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Abstract Complexity and difficulty are two closely related but distinct con-
cepts. These concepts are important in the development of intelligent learning
systems, e.g., for sequencing items, student modeling, or content management.
We show how to use complexity and difficulty measures in the development
of learning systems and provide guidance on how to think, reason, and com-
municate about these notions. To do so, we propose a pragmatic distinction
between difficulty and complexity measures. At the same time, we acknowledge
the limitations of any simple distinction and discuss several potentially con-
founding issues: context, biases, and scaffoldings. We also provide an overview
of specific measures and their applications in several educational domains and
a detailed analysis of measures for problems in introductory programming.

1 Introduction

Both research and development in artificial intelligence in education are often
concerned with questions regarding easiness and difficulty. We try to estimate
student skills using student modeling techniques (Pelánek, 2017) in order to
present students with appropriately challenging problems. We aim to sequence
problems from easier to more difficult to achieve the state of flow (Kiili et al.,
2012; Csikszentmihalyi and Csikszentmihalyi, 1992). We design techniques for
providing hints for difficult steps (Aleven et al., 2016). Analysis of difficulty is
also useful for intelligence amplification (Baker, 2016), as it can point to mis-
specified problems or suggest ideas for the potential addition of new content,
which will make the learning curve smoother (Huang et al., 2020).

But what exactly do the terms “easy” and “difficult” mean? Is there a
difference between “difficulty” and “complexity” of items? How do we exactly
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conceptualize these notions for the purposes of the development of adaptive
learning systems? These are the main question that we address in this work.

The notions of difficulty and complexity are sometimes used as synonyms.
However, the literature offers a basic distinction between them (e.g., Mesmer
et al. (2012); Beckmann et al. (2017)): complexity is an intrinsic property
of a task (item) and is given by its internal structure, whereas difficulty is
related to student-task interaction (performance of students). Both of these
concepts can be measured in many ways. Difficulty and complexity measures
have many applications in the development of adaptive learning systems. It is
thus important that we think, reason, and communicate about these notions
properly.

One typical application is the sequencing of items. A common pedagogi-
cal principle applied in most learning systems (both adaptive and static) is
to sequence topics and problems from easier to more difficult (Scheiter and
Gerjets, 2002). But what exactly should be the criterion that is used for se-
quencing? For example, Brusilovsky (1992) considers sequencing with respect
to complexity, whereas Chen et al. (2006) propose sequencing based on item
difficulty and item similarity. Both of these approaches have disadvantages.
Consider, as an example, the sequencing of program comprehension items in
introductory programming. When sequencing with respect to complexity, we
may put early in the sequence items that use few simple programming concepts
but are difficult to answer due to high cognitive demands. When sequencing
with respect to difficulty, we may put early in the sequence items that contain
advanced programming concepts, but for which the answer is easy to guess
due to the structure of the item. This is a specific example where it is useful
to explicitly distinguish between complexity and difficulty measures and to
consider their suitable combination.

Complexity and difficulty measures have many other applications. Com-
plexity can be used as a proxy for difficulty to alleviate the “cold start” problem
in student modeling and check for biases in student data (Effenberger et al.,
2019). Estimation of difficulty based on complexity is also useful for the filter-
ing of automatically generated content (Kurdi et al., 2020). Complexity and
difficulty measures are also useful for intelligence amplification (Baker, 2016)
or design-loop adaptivity (Aleven et al., 2016).

In this work, we consider the complexity and difficulty of items in learning
systems, focusing on well-structured problems, i.e., problems with clear in-
structions and an objective solution that can be checked algorithmically. This
covers a wide range of items used in learning systems; specific examples are
given in Table 1. For these items, complexity measures are, for example, the
length of a text, the count of numbers in an item statement, the number of
concepts in an item solution, or the number of steps necessary to solve an
item. Difficulty measures are based on students’ performance; the basic ones
are the failure rate and median response time.

Our aim in this overview paper is to provide a solid starting point that can
provide guidance and inspiration for the usage of complexity and difficulty
measures in the development of learning systems. To this end, we review lit-
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Table 1 Examples of well-structured problems that fall into the scope of this work.

item statement item solution

What is the capital city of France? a) Berlin, b) Paris,
c) London

b)

Does she [play/plays] the guitar? play

23 + 32 − 2 × 3 = ? 11

3x− 1 = 14, x = ? 5

Peter eats three squares of chocolate every day. How
many squares of chocolate does he eat in a week?

21

How many ways can you arrange the letters in ‘Ro-
coco’?

