization of individual learning objects to higher-level units and spec-
ification of relations among these units. Many aspects of our discussion are
quite general, but to attain clear focus, we consider adaptive practice systems,
particularly systems employing as their key instructional methods the basic
drill and practice enhanced with personalized features (e.g., mastery learning,
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adaptive sequencing, spaced repetition). Such systems are today widely ap-
plied and used by millions of students; specific well-known examples are Khan
Academy, IXL, or Duolingo.

As a conceptual basis for our discussion, we use the Knowledge-Learning-
Instruction framework (Koedinger et al., 2012)—a recently proposed frame-
work that builds upon previous instructional design approaches (Gagné, 1985;
Sweller, 1994), connects them with cognitive theories of learning, and provides
specific impulses for the development of educational technology in the form of
mapping knowledge types to suitable instructional methods. A key aspect of
the Knowledge-Learning-Instruction framework is the decomposition of knowl-
edge into knowledge components. The concept of knowledge components also
is featured in many other theories of learning and instructional design, just
under different names (e.g., skills, concepts, schemas).

From the perspective of the development of practical educational technol-
ogy, we need to organize available practice items into these knowledge compo-
nents. Simple examples of knowledge components and items are the addition
of fraction ( 1

2 + 2
3 ), European states (“Where is Poland?”), and capitalization

rules in English (“monday or Monday?”). We are concerned with questions
concerning the management of knowledge components and items:

– How are knowledge components defined? Some knowledge components, like
“European states”, are quite natural. However, in cases like English vo-
cabulary for second language learners, the suitable choice of knowledge
components is much less clear.

– What is a suitable granularity of knowledge components? Should we use
“addition of fraction” or rather more fine-grained components like “addi-
tion of fraction with the same denominator” and “addition of fraction with
different denominators”?

– How should we deal with items of different difficulty? In the practice of
African states, Egypt and Guinea-Bissau have widely different difficulty
(at least for students from other continents). Should they be part of the
same knowledge component? How should differences in item difficulty be
incorporated in the domain model?

– How do we model relations among knowledge components? Do we use a
taxonomy for specifying a hierarchy of knowledge components? Do we use
a tree, a directed acyclic graph, or even a general ontology for the represen-
tation? Do we model prerequisite relations among knowledge components?
Can one item belong to several knowledge components?

Answers to these questions are crucial in the practical development of
learning systems since they have an important impact on many aspects of
these systems. Knowledge components are used within the user interface of a
system to present the content to students; they can also be used for adaptive
navigation (Brusilovsky, 1998), e.g., personalized recommendations of topics
to practice. Domain modeling is closely connected to student modeling, i.e.,
the estimation of skills of students (Pelánek, 2017; Abyaa et al., 2019). Stu-
dent modeling serves as a basis for adaptive practice techniques like mastery
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learning, spaced repetition, and adaptive choice of items (Roediger & Pyc,
2012; Pelánek & Řihák, 2018), and the visualization of progress to students in
the form of progress bars or open learner modeling (Bull & Kay, 2007). More-
over, the domain model is used by system developers “behind the scenes” for
content management and data analysis (Baker, 2016).

Domain modeling is intensively studied by researchers, e.g., Käser et al.
(2013, 2014); Huang et al. (2016); González-Brenes et al. (2014); Pelánek
(2017). Researchers focus mainly on the accuracy of models and their con-
ceptual clarity but often make implicit assumptions that ignore practical is-
sues. For example, the common implicit assumption in research papers is that
knowledge components are well-defined and homogeneous (i.e., all items within
a knowledge component are similar). As we discuss in this paper, this assump-
tion is quite hard to satisfy with realistic educational content. Moreover, re-
search studies often consider relatively small domain models. The aim of this
paper is to bridge research and practice.

We consider the issue of domain modeling from the perspective of the prac-
tical development of educational technology, with an emphasis on scalability.

As described by Reigeluth & Carr-Chellman (2009b), practical issues as-
sociated with instructional conditions (learner, content, learning environment,
and constraints) are important, particularly when we are developing adaptive
systems for unique conditions, such as a relatively small target audience, a
small team, a modest budget, and specialized content areas. A large portion
of domain modeling research considers learning in English-speaking countries
and on content that is studied by most students (e.g., elementary math)—in
these cases, it is feasible and realistic to build very detailed domain models.
However, when we consider learning in smaller countries or more specialized
subjects, it may not be feasible to develop “idealistic” domain models with
extensive item pools1. In these contexts, we need to develop “usable” domain
models that can be obtained within constraints of a particular project.

In the development of such domain models, it is necessary to make trade-
offs between the conceptual correctness and clarity of domain models and
costs associated with their development. A realistic learning system contains
hundreds of knowledge components and tens of thousands of items. For a small
target audience, the domain model needs to be created and managed by a small
team and with a limited budget. The development thus needs to be pragmatic.
Nevertheless, it can still be informed by research. The aim of this paper is
to bridge the gap between theoretically oriented research and pragmatically
oriented development by providing an overview of techniques that are based
on research and yet directly applicable to the development. Specifically, we
focus on the above-presented questions and seek answers applicable to realistic,
constrained instructional situations.

1 Moreover, the technological landscape is shifting quickly—consider for example the rise
and decline of Adobe Flash technology for educational applications. Even in context like
practice of elementary math for English-speaking audience, it is advantageous to be able to
react quickly and develop models usable for a particular technological application.
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2 Background and Terminology

Before discussing the domain modeling itself, we clarify the context of our
discussion and the used terminology.

