
Difficulty and Complexity of Introductory
Programming Problems

Tomáš Effenberger, Jaroslav Čechák, and Radek Pelánek

Masaryk University Brno
{xeffenb1, xcechak1, pelanek}@fi.muni.cz

Abstract. The paper is submitted as a Research Paper. Difficulty and
complexity measures are used for problem sequencing, authoring, and
detecting problematic problems. We review measures of observed diffi-
culty and intrinsic complexity for introductory programming exercises
and explore the relationship between these measures using correlation
analysis and projections onto a plane. Even though the exercises are
similar, only a few trends hold for all of them, stressing the necessity
for validating previous results about complexity and difficulty measures
that were based on data from a single exercise.

1 Introduction

Although the terms difficulty and complexity are often used as synonyms, they
can be used to distinguish two different concepts. We use the term complexity
for intrinsic characteristics of problems which influence performance, but which
are independent of the context such as the people solving the problem [12, 5].
The complexity of programming problems can be computed from the problem
statement and solution, for example, as the number of lines, number of flow-
of-control structures, or number of unique programming concepts involved. The
difficulty, in contrast, relates to the observed performance, such as failure rate,
median solving time, or the number of attempts.

Both complexity and difficulty can be useful for problem sequencing, i.e.,
deciding in which order to present problems to the student [4]. It is a common
practice to present the problems from the least complex to the most complex,
or from the least difficult to the most difficult. Occasional drops in one of the
complexity or difficulty dimensions might, nevertheless, make the experience
more enjoyable [11]. When used for problem sequencing, difficulty measures suffer
from the cold start problem. Complexity measures can be computed just from
the problem statement and solution, and so they can be used to estimate the
difficulty of a new problem before enough performance data are collected [16].

In addition to the problem sequencing, understanding the relationship be-
tween various complexity and difficulty measures can be useful for problem
authoring, indicating, for example, which complexity dimensions to change to
obtain a problem of the desired difficulty. On the other hand, the discrepancy
between the estimated complexity and observed difficulty can serve as a simple
heuristic for detecting suspicious problems that should be investigated.



In this work, we explore the relationship between complexity and difficulty
measures for problems from four exercises in two systems for learning intro-
ductory programming, in which students create programs in either block-based
or textual programming interface. We use a correlation analysis for comparing
pairs of measures, and a projection of the measures onto a plane for a macro-
scopic view of all the relationships at once. Most trends are specific to individual
exercises; however, there were a few observations that held for all four exercises.

2 Difficulty and Complexity Measures

Both complexity and difficulty can be measured in many ways. Some measures
are domain-independent (e.g., failure rate), while others are specific to program-
ming (e.g., number of flow-of-control structures). Some complexity measures
even require tailoring for a given type of programming exercise; for instance,
specification of possible programming concepts.

2.1 Complexity for Programming Problems

In the context of introductory programming, the problem solution, which is often
code, is more amenable to automatic processing than problem statement, which
is usually a text in natural language. Examples of complexity measures com-
puted from a code include lines of code, number of flow-of-control structures [1],
cyclomatic complexity [18], Halstead complexity measures based on the number
of operators and operands [10], and number of unique programming concepts
involved [10].

Even if the solution code stays the same, the complexity of a problem can
be significantly shifted by the change in the problem statement. One reason is
the linguistic complexity of the problem statement (e.g., how long is the text),
and reference to external domains [16]. In micro-world programming exercises,
a corresponding property is a complexity of the world description; for example,
the size of the grid, or the number of distinct objects. Problem statement also
determines Bloom’s level of complexity for involved programming concepts [9].
The Bloom’s level is also influenced by scaffolding, such as hints, starter code, a
toolbox of programming blocks, or even the name of the problem.

2.2 Difficulty for Programming Problems

In addition to domain-independent failure rate and response time, the difficulty
of programming problems can also be measured in the number of code edits,
executions, and submits. These simple measures are straightforward to compute;
however, they are affected by several biases such as learning, problem ordering,
attrition bias, and self-selection bias [14]. In the context of testing, Item Response
Theory models offer a group invariant estimates of difficulty using correctness of
answers [7]. These models can be extended to incorporate learning [13], and to
estimate problem solving times [15]. Difficulty can also be estimated by asking
students for feedback [17].