60

4

1 2
3

2 1

4

1
1

1

2
2

2

3
3

3
3

4

4
4

Write a function that for a given n prints all its divisors.

def divisors(n):

for i in range(1, n+1):

if n % i == 0:

print(i)

erature, provide conceptualizations relevant to the AIED field, discuss specific
examples from several educational domains, and perform an in-depth analysis
of a particular dataset.

We propose a simple distinction between complexity and difficulty mea-
sures: a complexity measure is based only on the item description, it does
not use any data about student performance; a difficulty measure is based
only on data about student performance, it does not use any data about an
item beyond its identification number. This is a pragmatic view that is use-
ful for many practical applications. However, we also highlight its limitation:
aspects like the role of context, biases, and scaffoldings make the distinction
between complexity and difficulty more convoluted. Our proposal is based on
previous conceptualizations of complexity and difficulty, which are reviewed in
Section 2. We discuss aspects specific to educational items and our pragmatic
approach to dealing with complexity and difficulty measures in Section 3.

We complement the general discussion with specific examples from several
diverse settings. We have chosen settings for which the current literature pro-
vides ample measures, applications, and results: reading and language learn-
ing, multiple-choice questions, word problems in mathematics, logic puzzles.
In Section 4, we discuss specific complexity and difficulty measures for these
domains and outline specific applications of these measures.
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We also provide a detailed analysis in a less studied domain: introductory
programming. We use extensive data from five types of programming exercises,
which allows us to explore the subtle issues involved in the computation of
complexity and difficulty measures. The use of five types of exercises also
allows us to explore the generalizability of results. These results are reported
in Section 5.

Throughout the paper, we stress the need to take into account the purpose
of complexity and difficulty measures. As the examples discussed above illus-
trate, there are many types of use cases, and each of them requires measures
with slightly different properties. We thus do not aim at finding the correct
measure but rather at a wide spectrum of measures and tools for choosing the
ones suitable for a specific situation. We elaborate on this point in the final
discussion.

2 Related Work

In this section, we discuss works relevant to general issues concerning the
difficulty and complexity concepts. Works concerning specific complexity and
difficulty measures for particular educational domains are discussed in Section
4 and Section 5, where we describe case studies.

2.1 Task Complexity and Difficulty

The distinction between complexity and difficulty and characterization of these
concepts has been discussed in several previous works, typically with the focus
on general “tasks” and complex, ill-structured problems.

One of the first systematic discussions of task complexity was provided
by Campbell (1988), who contrasted several views of complexity (as a psy-
chological experience, as a task-person interaction, as a function of objective
characteristics) and provided a typology of complex tasks. A more recent re-
view along similar lines is provided by Liu and Li (2012), who propose a general
overview of task complexity (in a very broad setting). They define task com-
plexity as “the aggregation of any intrinsic task characteristic that influences
the performance of a task.” They also propose general “complexity dimen-
sions.” Three of these dimensions—size, variety, and relationship—are directly
relevant to educational items; these correspond to aspects like the length of
an item statement or solution, the number of concepts used, and interactions
among concepts. For these dimensions, the interesting question is how to mea-
sure them precisely; with this respect, unfortunately, the general framework
cannot provide any guidance. Several other described complexity dimensions—
ambiguity, variability, unreliability, and incongruity—are not directly relevant
to the current discussion because we consider only well-structured problems,
where these factors should not be present (or only in a limited manner). Fi-
nally, novelty and temporal demand dimensions are related to the contextual
aspect of complexity that we discuss later.
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Robinson (2001) distinguishes task complexity (cognitive factors), task dif-
ficulty (learner factors), and task conditions (interaction factors). He considers
tasks in the context of language learning, and the main motivation is the se-
quencing of tasks in the syllabus. In the context of language tasks, Mesmer
et al. (2012) explicitly distinguish text difficulty (based on the performance of
readers) and text complexity (based on textual elements) and highlight that
treating these terms as synonymous “conflates causes with effects.” Amendum
et al. (2018) notes the importance of a specific task with the text.

Beckmann et al. (2017); Beckmann and Goode (2017) explicitly focus on
the distinction between complexity and difficulty. They consider complexity
to be a cognitive concept that reflects cognitive demands imposed by the
task and difficulty to be a psychometric concept that reflects the performance
of individuals. They discuss these notions specifically for complex problem
solving (controlling a dynamic system with feedback loops).

2.2 Complexity and Educational Taxonomies

Well-known educational taxonomies are related to the complexity concept.
Bloom’s taxonomy and its revision (Bloom et al., 1956; Anderson et al., 2000)
describe the taxonomy of educational objectives. The taxonomy divides cog-
nitive objectives into levels (knowledge, comprehension, application, analysis,
synthesis, evaluation) that are sorted from easier to more complex (although
their complexity may overlap).