2.1 Context and Methodology

The aim of this paper is to bridge the gap between research papers and prac-
tical problems in the development of adaptive systems. The used methodology
corresponds to this aim—it was based on an iterative process involving anal-
ysis of research literature and practical system development, specifically on
these steps:

– Design (revision) of a domain model and preparation of content (practice
items).

– Collection of data in the adaptive system.
– Analysis of data, identification of problems that need to be addressed.
– Overview of research literature with the goal to find suitable solutions to

identified problems.

The work is based on practical experience with the development of an adap-
tive practice system Umı́me (umimeto.org). The system is aimed at Czech
elementary and high-school students. It offers practice in a variety of domains,
including elementary mathematics, programming, Czech grammar and orthog-
raphy, English grammar and vocabulary, and factual knowledge in geography
and biology. The system has hundreds of knowledge components, thousands
of items, and is used by thousands of students each day. The focus of the
system is on the basic learning objectives like remembering facts, recognizing
categories, and understanding and applying simple rules. Many aspects of the
system are similar to well-known systems that target an English speaking au-
dience primarily (e.g., Khan Academy, IXL, Duolingo). The main difference
is that the Umı́me system is developed by a small team and under a severely
limited budget.

The system collects data on students’ actions within the system. The pri-
mary type of data that was used for the presented discussion is the data on
students’ answers to multiple-choice questions and basic constructed response
items. The data are collected within an exercise that presents students a set
of related items in a randomized order and uses a mastery criterion to termi-
nate the practice (Pelánek & Řihák, 2018). The used analysis of data involves
mainly analysis of the difficulty of items (e.g., success rate, median response
time) and similarity of items (Pelánek, 2019). The used system also provides
recommendations and collects data on student navigation within this system.
These data also informed the iterative processes outlined above.
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2.2 Items

Learning systems can contain a variety of learning objects. Churchill (2007)
presents a classification of learning objects into six types (presentation, prac-
tice, simulation, conceptual models, information, and contextual representa-
tion). In this work, we consider only practice objects, which are fundamental
for adaptivity—by interacting with practice objects, students provide infor-
mation that can be used for adaptivity. Practice objects can take many forms
(e.g., multiple-choice questions, short text answers, interactive multi-step prob-
lems). In this work, we denote practice objects by the generic and commonly
used term items.

Most of our discussion is general and relevant to a variety of item formats
and domains; through the paper, we use illustrative examples from mathe-
matics, language learning, and geography. We consider items relevant mainly
in elementary practice, i.e., bottom levels in the Bloom’s taxonomy of educa-
tional objectives (Bloom et al., 1956; Anderson et al., 2000), particularly recall,
recognition, classification, and execution concerning factual, conceptual, and
procedural knowledge. With items of this type, students can typically answer
items in 2-to-60 seconds, and the answer can be automatically evaluated by a
learning system.

Many of the discussed issues are relevant also to more complex items, e.g.,
multi-step, interactive problems targeting higher level skills. However, our fo-
cus is on practical scalability with limited resources. Even for elementary items,
the development of a scalable, adaptive learning system is quite a challenge.

2.3 Knowledge Components and Their Types

Instructional theories and student modeling approaches use many different
notions for the organization units in learning systems, e.g., skills, concepts,
abilities, content constructs, or content of instruction (Reigeluth et al., 1980;
Reigeluth & Carr-Chellman, 2009b; Porter, 2002; De Ayala, 2013; Pelánek,
2017).

In this work, we build upon the Knowledge-Learning-Instruction (KLI)
framework (Koedinger et al., 2012) and we use the notion “knowledge compo-
nent” (KC), which the KLI framework defines as “an acquired unit of cognitive
function or structure that can be inferred from performance on a set of related
tasks” (Koedinger et al., 2012, p. 764). The term knowledge component is
closely related to many other terms used in both research and practice. Terms
like skills, abilities, or concepts are mostly used as synonymous. A related,
but slightly different notion is a learning objective. Learning objectives differ
from knowledge components in their focus, purpose, and typical time scale.
Whereas learning objectives focus on outcomes (what the student should be
able to do), knowledge components (particularly in the KLI framework defi-
nition) highlights the cognitive aspect of performance. The mental processes
described by knowledge components are at the time scale of “unit tasks” that
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Table 1 Basic types of knowledge components, according to the KLI framework (Koedinger
et al., 2012), simplified

Common labels Application Response Examples
condition

facts, associations constant constant European states, fruits vocabulary

categories, concepts variable constant capitalization, determiners, geo-
metric objects names

rules, principles,
schemas

variable variable fraction addition, linear equations,
word order in sentences

take students time at the order of 10 seconds (Koedinger et al., 2012). Learning
outcomes are typically formulated at a coarser level of granularity and concern
processes at the order of minutes or hours, spanning multiple knowledge com-
ponents. As a specific example, consider a learning objective “Students will be
able to add and subtract fractions” and a knowledge component “addition of
fraction with like denominators”.

The KLI framework discusses knowledge components from the point of
view of cognitive science and pedagogy. In this work, we consider knowledge
components from a more pragmatic perspective of the development of educa-
tional technologies and treat knowledge components mostly as “organizational
units that group together related items”. Note that from the conceptual point
of view, “a unit of cognitive function” and “a unit of organization within
software” are significantly different notions. However, for purposes of our dis-
cussion, this distinction is mostly not consequential, and we gloss over it.

The KLI framework presents a key idea for the development of educational
technologies: When making a decision about which instructional methods to
use, it is better to base the decision on the type of knowledge components
rather than the domain (mathematics, language learning, geography). The KLI
framework discusses several types of knowledge components; Table 1 presents a
simplified view of the categorization. The table describes only three basic types
of knowledge components, which are widely used in practical applications.