2



Table 1. Programming exercises and data used for analysis.

Exercise Interface Problems Students Attempts

RoboMission blocks 85 3,800 62,500
Turtle Blockly blocks 77 11,000 63,600
Turtle Python text 51 2,400 11,900
Python text 73 2,000 10,700

3 Data Analysis

We use data from two systems for the practice of introductory programming
(robomise.cz and umimeprogramovat.cz) and analyze the relationship between
several complexity and difficulty measures.

3.1 Exercises and Measures

Table 1 presents an overview of four programming exercises that we use for
analysis. In the RoboMission exercise [8], students build programs using a block-
based programming interface [2] to guide a robot on a grid. In Turtle Blockly and
Turtle Python, students command a turtle to draw assigned geometric objects
[6]; the difference between the two is in the programming interface (block-based
vs. textual). In the fourth exercise, students write Python code to solve problems
with numbers, strings, and lists, and their code is evaluated on hidden test cases.

To assess the complexity of a problem we used the following measures: in-
struction length, code length, and the number of unique concepts; each with
varying granularity. The instruction length was computed as a number of words
or characters in the problem statement. The code length was computed as a
number of lines or characters in the author’s solution. The concepts vary across
the exercises and they include flow-of-control statements, logical and mathemat-
ical operators, turtle commands, and robot commands. There were three levels of
granularity: every concept independently, small groups of closely related concepts
(e.g., logical operators), and coarse groups (e.g., all flow-of-control statements).
Only the occurrence of the concept is measured; the frequency is not.

The difficulty was measured by failure rate, median solving time, and the
median number of attempts. The failure rate is the ratio of unsuccessful students
to all students than encountered the given problem. The median solving time is
computed only from times of successful students. An attempt is an act of student
submitting the solution for an automated assessment. Each measure also has six
other variants. They were obtained by filtering out students with less than k
visited problems or taking only attempts from kth encountered problem onward
in the student’s solving sequence. The selected values of k were 3, 5, and 10.

3.2 Relations among Measures

When presented with many measures, it is not obvious which one to use. Some
may measure the same aspect of the complexity or difficulty, and some may

3



Fig. 1. Scatterplots and Spearman’s correlation coefficients (r in the top right corner)
for number of concepts and failure rate across the studied exercises. Colors denote
problems assigned to the same problem set within the exercise.

vastly differ from others. Furthermore, the same measure can have multiple
variants based on the granularity (e.g., concepts) or the used filtering (e.g., failure
rate). To gain insight we propose using Spearman’s correlation and Principal
component analysis (PCA) projection to quantify the measure similarities.

Spearman’s correlation coefficient is a great way of comparing a pair of mea-
sures. It is better suited for an in-depth comparison of a smaller number of mea-
sures. PCA, on the other hand, is well suited for providing a broader overview of
measures and their similarities. PCA tries to project the data-points (measures)
onto a smaller dimensional space while retaining as much variation in the data
as possible. Both tools can be used to asses redundancy of measures.

The sample of results of our correlation analysis is presented in Fig. 1. The
figure shows only a single pair of measures, number of concepts (variant with
small groups) and failure rate (without any filtering), as an example. It illustrates
that a conclusion drawn from a single type of exercise may not generalize well
to other exercises. Here the correlation is fairly high for Turtle Python while
abysmal for Python. Different variants of the same measure generally correlated
well (r of 0.7 or higher) across all exercises. Although, there were some exceptions
to this rule, e.g., variants of concepts and failure rate for Python exercise.

The results from our PCA analysis is presented in Fig. 2. It illustrates the
variability of measure variants across exercises. It is worth noting that variants
of the same measure form a tight cluster which is consistent with our findings in
the correlation analysis. The failure rate in Python is, once again, an exception
and its cluster is less compact than clusters for other exercises and measures.
The analysis also shows that the same type of measures tends to be closer to-
gether. The strange behavior of the median number of attempts in Python can
be attributed to different data gathering methodology.