The SOLO taxonomy (Biggs and Collis, 1981) focuses on the relation be-
tween concepts and is used particularly to evaluate open-ended questions. Its
focus is on the complexity of answers (not questions). The depth of knowledge
framework (Webb, 1997) consists of four levels of increasing cognitive com-
plexity: recall and reproduction, application, strategic thinking, and extended
thinking. The Knowledge-Learning-Instruction framework (Koedinger et al.,
2012) provides a taxonomy of knowledge components and learning processes
and links the complexity of knowledge components to instructional design.

Although all of these taxonomies are related to complexity, they are very
general and thus coarse-grained. Such taxonomies are useful particularly for
comparing different types of tasks. They do not provide guidance on how to
measure complexity numerically. Particularly, when we consider tasks of one
type (e.g., different linear equations), they do not differentiate between them,
even though there may be significant differences between individual instances.

2.3 Difficulty and Performance

Difficulty is usually used in connection with human performance on a task. A
basic approach to quantifying difficulty is to consider the correctness of an-
swers. A simple difficulty measure is a failure rate (the ratio of answers that are
incorrect). Difficulty is a key concept in both adaptive testing and practice. In
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the context of testing, difficulty is usually measured using Item Response The-
ory (IRT) models (De Ayala, 2008). In an adaptive practice system, student
modeling approaches like the Elo rating system (Pelánek, 2016) or Additive
Factors Model (Cen et al., 2006) include difficulty parameters. Wauters et al.
(2012) compare different methods for estimating difficulty (e.g., IRT, Elo, stu-
dent feedback, expert rating).

The correctness of an answer is not the only source of data for mea-
suring difficulty. Another common source of difficulty data is response time
(Pelánek, 2017). In the case of problem-solving activities (programming or
solving logic puzzles like Sudoku), it is not very natural to analyze the cor-
rectness of answers—rather than “incorrectly answered problems,” it is more
natural to talk about “not solved yet problems.” The primary measure of diffi-
culty in these cases is thus problem-solving time (Pelánek and Jarušek, 2015).
We may also consider difficulty both with respect to correctness and time (Van
Der Linden, 2009).

2.4 Context and Biases

Educational items are not solved in isolation. Students typically answer an
item in some specific context, e.g., after previously solving several other items.
This context influences student behavior and can have a significant effect on
how we analyze (or should analyze) the complexity and difficulty of items.

Contextual effects are studied in many areas of human behavior, e.g., social
and psychological research clearly shows the significant influence of question
order in surveys (Schwarz and Sudman, 2012). In education, a classic illus-
tration of the role of context is the Einstellung effect (Luchins, 1942) — an
influence of previous attempts on the selected approach in problem-solving
activities (Lovett and Anderson, 1996). Another well-known effect illustrating
the role of context is the difference between blocking and interleaving practice
(Taylor and Rohrer, 2010). By changing the ordering of items, their difficulty
and long-term impact also change: interleaving items of different types de-
creases immediate success while leading to better long term retention.

The contextual effects can create biases in the collected data, which we use
for analysis. Common biases in educational data are caused by fixed ordering
of items or by the use of mastery learning, which leads to attrition bias (Nixon
et al., 2013; Goutte et al., 2018; Pelánek, 2018; Čechák and Pelánek, 2019).
The commonly used techniques in educational data mining or psychometrics
typically do not take contextual effect into account, e.g., local item indepen-
dence is a key assumption in standard item response theory models (Baker,
2001). There are, however, extensions of the basic models that consider con-
textual effects (Keller et al., 2003; Sao Pedro et al., 2013) or address biases
and missing data (Finch, 2008).
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3 Complexity and Difficulty of Educational Items

Based on the review of the literature and our experience with the develop-
ment of learning systems, we propose a systematic approach to dealing with
complexity and difficulty measures for well-structured problems in learning
systems.

3.1 Item Anatomy and Student Data

Before discussing the complexity and difficulty of items, let us clarify what
we understand under “item” and what kind of data can be used to measure
complexity and difficulty.

In our discussion, we aim to strike a balance between generality and speci-
ficity. We want our discussion to be relevant to many different types of edu-
cational content, and at the same time, we want to avoid vague formulations.
Thus, we consider only well-structured problems with clear solutions, which
are relatively short (the response time is between few seconds and few min-
utes) and have relatively simple interaction (mostly basic selected response
and constructed response). This list of constraints may seem restrictive, but
it covers a large portion of items used in education (a sample of illustrations
is provided in Table 1).