The type of knowledge component has consequences for practice within a
learning system. Some instructional methods are relevant only for some types
of knowledge components (Koedinger et al., 2012; Reigeluth & Carr-Chellman,
2009a):

– For facts, it is important to take into account forgetting. Practice within
the system should support spaced repetition (Roediger & Pyc, 2012).

– For rules, interleaved practice (a mixed practice of several KCs together)
is essential, so that students can practice the recognition of “application
conditions” (Roediger & Pyc, 2012).

– For rules, the order of the presentation of knowledge components to stu-
dents should respect prerequisite relations between KCs. This aspect is not
fundamental in the practice of facts.
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The type of KC also has practical consequences for the preparation of items.
Facts often have a limited number of potential items within a KC; in many
cases, we want the list of items to be exhaustive (e.g., “days and months” in
second language vocabulary). For rules, there is typically an unlimited number
of potential items, so we need to decide which items to choose and how to
specify them.

2.4 Domain Modeling

The design of adaptive learning systems is often decomposed into several in-
teracting models (Nkambou et al., 2010; Sottilare et al., 2016):

– a domain model, which models the content of the concerned domain,
– a student model, which models the state of a student, particularly stu-

dents’ knowledge with respect to the domain model; it can also model
other aspects of student state (e.g., affect, meta-cognition),

– a tutor (pedagogical) model (instructional method), which specifies the
choice of pedagogical actions based on the domain model and the student
model.

Domain modeling and student modeling are closely intertwined (Pelánek,
2017). In this work, we focus on domain modeling, making brief remarks about
the consequences of different choices on student modeling. In instructional
design literature, domain modeling is often denoted by different terms, e.g.,
Reigeluth et al. (1978) provide an early example of discussion closely relevant
to the current work; they use the term “structure of subject matter content”.

Some authors consider the domain model in a general way: “The domain
model contains the set of skills, knowledge, and strategies/tactics of the topic
being tutored. It normally contains the ideal expert knowledge and also the
bugs, mal-rules, and misconceptions that students periodically exhibit.” (Sot-
tilare et al., 2016, p. 3). We focus on the core of domain modeling that is
necessary for the practical development of a learning system: mapping be-
tween items and KCs and relations among KCs. We consider the additional
aspects of domain modeling mentioned in the above-given definition (strate-
gies, bugs, mal-rules, misconceptions) to be “nice-to-have features”, which are
not completely necessary for the development, particularly under a limited
budget.

2.5 Uses of Domain Models

The domain model can be used in many ways, for example:

– personalization of practice for students, e.g., mastery learning (Pelánek
& Řihák, 2018), adaptive choice of items (Pelánek et al., 2017), spaced
repetition (Roediger & Pyc, 2012),
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Table 2 Illustration of knowledge components of different granularity

granularity geography grammar mathematics
facts categories rules

coarse names and locations
of countries

capitalization rules fractions

medium names and locations
of African countries

capitalization of
nouns

addition of fractions

fine location of Egypt capitalization of
days of the week

addition of fractions
with the same
denominator

– organization of the content, presentation to students, adaptive navigation
(Brusilovsky, 1998),

– feedback to students on the progress of their learning, e.g., using open
learner modeling (Bull & Kay, 2007) or gamification features like badges
(Dicheva et al., 2015),

– support for teachers, e.g., dashboards for teachers (Molenaar & Knoop-van
Campen, 2017).

The appropriate choice of domain model depends on the specific use of the do-
main model within an application. However, most of our discussion is relevant
to all of these uses.

3 Specification of Knowledge Components

Research studies in student modeling often (implicitly) assume that items in
the same knowledge component are homogeneous, i.e., that they are equivalent
from the point of estimation of students skills. However, this assumption is
never completely satisfied in practice. In a practical system, we need to make
trade-offs between the homogeneity of KCs and the feasibility of their creation,
management, and use.

3.1 Granularity of Knowledge Components

Table 2 provides examples of different granularity for several domains and
types of KC. Which level of granularity should we use? The appropriate choice
of KC granularity depends on the application, e.g., what is the specific aim of
the system, how wide is the coverage of the system, how large pool of items is
available (or can be prepared under given circumstances). The target audience
significantly influences decisions about KC granularity. Consider, for example,
the practice of anatomy. For high school students, it may be sufficient to have
“muscles” as a single KC. For medical students a more fine-grained division is
necessary (e.g., muscles on the head, back, neck, abdomen).
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Table 3 depicts (in a simplified manner) the interaction between the cov-
erage of the system and the granularity of KCs. A coarse granularity with a
narrow coverage would mean just a few KCs—this setting is not very useful, at
least for adaptation. A fine granularity with a broad coverage leads to a very
large number of KCs—such a setting is challenging to manage. The realistic
area is diagonal in between, which includes, for example, an optimized fraction
tutor with a narrow scope, but with fine-grained KC modeling, or our Umı́me
system with a broad coverage (including the practice of English, mathematics,
and programming), but coarse-grained KCs.

Table 3 Granularity and coverage tradeoff

coverage

gr
an

u
la

rit
y

narrow wide

coarse

fine

not useful

not managable
realistic applications

The choice of KC granularity is an important decision, which influences
not only the presentation of the content to students but also the choice of
modeling techniques within the system. Specifically, the granularity of KCs
interacts with student modeling. When we use very coarse-grained KCs, we
can assume that student knowledge is (nearly) constant, i.e., we do not need to
model short-term learning and models from item response theory are applica-
ble (De Ayala, 2013). When we use very fine-grained KCs, modeling short-term
learning is essential. In this situation, it may be applicable to use a Bayesian
knowledge tracing model (Corbett & Anderson, 1994), which assumes a direct
transition from the unknown to the known state. For knowledge components
of intermediate granularity, learning happens, but more slowly. In these cases,
it may be appropriate to use one of the logistic models (Pelánek, 2017), e.g.,
one of the variations on additive factors models (Cen et al., 2006).