3.3 Using Complexity for Difficulty Estimation

Complexity measures can be used to estimate the difficulty of new problems
before any performance data are collected. We analyzed data from four pro-
gramming exercises described in section 3.1 to find if there is a simple universal

4



Fig. 2. PCA projections of measures across the studied exercises.

complexity measure that would be a reasonable predictor of difficulty. We com-
pared two complexity measures: lines of code, and the number of concepts. For
each complexity measure, the order of the problems in each exercise according
to this measure was compared to the order according to the observed difficulty.
As a proxy for difficulty, we used an average order according to solving time, the
number of attempts, and failure rate. We summarized the discrepancies between
orderings using Spearman’s correlation coefficient.

For a complexity measure to be a robust predictor of the difficulty, high
global correlation is not enough. Confounding factors can lead to a positive
trend on the global level, even if there is no trend within subgroups [3]. For
example, in Turtle Python exercise, there is a high global correlation between
failure rate and the number of concepts (0.82), but Fig. 1 suggests that the
correlation is much lower within problem sets. To quantify whether a given
complexity measure would be successful in ordering problems within the problem
sets, we computed correlations between orderings within individual problem sets,
and compared the average within-problem-set correlations to the global within-
exercise correlations.

The results are shown in Table 2. Neither of the complexity measures had
high correlations with difficulty in all exercises. The within-exercise correlations
ranged between 0.50 and 0.59 for lines of code, and between 0.53 and 0.83 for
the number of concepts, and they further dropped by 0.07–0.34 when computed
within individual problem sets of the exercise. While the number of concepts was
more accurate in predicting the global trend, the lines of code had usually higher
local correlations. This indicates that the number of concepts is a preferable
measure for the division of problems into problem sets, while the lines of code
might be more useful to consider for ordering the problems within the problem
sets—though not as a single criterion.

4 Discussion

We have explored the relationship between complexity and difficulty measures
in four introductory programming exercises. Even though these exercises were
closely related, only a few trends held for all of them. We should be, therefore,
cautious not to make general conclusions about the difficulty or complexity of

5



Table 2. Spearman’s correlation coefficients between observed difficulty and measured
complexity (lines of code, number of concepts) in 4 programming exercises. Global
correlations are computed across all problems in the exercise, while local correlations
are average correlations within individual problem sets. The last column shows the
difference between global and local correlations.

Exercise Complexity Global
correlation

Local
correlation

Difference

Robomission lines 0.53 0.46 0.07
Robomission concepts 0.66 0.44 0.22
Turtle Blockly lines 0.50 0.41 0.09
Turtle Blockly concepts 0.64 0.31 0.34
Turtle Python lines 0.51 0.32 0.20
Turtle Python concepts 0.83 0.53 0.30
Python lines 0.59 0.41 0.18
Python concepts 0.53 0.29 0.24

programming problems using data from just a single exercise. Instead of propos-
ing a single universal measure of complexity or difficulty for all programming
exercises, we focus on a methodology for clarifying what the suitable measures
for given exercise are.

When there are many measures to choose from, PCA provides an overview
of their similarity. Although the proximity of projected measures does not di-
rectly translate to correlation, it gives at least a rough estimate. From our PCA
analysis, it is clear that instruction lengths, in our case, are unrelated to other
measures. This suggests some more sophisticated language analysis or an en-
tirely different approach would be required for these measures to be useful. The
various filtering methods resulted in highly similar difficulty measures both in
terms of correlation and position in a projected plane. These results hint that
filtering does not bring any tangible benefits.

Neither lines of code, nor the number of concepts are an accurate predictor of
difficulty. Even though the number of concepts has a high global correlation with
the difficulty for some exercises, the local within-problem-set correlations are
lower. One approach to increase the precision is to further refine the information
obtained from the problem statement and solution; for example, by detecting
finer-grained and subtler concepts. Furthermore, different concepts should be
weighted differently, especially if they are included in scaffolding.