This type of item has two major parts:

– an item statement (what is shown to students): natural language text, im-
age, sound recording, or a structured input describing interactive elements
(e.g., a JSON file describing a logic puzzle),

– an item solution (what is expected as an answer from student): either
specified explicitly (a number, a short text), or implicitly (a code and
testing data in programming exercise, a goal state in a logic puzzle).

Each item is used within a learning system in some context, i.e., what other
items do students solve before and after the given item. This context is de-
termined typically by a mapping of items to knowledge components (students
typically practice a sequence of items from a single knowledge component), an
algorithm for item selection (e.g., fixed sequence, random, adaptive), and the
algorithm’s parameters (e.g., specific ordering for a fixed sequence).

The item difficulty is based on student performance; we thus also need log
data on student answers. The core data on student performance are:

– the identification of a student and item,
– the correctness of an answer (binary value),
– the specific value of an answer,
– response time.

Richer performance data are typically available, but these are often in some
way specific to a particular exercise (e.g., information about “solution quality,”
or information about multiple attempts if the exercise allows repeated attempt
after a mistake). For the sake of generality, we will focus on the core data that
are relevant to a wide range of exercises.
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statement, solution

Fig. 1 The range of complexity and difficulty measures and the data that are used to
compute these measures.

3.2 Complexity versus Difficulty Concepts

In line with the previous work on task complexity and difficulty (Liu and Li,
2012; Beckmann et al., 2017), we propose the following definitions as a basic
distinction between complexity and difficulty of educational items:

– Item complexity is an intrinsic item characteristic, which aggregates item
aspects that influence how students solve the item. Complexity is concerned
with the structure of the item itself.

– Item difficulty describes how hard it is to solve the item for students.

Note that it is necessary to distinguish between concepts and measures.
For example, “complexity as a concept” is a multifacet aggregate (and as such
is treated in many of the previous works), whereas “complexity measure” is
a specific way to compute a single number per item, which characterizes one
aspect of “complexity as a concept.” We focus on measures, which are directly
applicable to the development of learning systems.

A pragmatic view of the basic difference between complexity and difficulty
is to consider the data used to compute a specific measure (Fig. 1). If only
an item description is used, then it is a complexity measure; if only the log of
student actions is used (where items are identified solely by their IDs), then
it is a difficulty measure. As Fig. 1 shows, this view is a simplification due to
the presence of one important aspect—the context in which an item is used.

3.3 Elementary Complexity and Difficulty Measures

Let us start by discussing basic measures of complexity and difficulty, which
do not take the issue of context into account.
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3.3.1 Complexity Measures

From the general dimensions of complexity (Liu and Li, 2012), for well-structured
educational items, the most relevant complexity dimensions are size, variety,
and relationships. Complexity measures are based on the item statement and
item solution, which can be used to measure size, variety, and relationships
in many ways. For example, in word problems in mathematics, size can be
measured as the length of the text, variety as the number of distinct opera-
tions that need to be performed to reach the solution, and relationships can
quantify the depth of the computation tree (i.e., whether the individual steps
are independent or dependent on each other). Complexity measures are always
specific for a particular domain and type of item. There are, however, several
general basic approaches.

A basic complexity measure is the length of an item. This can be measured
in various ways: Do we take into account item statement, item solution, or
both? What unit of measurement do we use (e.g., characters, words, lines
of code)? For most items, there is some choice of the length that is natural
(although not necessarily useful).

Items in many domains contain text in natural language. It is dominant
in language learning but also present in mathematics (word problems) or pro-
gramming (specification of a problem). For such cases, we may use text com-
plexity measures, e.g., using readability measures (Benjamin, 2012).

Another common approach to measuring complexity is to take into account
the number of concepts needed to solve an item. For example, in the example
23 + 32−2×3, the concepts may be addition, subtraction, multiplication, and
exponentiation. This approach requires clarification of several points:

– How do we choose concepts and their granularity? For example, should
addition and subtraction be treated as two separate concepts?

– What do we count? We can use, for example, a unique count (“variability”),
a simple sum (taking the number of occurrences of concepts into account),
or a weighted sum (taking into account estimated difficulty of concepts).

– Where do we count the concepts? We can detect concepts in item statement
(which makes sense for math examples in Table 1), item solution (which
makes sense for the programming example in Table 1), or in the item
solving process (which makes sense in the case of logic puzzles).

For specific types of items, there are many other potential complexity mea-
sures, which can, for example, try to capture concept interaction or the struc-
ture of solution paths (“multiplicity, redundancy, and uniqueness” dimensions
described by Liu and Li (2012)). We can, of course, also construct aggregated
measures, which combine several aspects of complexity.