Several research studies have compared student models of different knowl-
edge component granularity (Koedinger et al., 2016; Feng et al., 2006; Pardos
et al., 2010). From the research perspective, there is typically a preference
for more fine-grained KCs, as these offer a better fit to data and have better
cognitive interpretation. However, from a practical perspective, there are is-
sues with KCs that are too fine-grained. When items are too similar, repeated
practice within a KC does not make much sense, particularly for multiple-
choice questions, where all items can have the same type of answer. With very
fine-grained KCs, it is typically necessary to use some variant of interleaved
practice (mixing practice of several KCs). This is a meaningful and potentially
useful approach. However, it complicates the implementation of the learning
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system. The implementation is much more straightforward when the practice
of KCs can be standalone.

3.2 Difficulty of Items

Items within a knowledge component differ in their difficulty. For illustration,
consider the following examples:

– one-digit multiplication: 2 × 3 versus 8 × 7,
– English determiners: “[a/an] car” versus “[a/an] hour”,
– African countries: Egypt versus Guinea-Bissau.

In all these cases, there are substantial differences in difficulty—the first item
from each pair is significantly more difficult than the second one (as measured
by success rates and response times of students). We can treat these differences
in several ways.

The principled solution is to divide the KC into several more fine-grained
knowledge components. For example, in the case of English determiners, the
difficult examples are related to a clear rule (“The sound, not the spelling
is important.”). In other cases, the suitable division of a KC may be less
clear but can be found with the use of data mining over student data, as
done in the “closing the loop” studies (Koedinger et al., 2013; Liu et al.,
2014; Cen et al., 2007; Koedinger & McLaughlin, 2016). Such division is a
principled solution, but it can lead to practical problems with too fine-grained
KCs mentioned above: insufficient number of items within KCs, necessary
interleaving of practice, and more difficult management of the domain model.
This approach is suitable when we have a lot of time and a large budget, but
in many cases, we need a more pragmatic approach.

At the other extreme, a very pragmatic solution is simply to ignore differ-
ences in difficulty. This approach, however, can have a nontrivial negative im-
pact on the application. Ignoring difficulty makes student models less precise,
and this loss of precision impacts all uses of student models. It can negatively
impact the user experience. For example, when a system uses mastery crite-
rion based on streaks (series of consecutive correct answers) and a student’s
streak is ruined by an excessively difficult example, the student can easily get
frustrated.

One compromise possibility is to keep items with different difficulty in the
same KC and take the difficulty of individual items into account. Student mod-
eling techniques can incorporate the difficulty of items. Some student model-
ing approaches include item difficulty in their basic form, e.g., item response
theory models (De Ayala, 2013) or models based on the Elo rating system
(Pelánek, 2016). Bayesian knowledge tracing, an often used student modeling
approach, does not consider item difficulty in its basic form (Corbett & Ander-
son, 1994), but it can be extended to include difficulty (Pardos & Heffernan,
2011; González-Brenes et al., 2014). The difficulty of items can be incorpo-
rated into an algorithm for the choice of items, i.e., we can use an algorithm
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that chooses items of suitable difficulty for a particular student (Pelánek et al.,
2017).

Based on the experience with the development of our system, we propose
another compromise option: to divide items into several levels of similar dif-
ficulty and then ignore differences in difficulty within individual levels. This
solution is quite advantageous. The division can be done by an offline anal-
ysis; the implementation within the production system is simple, as there is
no need to track the difficulties of items or use complex models. Items within
levels can be chosen randomly, which limits methodological problems in data
analysis due to feedback loops in data collection (Pelánek, 2018). This solution
also leads to limited loss of precision and degradation of user experience since
the division into levels captures the most critical differences in difficulty. In
our experience, three levels of difficulty are sufficient.

The division with respect to difficulty should not be done mechanically
as a simple algorithmic division could cause artifacts with unintended conse-
quences. As a specific example, consider the comparison of fractions. Our data
show that the difficulty of items is closely related to a simple (and wrong)
heuristic “the result of the comparison is the same as the comparison of nu-
merators”, i.e., items like 3

5 < 6
7 have much higher success rate than 3

6 < 2
3 .

If we split items simply by their difficulty, we would create a group of items
that would reinforce the wrong heuristic.

So far, we assumed that the difficulty of items corresponds to the per-
formance of students (success rate, median response time). This approach,
however, compounds the intrinsic difficulty of items with difficulty caused by
extraneous cognitive load (Sweller, 1994), e.g., poor wording of a question, the
format of presentation. Different forms of difficulty require different actions:
intrinsic difficulty should be taken into account in KC modeling, difficulty
caused by extraneous cognitive load should lead to the improvement of items.
Differentiating these two kinds of difficulty in an algorithmic way is, however,
nontrivial. One possible approach is to utilize the item discrimination factor
as used in item response theory (De Ayala, 2013).

3.3 Type of Knowledge Component

As mentioned before, the KLI framework highlights the point that instruc-
tional methods should reflect the types of knowledge component, not domains
(Koedinger et al., 2012; Reigeluth & Carr-Chellman, 2009a). Within one do-
main we can have several different types of knowledge components, for ex-
ample, in English as a second language we have vocabulary KCs (facts), but
also grammar KCs about the usage of tenses (rules). In mathematics, typical
KCs are rules (e.g., fraction comparison, solving equations), but some aspects
have to be remembered in the long-term memory to achieve fluency, and these
can be treated as facts (e.g., one-digit multiplication). The type of KC has
consequences for the suitable choice of instructional methods (as discussed in
Section 2.3), and also for the choice of a student modeling approach. For exam-
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ple, the Bayesian knowledge tracing model can be used for modeling learning
of rules, but it is not directly usable for modeling learning of facts since it
uses a strong binary assumption about the state of knowledge, which is not
suitable for factual knowledge (Pelánek, 2017).