Another approach to increase the precision of difficulty estimates is to ex-
tend a complexity measure to account for the context in which the problem
is presented. For example, if a problem on while loops is a part of a problem
set focusing on while loops, then the problem requires understanding how to
use while loop, but not necessarily when to apply it. If the problem was moved
into a mixed problem set practicing various control structures, the contextual-
ized complexity would increase, as Bloom’s level of complexity increased from
Understand to Apply [9].

6



References

1. Andres Alvarez and Terry A Scott. Using student surveys in determining the
difficulty of programming assignments. Journal of Computing Sciences in Colleges,
26(2):157–163, 2010.

2. David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. Learn-
able programming: blocks and beyond. Communications of the ACM, 60(6):72–80,
May 2017.

3. Colin R Blyth. On simpson’s paradox and the sure-thing principle. Journal of the
American Statistical Association, 67(338):364–366, 1972.

4. Peter L Brusilovsky. A framework for intelligent knowledge sequencing and task
sequencing. In International Conference on Intelligent Tutoring Systems, pages
499–506. Springer, 1992.

5. Donald J Campbell. Task complexity: A review and analysis. Academy of man-
agement review, 13(1):40–52, 1988.

6. Michael E Caspersen and Henrik Bærbak Christensen. Here, there and everywhere
- on the recurring use of turtle graphics in cs 1. In ACM International Conference
Proceeding Series, volume 8, pages 34–40, 2000.

7. R.J. De Ayala. The theory and practice of item response theory. The Guilford
Press, 2008.

8. Tomáš Effenberger and Radek Pelánek. Towards making block-based programming
activities adaptive. In Proc. of Learning at Scale, page 13. ACM, 2018.

9. Richard Gluga, Judy Kay, Raymond Lister, Sabina Kleitman, and Tim Lever.
Coming to terms with bloom: an online tutorial for teachers of programming fun-
damentals. In Proceedings of the Fourteenth Australasian Computing Education
Conference-Volume 123, pages 147–156. Australian Computer Society, Inc., 2012.

10. Petri Ihantola and Andrew Petersen. Code complexity in introductory program-
ming courses. In Proceedings of the 52nd Hawaii International Conference on
System Sciences, 2019.

11. Conor Linehan, George Bellord, Ben Kirman, Zachary H Morford, and Bryan
Roche. Learning curves: analysing pace and challenge in four successful puzzle
games. In Proceedings of the first ACM SIGCHI annual symposium on Computer-
human interaction in play, pages 181–190. ACM, 2014.

12. Peng Liu and Zhizhong Li. Task complexity: A review and conceptualization
framework. International Journal of Industrial Ergonomics, 42(6):553–568, 2012.

13. Radek Pelánek. Applications of the elo rating system in adaptive educational
systems. Computers & Education, 98:169–179, 2016.

14. Radek Pelánek. The details matter: methodological nuances in the evaluation of
student models. User Modeling and User-Adapted Interaction, 28:207–235, 2018.

15. Radek Pelánek and Petr Jarušek. Student modeling based on problem solving
times. International Journal of Artificial Intelligence in Education, 25(4):493–519,
2015.

16. Judy Sheard, Angela Carbone, Donald Chinn, Tony Clear, Malcolm Corney, Daryl
D’Souza, Joel Fenwick, James Harland, Mikko-Jussi Laakso, Donna Teague, et al.
How difficult are exams?: a framework for assessing the complexity of introduc-
tory programming exams. In Proceedings of the Fifteenth Australasian Computing
Education Conference-Volume 136, pages 145–154. Australian Computer Society,
Inc., 2013.

17. Kelly Wauters, Piet Desmet, and Wim Van Den Noortgate. Item difficulty esti-
mation: An auspicious collaboration between data and judgment. Computers &
Education, 58(4):1183–1193, 2012.

7



18. Jacqueline Whalley and Nadia Kasto. How difficult are novice code writing tasks?:
A software metrics approach. In Proceedings of the Sixteenth Australasian Com-
puting Education Conference-Volume 148, pages 105–112. Australian Computer
Society, Inc., 2014.

8