3.3.2 Difficulty Measures

There are two basic measures for “observed difficulty” that are applicable for
nearly all types of items: the failure rate and median response time. The failure
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Table 2 Illustration of the role of context.

item contexts

How many ways can
you arrange the letters
in ‘Rococo‘?

1. Word problems on permutations with repetition.
2. Word problems on combinatorics.
3. Items on various part of mathematics.

Does she [play/plays]
the guitar?

1. Questions in present simples.
2. Positive sentences, negative sentences, and question in

present simple.
3. Tenses in English.

Write a function that
for a given n prints all
its divisors.

1. The problem is solved after a sequence of problems using
functions and the modulo operator.

2. The first problem in the application which requires the use
of the modulo operator.

3. The first problem that students solve in an interactive web
application.

rate expresses the proportion of students who failed to solve the item correctly.
It is a simple complement of the success rate, which is sometimes preferred.
As a measure of difficulty, the failure rate is more natural as greater difficulty
corresponds to a higher failure rate. As response times are typically highly
skewed (Van Der Linden, 2009; Pelánek and Jarušek, 2015), the median is a
preferable measure of centrality than the mean. Alternatively, it is possible to
use the mean of log-transformed times.

For some types of items, there are other simple difficulty measures:

– items allowing multiple attempts: number of attempts,
– items with hints: the hint usage (e.g., expressed as the proportion of stu-

dents who take a hint),
– items with solutions of different quality: solution quality (e.g., the com-

pactness of code in a programming exercise),
– items with a constructed response: number of edits required to construct

the answer.

3.4 Role of Context

As Fig. 1 illustrates, the basic distinction between complexity and difficulty
is convoluted by the role of context: What is the group of students that an-
swer the item? What items (learning materials) have the students seen before
answering the item? For a specific illustration of the role of context on com-
plexity and difficulty, Table 2 describes several of our previously used examples
in three different contexts. In each case, the third context leads to greater dif-
ficulty than the first one.

The basic approach is to consider the role of context as follows:

– Item complexity is objective (absolute), i.e., independent of specific solvers
and the context of item use.



Complexity and Difficulty of Items in Learning Systems 11

– Item difficulty is relative, i.e., concerned with the performance of a partic-
ular student population in a given context.

However, this is a simplified view. Each complexity measure is in some way
(often implicitly) population dependent. For example, a complexity measure
may be based on the number of concepts used in an item. This may seem
independent of the student population. But what is a single concept? Do we
distinguish addition and subtraction as two separate concepts? That may de-
pend on the student population.

On the other hand, difficulty measures can be “decontextualized.” For ex-
ample, simple difficulty measures like the failure rate are clearly dependent on
the particular student population, but item response theory models do pro-
duce difficulty estimates that are “group invariant” (Baker, 2001). A similar
effect is often achieved by the use of the Elo rating system (Pelánek, 2016),
which can be seen as a lightweight variant of IRT models. Other student mod-
eling techniques, e.g., the Additive Factors Model (Cen et al., 2006), can also
incorporate the information about the subpopulation into estimates (although
the model measures difficulty only for concepts, not for items).

As Fig. 1 depicts, we may consider complexity measures that explicitly
take the context data into account to produce “contextualized complexity.”
We may also use the context data to try to “remove the context bias” from
the basic difficulty measures and to produce estimated (decontextualized) dif-
ficulty measures. Consequently, when we take the context into account, com-
plexity and difficulty measures end up lying on a spectrum rather than at two
clear poles.

3.5 Taking Use Case into Account

As our literature review and the above-given discussion suggest, the notions
of complexity and difficulty are very difficult to capture precisely. It thus does
not seem very sensible to try to find the correct measure of item difficulty
or complexity. Rather, it is meaningful to focus on useful measures—measures
that will enable us to improve in some way our learning systems. The usefulness
of measures depends on the specific goal that we are trying to achieve. There
are several use cases of difficulty and complexity measures, and each of them
requires different types of measures.

For example, in some applications, we need complexity measures that pre-
dict well difficulty. In these cases, we often do not care about the interpretabil-
ity of a measure; the primary criterion of usefulness is predictive accuracy. In
other cases, however, we may be more interested in multiple measures that are
interpretable and not necessarily strongly correlated. We highlight the differ-
ent use cases in the subsequent discussion of measures in specific educational
domains.
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4 Item Complexity and Difficulty in Specific Domains

In the previous section, we discussed item complexity and difficulty in general.
Now, we consider several specific domains and discuss issues specific to these
particular situations. Our main aim is illustration, not completeness. We try
to illustrate how the general principles discussed above are realized in several
domains. We also aim to highlight different uses of complexity and difficulty
measures. In this section, we thus focus on the breadth of discussion and
on covering results reported in previous studies. For the following section, we
pick one domain (introductory programming) and provide deeper analysis and
novel results.