It is thus advantageous to have KCs homogeneous with respect to the type
of content and to have the type of KC explicitly specified within the domain
model. For example, a KC that contains facts to be remembered should not
contain rules to be understood, and the other way around. However, this is
not always easy to achieve. Even within a single KC, we can have different
types of items. This occurs particularly in grammar, where we often encounter
a mix of rules and idioms (facts to be memorized), e.g., past tense in English,
which combines rules for regular verbs and facts about irregular verbs, or
English prepositions. From the conceptual point of view, this situation can be
solved by splitting the KC into more fine-grained and “cleaner” components,
but such splitting has the disadvantages discussed before. Moreover, students
often have expectations that correspond to these mixed components.

3.4 Making KC Decisions

The choice of knowledge components is a difficult step that requires balancing
pedagogical and pragmatic considerations. In a practical application, it is an
iterative process, which can significantly benefit from insights from data. An
appropriate balance of different considerations depends on the setting of a
particular project. For a project with a large budget and long-term outlook,
it may be feasible to base KCs on a detailed cognitive analysis of a domain
by experts. In order to achieve scalability in more modest settings, pragmatics
and data insights have to play the central role.

In all cases, the basic outline of KCs has to be based on pedagogical con-
siderations: pedagogical intuition, textbook conventions within a domain, at
least basic homogeneity of types of KCs. A deeper, but also much more time-
intensive (and thus expensive) approach is to use cognitive task analysis to
analyze the domain (Clark et al., 2007).

A pragmatic view of KC definitions is concerned mainly with the size of
knowledge components: How many items should belong to a KC? Within one
practice session, we do not want students to see the same item multiple times2.
Assuming that a practice session takes at least a few minutes, we can get some
coarse lower bound estimates on the size of KCs. For simple items that take
less than 10 seconds (e.g., multiple-choice questions), we need at least 40 items
for a meaningful KC. For more complex items (e.g., word problems), we need
at least 15 items.

The choice of KCs is a difficult process and can benefits greatly from it-
eration based on insight from data collected by the application. The primary

2 In the case of facts it is meaningful to practice the same fact multiple times in a short
sequence. But even in this case the question could be presented in slightly different form
and thus correspond to different items.
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use of data analysis is to focus on principles—we can find ways to improve
definitions of KC by analyzing the difficulty of items, comparing results of dif-
ferent student models, or studying the similarity of students’ performance on
items (Řihák & Pelánek, 2017). Specific examples of such analysis are given by
“closing the loop” studies (Koedinger et al., 2013; Liu et al., 2014; Cen et al.,
2007; Koedinger & McLaughlin, 2016). More pragmatic use of data is to fo-
cus on popularity. If some KC receives significant attention from students,
it deserves the attention of the system authors as well, e.g., in the form of
labor-intensive manual improvement of items within the KC.

4 Relations among Knowledge Components

Once we choose knowledge components, we need to specify relations among
them.

4.1 Modeling KC Relations

Researchers have described many approaches that can be used for modeling
KC relations. One general approach for describing domain models is to use an
ontology (Al-Yahya et al., 2015). Another systematic approach is the use of
Bayesian networks (Millán et al., 2010; Conati et al., 2002; Käser et al., 2014;
Carmona et al., 2005; Käser et al., 2013), which are used together with student
models for skill estimation. Another approach based on formal foundations is
the knowledge space theory (Doignon & Falmagne, 2012); this approach is
useful particularly for modeling prerequisite relations.

These research works provide principled ways of dealing with KC relations.
From the practical perspective, however, they are quite complex and difficult
to use in a practical system, although it should be noted that for example a
commercial system ALEKS is based on the knowledge space theory (Stillson
& Alsup, 2003). A realistic system typically contains hundreds of KCs—it is
difficult to build and maintain a Bayesian model or full-fledged ontology of
this size.

The basis of KC relations is typically the modeling of a hierarchy (taxon-
omy) of KCs. Typically, KCs form a natural hierarchy. This hierarchy is nec-
essary at least for the organization of KCs in the user interface and navigation
within the system. The relevant practical question is whether it is sufficient to
represent relations using a tree data structure or whether a more complex ap-
proach is necessary, e.g., a directed acyclic graph, a weighted graph, a general
ontology. A specific example, where a tree is insufficient, is the KC “equations
with fractions”. Should this KC be placed in the “equations” subtree or the
“fractions” subtree? Thus, from a principled point of view, the tree structure
is not entirely sufficient. However, thanks to its simplicity it has many advan-
tages in practical development. So unless there are numerous exceptions which
do not fit into the tree structure, it may be beneficial to use a simple tree and
ignore the exceptions or solve such cases in an ad-hoc fashion.
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A hierarchy captures subsumptive relations. Another kind of relations are
prerequisite relations, i.e., one KC requires (should be preceded by) another
KC. We may also specify follow-up relations, i.e., one KC should follow af-
ter another; follow-up relations are often inverse to prerequisite relations, but
it may be beneficial to specify them separately. These relations are impor-
tant mainly for rules. For facts, prerequisites are typically not necessary, but
even for these KCs, it may be useful to have “soft” versions of prerequisite
and follow-up relations that can be used for navigation and recommendations
of content, e.g., after learning fruit vocabulary, it is natural to recommend
vegetable vocabulary.