4.1 Reading and Language Learning

Analysis of text complexity and difficulty is relevant not only for applications in
language learning (both a first and a second language) but also in many other
domains since natural language text is very often part of an item statement,
e.g., in word problems in mathematics or as a description of programming
tasks. It is also one of the few areas where the distinction between complexity
and difficulty has been clearly made in previous research (Mesmer et al., 2012).

Text complexity measures, often called readability formulas, have been
studied for a long time (Benjamin, 2012). Basic measures are typically linear
combinations of shallow text features, e.g., Flesch-Kincaid grade level formula,
one of the most well-known, is given as 0.39ASL + 11.8AWL − 15.59, where
ASL is average sentence length and AWL is average word length. Although
still widely used, simple measures of this type are subject to frequent critique,
e.g., by Bailin and Grafstein (2001). Several more complex approaches to mea-
suring text complexity have been developed, e.g., Coh-metrix (Graesser et al.,
2004), TextEvaluator (Sheehan et al., 2014).

4.1.1 Applications

A typical application of text complexity measures is to predict text difficulty
and thus to enable the selection and recommendation of texts for reading for
a particular student population or individual. The readability formulas are
sometimes used as a tool for authors while writing a text and are integrated
into many word processors. It has been noted, however, that this practice can
be detrimental (Benjamin, 2012).

In second language learning, complexity measures can be used as a tool for
the development of grammar questions—they can be used to pre-calibrate the
difficulty of new items before student data are available and to provide insight
into reasons for item difficulty. For examples of such analysis, see Pandarova
et al. (2019), who analyze fill-the-gap grammar exercises, or Ayako Hoshino
(2010), who analyze multiple-choice questions. For vocabulary learning, mea-
sures are a useful tool for defining homogeneous groups of words for practice.
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A vocabulary learning application needs to structure thousands of words into
manageable groups; it is beneficial for practice when these groups are similar
with respect to difficulty and complexity.

4.1.2 Complexity Measures for Individual Words

The complexity of individual words can be measured along several basic di-
mensions:

– basic word structure: the length of the word, the number of syllables,
grapheme-to-phoneme ratio (Rosa and Eskenazi, 2011),

– word familiarity: the frequency of word usage (typically measured as the
logarithm of the number of word occurrences in a corpus) or age-of-acquisition
(Kuperman et al., 2012),

– how abstract and hard to image the word is: denoted as concreteness,
imaginability, or measured using a list of academic vocabulary (Graesser
et al., 2004; Sheehan et al., 2014),

– semantic complexity: aspects like polysemy or ambiguity of words, can be
measured, for example, as the number of meanings provided in a dictionary
or WordNet (Miller, 1998).

In the case of second language learning, there are additional considerations,
as the difficulty of words may differ from native speakers, e.g., due to the
similarity of words in different languages. Specialized classifications of words
have been prepared for this purpose. For the Common European Framework of
Reference levels (Milton, 2010), Sohsah et al. (2015) collected expert (teacher)
opinions for a sample of words and used machine learning techniques to extend
them to a large set of words. Uemura and Ishikawa (2004) presents a similar
effort targeted at Asian language learners.

4.1.3 Sentence and Text Complexity Measures

The complexity of sentences or whole texts can be again measured along several
basic dimensions:

– typical vocabulary used: averages of measures for single words (e.g., average
length, familiarity, concreteness),

– vocabulary richness: the number of unique words, type:token ratio (which
measures the number of repetitions of individual words),

– syntactic sentence complexity: the length of sentences, the depth of a parse
tree, the number of (syntactically) valid parse trees, the mean number of
modifiers, the average number of words before the main verb,

– measures based on part-of-speech tagging: the presence or the count of
individual tags, the density of tags (e.g., high density of pronouns may be
difficult for comprehension (Graesser et al., 2004)),

– text cohesion (Graesser et al., 2004), which can be measured using vocab-
ulary used (presence of specific connectives or causal verbs), co-reference
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(repeated words in adjacent sentences), or semantics (similarity of words
or sentences based on LSA inference or word embeddings).

These are just the basic directions for measuring text complexity. Re-
searchers have also considered other dimensions, e.g., the degree of narrativity,
argumentation, or conversational style. These measures are often based on a
combination of the above-described measures. Basic readability measures like
Flesch-Kincaid are simple linear combinations of elementary measures. More
complex approaches like Coh-metrix (Graesser et al., 2004) or TextEvalua-
tor (Sheehan et al., 2014) report a wide range of measures and perform their
grouping based on human expert judgment or by machine learning techniques
(e.g., principal component analysis). Sheehan et al. (2008) highlights the genre
effects—the values of some complexity measures require different interpreta-
tions for informational and literary texts.

A complexity measure should also take into account the task that the
student should perform with the text. For example, a common task in language
learning is the fill-the-gap exercise. In this case, the complexity measure can
put additional weight on the complexity of the missing word or take into
account the size of the context that is necessary for filling in the word.

4.1.4 Difficulty Measures

The difficulty of texts and learning tasks can also be measured in many ways.
One option is to focus on reading fluency; in that case, we measure the accuracy
and speed of reading. Another option is to focus on reading comprehension or
understanding of grammar; this is typically tested by multiple-choice questions
or fill-the-gap exercises, and the straightforward difficulty measure is the failure
rate. Additionally, difficulty measures can take into account the response time,
the number of incorrect attempts, or the number of edits while writing the
response.

Amendum et al. (2018) provide a recent meta-analysis of studies with ex-
periments concerning the relation of text complexity and text difficulty for
elementary grades, with difficulty measured both as reading fluency and read-
ing comprehension. The report shows that researchers have found a wide range
of measures correlation, depending on the used complexity and difficulty mea-
sures and on the specific aspects of a study (population, grade, used texts).

An important aspect is whether we measure difficulty with respect to recall
or recognition. A constructed response (students have to write the answer)
requires an active recall of knowledge. A selected response (students only select
the answer from available choices) requires only recognition of an answer. Both
of these types of questions are commonly used for language learning tasks, and
each of them can lead to quite different estimates of difficulty. Fig. 2 provides a
specific illustration. It shows the relation between the failure rate in the recall
and recognition exercises for several groups of words. Notice, for example,
that “brown” and “yellow” have a similar failure rate as “green” and “black”
with respect to recognition but are more difficult with respect to correct recall
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(in this case, mainly due to spelling mistakes). On the other hand, “stop” is
easy to recall and spell correctly, but in the recognition exercise, the failure
rate is relatively high due to confusion with “stand.” This example illustrates
another issue with difficulty measures in language learning: dependence on the
native language of students. Our analysis is based on the performance of Czech
students; “stop” and “stand” have similarly sounding translations in Czech.

Fig. 2 The relation between two measures of difficulty for four vocabulary groups (the data
are from the umimeanglicky.cz system; English as a second language; Czech students).

4.2 Multiple-Choice Questions

A multiple-choice question (MCQ) is probably the most commonly used type of
item used in educational systems. The use of MCQs is widespread, particularly
in testing, but MCQs are also useful for learning and practice (Gierl et al.,
2017). From the perspective of complexity analysis, an advantage of MCQs is
their clear item anatomy:

– a stem, i.e., the introductory text stating a question or a problem (What
is the capital city of France? ),

– the correct answer (Paris),
– distractors, i.e., incorrect options (Berlin, London).
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4.2.1 Applications

The typical application of complexity and difficulty measures in the case of
MCQs is the prediction of difficulty based on complexity measures, e.g., in
the context of medical questions (Yaneva et al., 2019; Baldwin et al., 2020) or
English vocabulary learning (Susanti et al., 2016).

This prediction is useful particularly for automatic question generation
(Kurdi et al., 2020) since it allows the generator to create questions of suit-
able difficulty. The prediction is also useful for manually created questions—in
adaptive systems, it can eliminate (or shorten) the need for calibration of ques-
tions (Pandarova et al., 2019). Other applications, such as feedback for content
authors, are also useful.

4.2.2 Measures

The basic complexity measures for MCQs are based on the readability mea-
sures discussed above. The question stem is typically textual, and thus we can
apply the general text measures and linguistic features (Yaneva et al., 2019;
Baldwin et al., 2020). In addition to these general measures, it is useful to fo-
cus on the concepts mentioned in the text. For example, the question “What
is the capital city of Angola?” has the same sentence structure as the question
about France, and thus the basic text measures cannot capture the difference
between these two questions. To do so, we can use, for example, techniques
based on word frequency (Benedetto et al., 2020) or word embeddings (Mikolov
et al., 2013).