Another practical approach that leads to indirect relations among KCs is
tagging of KCs, specifically with information about the relevant audience (e.g.,
school grade, the age of students) or relations to external standards (e.g., na-
tional curricula, Common European Framework of Reference for Languages).
It may also be possible to use collaborative tagging by users to create a folk-
sonomy (Bieliková et al., 2014).

4.2 Relations Through Shared Items

In addition to explicit relations, knowledge components can be related implic-
itly through shared items. For example, consider an item “87 − 6 × 7”. This
item can be naturally mapped to “one-digit multiplication” and “subtraction
under 100”. Although such mapping is natural, it brings nontrivial practical
problems. An important decision in domain modeling is thus whether we allow
items to belong to multiple knowledge components (N : M mapping between
items and KCs), or whether we use a simpler approach where each item belongs
to a single knowledge component (1 : N mapping).

The assignment of items to multiple knowledge components is well-studied
in the research literature. A standard approach to specifying the mapping
of items to multiple knowledge components is a Q-matrix (Tatsuoka, 1983).
There exists extensive research focused on specifying and refining these ma-
trices (Barnes, 2005; Desmarais, 2011). However, many student modeling ap-
proaches (e.g., most variants of Bayesian knowledge tracing) consider only
a single knowledge component per item (Pelánek, 2017). The major problem
with multiple KCs per item is the “credit/blame assignment problem”. When a
student answers an item correctly (incorrectly), which knowledge components
should be assigned credit (blame) for the answer? The answer to this question
is difficult and depends on the type of concerned items and knowledge compo-
nents. Researchers have proposed many approaches to student modeling with
Q-matrices, including compensatory (additive) model (Ayers & Junker, 2006),
conjunctive (product) model (Cen et al., 2008; Koedinger et al., 2011; Beck
et al., 2008), logistic regression (Xu & Mostow, 2012), or taking the weakest
skill (Gong et al., 2010). Moreover, the research literature focuses mainly on
student modeling but neglects practical issues of Q-matrix application. How
should the Q-matrix be used for guiding the adaptive behavior of a learning
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system, e.g., in the context of mastery learning, spaced repetition, or inter-
leaving of items?

From the practical perspective, it is much simpler to use the basic approach
“each item belongs to a single KC”. For many items, this approach is entirely
sufficient. Items that naturally fit into multiple KCs can be treated by using
integrative KCs (discussed below), or by duplicating them into individual KCs.
The duplication approach even has some advantages—difficulty of items can
sometimes depend on the context in which they appear; this effect is easier to
detect and take into account when we use of duplicated items.

4.3 Combining Knowledge Components

Elementary KCs can be combined into more complex KCs in two basic ways:

– an integrative knowledge component, which can be viewed as a “sequen-
tial composition of KCs”: solving an item requires the application of all
constituent KCs,

– a union of knowledge components, which can be viewed as a “parallel
composition of KCs”: solving an item requires the application of only one
constituent KC.

Integrative knowledge components (Koedinger et al., 2012) correspond to
a combination of two (or more) KCs that is more difficult than just a sum of
the parts. A specific example is the composition effect in mathematics story
problems (Heffernan & Koedinger, 1997; Koedinger & McLaughlin, 2010). The
integrative effect is also crucial in learning programming, where students of-
ten manage the basic control structures (conditions, loops), but struggle to
combine these structures; Huang et al. (2016) discuss a modeling approach for
this case.

Some integrative effect is present nearly always, but only sometimes it is
strong enough to warrant special attention. The effect of integrative KCs could
be captured by using advanced student modeling techniques. From a practical
perspective, however, it may be better to use a more pragmatic approach:
adding an ad-hoc integrative KCs when the integration effect is strong and
ignoring the effect otherwise.

The second type of combination is the union of KCs, which serves mainly
for the purpose of interleaved practice—combining practice from different KCs
supports learning of “knowing when to apply what”, which is useful particu-
larly for rules. Practical examples of such combined KCs are English tenses
(combining practice for past, present perfect, and present tense) or computing
area in geometry (using different formulas for different objects). The pedagog-
ical usefulness of interleaved practice is well-supported by research comparing
interleaved and blocked practice (Taylor & Rohrer, 2010; Rau et al., 2010).
This kind of KC combination can be practically realized simply by specifying
the combined KC as a union of elementary KCs. The usage of such a KC can
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5 × 7 = 

constructed response

selected response

matching pairs

5 × 7 30 35

5 × 7 36 8 × 5 

4 × 8 35 6 × 6 

40 7 × 7 6 × 7 

49 42 3237

Fig. 1 Example of different activities. Each of these activities can be used without timing,
with a strict time limit, or with “reward” based on the speed of response.

be treated by an algorithm for suitably interleaved selection of items from in-
dividual KCs, but even random sampling often achieves sufficient interleaving
effect.

4.4 Different Practice Activities

The same topic can often be practiced in several ways. Consider, for example,
one-digit multiplication or vocabulary about fruits. These topics can be prac-
ticed using constructed-response items, selected response items, the pairing
of cards, or some game-like activity with timing limits (see Fig. 1 for illustra-
tion). Each of these types of practice has its advantages and disadvantages. For
example, answering multiple choice questions often requires only recognition
of answers (instead of recall). However, answering multiple-choice questions is
faster; in our data students are 2 to 3 times faster compared to the same items
with a constructed response. This difference can be more pronounced on mo-
bile devices. Moreover, research shows that when multiple-choice questions are
used with plausible distractors, they can also exercise retrieval processes (Lit-
tle et al., 2012). Students also have different preferences for practice activities,
and many prefer to alternate different types of activities.

For these reasons, it is beneficial to have several types of activities in a
learning system. This leads to practical problems in domain modeling that
have not gotten much attention in research so far. How should we treat dif-
ferent practice activities in domain modeling? Should the different activities
for one-digit multiplication illustrated in Fig. 1 be considered as a single KC
or as different KCs? On the one hand, the performance in different activities
for the same topic is clearly closely related. On the other hand, student per-
formance on different activities may nontrivially differ—game-like activities
requiring fast reactions require quick recognition of correct answers, whereas
constructed-response exercise requires recall without speed.

The relation between different activities of the same topic definitely needs
to be captured in the domain models so that the learning system can provide
students with meaningful navigation and recommendations. It is not clear
when and how these relations should be used for the estimation of students’
skills. We consider this to be an interesting open question in student modeling.
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5 Creating and Managing Items

Having discussed knowledge components and their relations, we now look at
individual items that make up these knowledge components. We consider is-
sues concerning the creation and management of items, again with a focus on
scalability.

5.1 Templates versus Separate Items

There are two basic approaches to specifying items within a KC: we can either
specify them individually or generate them dynamically using a template.
Templates are most directly applicable in mathematics—instead of specific
numbers, problems contain variables, which are dynamically instantiated by
numbers from a specified interval.

The use of templates is also called automatic item generation or item mod-
els (Attali, 2018). An advantage of templates is that we obtain a large num-
ber of items with easy management as any changes are easy to incorporate.
Templates, however, do not provide a universal approach, since they may be
difficult to specify. Templates are natural in mathematics, whereas in other
domains their usage is often impossible or impractical—consider for exam-
ple grammar exercises. Another disadvantage is that the properties of items
generated from a single template can significantly differ. For example, in com-
parison of fractions, “ 1

2 > 2
10” is much easier than “ 4

6 > 5
8”. When templates

are used, such differences are typically ignored, which has a negative impact
on skill estimation and user experience.

Individually specified items are universally applicable, and we can analyze
the properties of specific items. The obvious disadvantage is that this approach
is very labor-intensive.

A practical, hybrid approach is to use a template to generate a set of
items and then fix these items for use within the application. This approach
is more easily and widely applicable than full-fledged templates—in this case,
templates can be heuristic, since special cases can be covered or corrected
manually. Since items are fixed, we can now analyze their properties and take
them into account for refinement of KCs. A disadvantage, compared to fully
dynamic templates, is more difficult management, e.g., making small presen-
tation changes to items is more cumbersome.

5.2 Item Analysis

Analysis of items and students’ performance can provide us with useful in-
sights. The primary analysis is the difficulty of items, which can be measured
in different ways, depending on the specific type of items, e.g., success rate,
median response time, the average number of attempts, hint usage rate.

A practical approach to domain modeling is the use of measures of item
similarity. Researchers have proposed measures of item similarity based both
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Fig. 2 Example of item projection (PCA projection based on content similarities computed
by a Levensthein distance).

on the content of items (Hosseini & Brusilovsky, 2017) and students’ perfor-
mance data (Řihák & Pelánek, 2017). Using item similarity, we can create
visualizations of the items pool (projections into the 2D plane), compute item
clusters, or identify outlying items. These results are useful for the refinement
of knowledge components, deleting duplicated or outlying items, and identi-
fying suitable candidates for new items. Fig. 2 shows an example of such a
projection.

Similarities of items can also be included directly into the domain model,
possibly in a discretized fashion by keeping data only about closely similar
items. These data can be used for item sequencing. There are many possi-
ble instructional strategies for content sequencing (Reigeluth & Keller, 2009),
e.g., concrete-abstract sequencing, easy-difficult sequencing, or spaced repeti-
tion. As a basic step, we want to avoid consecutive items that are too similar.
For example, in a practice of geography facts, an item “Where is Poland?”
is not suitable directly after an item “What is the name of this country?”
with a correct answer Poland. Another possible use of similarity is for recom-
mendations, e.g., similarity relations can be used to recommend worked-out
examples, which can serve as hints (Hosseini & Brusilovsky, 2017).

5.3 Automatic Creation and Reuse of Items

Manual creation of items is labor-intensive and error-prone. Automation of
the item creation process is welcomed since it improves the efficiency and
effectiveness of the instruction. The suitability of a particular type of exercise
for automatic item creation can thus be seen as one of the conditions that drive
the choice of instructional methods (Reigeluth & Carr-Chellman, 2009b).

Creation of items can be partially automated with the use of above-mentioned
item templates. Researchers have also proposed techniques for completely au-
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tomatic item generation, e.g., generating multiple-choice questions from texts
(Wang et al., 2018; Agarwal & Mannem, 2011). However, the practical re-
alization of these techniques is difficult, and even state-of-the-art techniques
struggle to achieve items of comparable quality as those produced by humans.

A pragmatic approach is to generate new items from manually created
seed items, specifically to transfer items into new contexts (different practice
activities). We provide an example of a particular workflow:

1. Create an initial set of items with a constructed response.
2. Collect student answers to these items and find the most common wrong

answers.
3. Create multiple-choice questions where distractors are the common wrong

answers.
4. Reuse multiple-choice questions for additional practice activities, e.g., game-

like exercises where students need to select an answer quickly.

Only the first step requires manual effort; all other steps can be fully auto-
mated. The third step is based on the observation that wrong answers have
a very skewed distribution (Wang et al., 2015; Pelánek & Řihák, 2016), i.e.,
many students produce the same, common wrong answer. Such a wrong an-
swer is typically a good distractor for a multiple-choice question (see Table 4
for examples).

Table 4 Examples of most common wrong answers from several mathematics knowledge
components.

item correct most common
answer wrong answer

12 − 6 + 4 10 2
8 − (2 − 5) 11 5
24 × 3 72 8
2 + 6 × 4 26 32
2.05 + 1.1 3.15 3.06
9.8 + 0.7 10.5 9.15

6 Discussion and Conclusions

Finally, we conclude with a high-level discussion of the main topics of the
paper and their consequences for both research and practice.

6.1 Don’t Be Stupid

Our idealistic aim in the development of adaptive learning systems is to make
them “intelligent”. In reality, however, it is quite nontrivial even to avoid look-
ing “stupid”. The pursuit of principled, clean solutions is often at the expense
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of more essential improvements at other parts of the system, particularly in
cases of systems with a modest budget. As predicted by instructional design
theory (Reigeluth & Carr-Chellman, 2009b; Honebein & Honebein, 2015), con-
straints such as small target audience, a small development team with a modest
budget, and specialized content areas, force designers to make trade-offs and
sacrifices. Thus, the first step in not being stupid is to clearly understand the
design situation so that pragmatic solutions, like those that we have suggested
in this paper, are embraced and valued by stakeholders.

The development of an intelligent learning system is difficult. For an adap-
tive learning system to be successful, it has to incorporate many aspects includ-
ing high-quality items, domain model, student model, instructional methods,
and user interface. The overall impression of the system is to a large degree
influenced by the weakest link. It is not very useful to have a state-of-the-art
Bayesian student model, while the support for spaced repetition is entirely
missing.

Related arguments have been made in previous works. McNee et al. (2006)
proposed the “don’t look stupid” principle in the context of recommender
systems; in personalized systems, the first step is to avoid actions that look
wrong to the user. Baker (2016) calls for “stupid tutoring system, intelligent
humans”—the use of relatively simple methods, which are iteratively refined
using data and experience. Aleven et al. (2016) call this approach “design-loop
adaptivity” and argue that it is an important kind of adaptivity.

6.2 Recommendations for System Development

Based on the presented review of research and our practical experience with
the development of a practically used adaptive learning system, we provide
several recommendations for the development and management of a domain
model:

– Base the choice of knowledge components (and their granularity) on a mix
of pedagogical and domain knowledge, practical considerations (particu-
larly the number of items available), and data analysis.

– Map each item into a single knowledge component, i.e., avoid sharing items
among several knowledge components (using Q-matrix and similar meth-
ods).

– Consider the difficulty of items since it often varies widely even among
closely related items. There are several approaches to addressing item dif-
ficulty. A simple solution is to split knowledge components by difficulty
and to ignore difficulty within these split knowledge components.

– In capturing relations among knowledge components, focus on the basic
taxonomy of knowledge components (the subsumption relation) and the
prerequisite relation. Avoid complex Bayesian models and full-fledged on-
tologies, which are too expensive to develop and maintain.
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– Automate the creation of items when feasible. Use item templates as a
heuristic for item creation, but not as a tool for dynamically serving items
to students.

– Consider different practice activities for the same topic.
– Revise the domain model periodically based on data about students’ per-

formance. Focus primarily on simple types of analysis that can be used
widely across all types of knowledge components.

These recommendations try to capture a suitable trade-off between complex
issues involved in the development of learning systems. The usefulness and
applicability of these recommendations depend on a specific application. Our
review and experience are relevant mainly for systems focusing on the practice
of recall, recognition, classification, and execution concerning factual, concep-
tual, and procedural knowledge, particularly when developed under a limited
budget. It is definitely useful to challenge these recommendations in future
research, e.g., by developing techniques based on Q-matrix or hierarchical
Bayesian models that are easily scalable and applicable in practical settings.

6.3 Research-Practice Gap

Researchers often choose a single aspect of adaptive educational technology
and study this aspect in great depth. Practitioners need to cover a wide
breadth of issues and must often opt for shallow solutions. The aim of this
paper is to help bridge these two perspectives since both sides can benefit
from each other.

For practitioners, it is useful to be aware of related research. Whenever it
is realistic to implement research-based solutions, these should be preferred
as they lead to both better behavior and better scalability than ad-hoc solu-
tions. Some approaches described in research papers, like the use of the Elo
rating system in educational technology (Pelánek, 2016), are simple to imple-
ment and achieve good accuracy. Closing the loop studies (Koedinger et al.,
2013; Liu et al., 2014; Cen et al., 2007; Koedinger & McLaughlin, 2016) pro-
vide a specific example of research with direct practical application. In other
cases, the research literature provides a useful warning. For example, the basic
idea of mapping items to multiple knowledge components seems natural and
quite simple; however, the literature on the “credit/blame assignment prob-
lem” presents a warning—it may be quite challenging to use the mapping in
the system.

For researchers, it is useful to be aware of issues faced by developers of
practical systems and properties of real data. The (hidden) assumptions used
in research papers may not be satisfied in practical systems, often in a sig-
nificant way. Practical issues often present interesting research problems, e.g.,
the question of modeling student skills across different practice activities is
not sufficiently addressed by current student modeling techniques. It would
also be useful to explore in more detail applicability of techniques proposed
in existing work, with respect to both instructional considerations (e.g., along



22 Radek Pelánek

the lines of the Knowledge-Learning-Instruction framework (Koedinger et al.,
2012)) and practical considerations (e.g., to consider not only the question
whether a proposed technique can be efficient for learning, but also when it is
cost-effective to apply). Finally, considerations of scalability and applicability
of techniques under limited budgets can provide interesting impulses for the
development of novel techniques.
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