A specific feature of the multiple-choice question format is the use of dis-
tractors (Gierl et al., 2017; Mitkov et al., 2009). From the perspective of com-
plexity, a key aspect of distractors is their similarity to the correct answer
since more similar distractors require more complex processing from students
(Ascalon et al., 2007). The similarity can be measured in several ways, for
example:

– semantic similarity based on knowledge measured using ontologies (Leo
et al., 2019; Papasalouros et al., 2008; Lin et al., 2015; Nuthong and Wito-
surapot, 2017) or knowledge graphs (Seyler et al., 2017), e.g., using distance
or depth within an ontology,

– semantic similarity based on language features and text processing mea-
sured using WordNet (Mitkov et al., 2009), word embeddings (Mikolov
et al., 2013), or latent semantic analysis,

– syntactic similarity measured using edit distance (Ayako Hoshino, 2010),
phonetic similarity (Mitkov et al., 2009), and potentially extended with
part-of-speech tags and other word properties,

– the visual similarity in the case of images (e.g., animal pictures).

For difficulty measures, the most commonly used one is the basic failure
rate. As MCQs are often used in adaptive systems, it is useful to consider also
difficulty parameter of IRT models, which are able to take into account biases
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caused by adaptivity. Response time, another common difficulty measure, is
typically of secondary importance in the case of MCQs.

4.3 Word Problems in Mathematics

In the domain of mathematics, a specific interesting area is word problems.
Analysis of word problems is very challenging due to the complex interaction of
reading skills and computation skills. Daroczy et al. (2015) provide an exten-
sive overview of linguistics and numerical factors of word problem complexity
and their relation to difficulty. Barbu and Beal (2010) discuss specifically the
impact of linguistic complexity of word problems on performance for second
language English learners. The aspects influencing the difficulty are often non-
intuitive, even for experienced teachers. Koedinger and Nathan (2004) com-
pared the difficulty of word problems and mathematically equivalent equations
to evaluate the impact of problem representation on difficulty. They note that
although word problems were easier than equations, most teachers had the
opposite expectation.

4.3.1 Applications

In this case, the main type of application of complexity and difficulty mea-
sures is “insight.” The analysis can provide information about aspects of word
problems that influence difficulty—such information is useful for content au-
thors as a guideline for creating new problems. It can also be useful for the
automatic generation of word problems (Polozov et al., 2015), where it can
provide methods for controlling the difficulty of generated problems (Khodeir
et al., 2018; Wang and Su, 2016). The insight is also useful for the management
of content and meta-data, e.g., specifying the mapping of items to knowledge
components or removing unsuitable items. Beyond the development of learn-
ing systems, insight into word problems is also relevant for cognitive science
and pedagogy research (Daroczy et al., 2015; Koedinger and Nathan, 2004).

4.3.2 Measures

The complexity measures for word problems can be divided into two basic
types. At first, there are measures that can be relatively simply computed
algorithmically, but these are typically “shallow,” covering only the surface
features of word problems. These include basic properties of a word problem
text (e.g., the length of a text, the number of words, the average length of a
sentence, readability formulas) and basic analysis of numbers used in the prob-
lem statement (e.g., the total count of numbers, the magnitude of numbers,
the type of numbers: small integer, decimal, fraction).

To better capture the complexity of word problems, it is necessary to con-
sider also “deep” measures that correspond better to cognitive processes used
by solvers. Such measures can be based on the number and type of concepts



18 Radek Pelánek et al.

used to compute the solution. We may also take into account the necessity of
the use of “common knowledge” in the computation (e.g., to find a solution,
a solver may need to know the number of days in a week or the number of
legs of a spider) or the presence of irrelevant data. These deep measures are,
however, very difficult to compute algorithmically just from the text of the
word problem.

To evaluate algorithmically computed text features, current studies typi-
cally either use manual labeling to obtain the deep features or consider only
a set of closely related problems (e.g., addition and subtraction under 20).
We have explored the relations among complexity and difficulty measures for
a diverse set of 1000 word problems from the system umimematiku.cz. The
analysis showed that the shallow, easily computable complexity measures cor-
relate only very weakly with difficulty. The only larger correlation is between
the length of the text and the response time—which is an expected and not
very applicable result.

4.4 Logic Puzzles

Logic puzzles are an interesting bridge between educational applications, cog-
nitive science research, and computer games. Complexity and difficulty are
key aspects in the design of computer games (Aponte et al., 2011). For exam-
ple, Linehan et al. (2014) analyzed the complexity of four successful puzzle
games; they measure complexity as a number of steps and discuss the relation
of this “objective” complexity and difficulty as performance. They also discuss
the relation of these measures to sequencing and the role of the scaffolding of
learning.

The domain of logic puzzles is very wide, see, e.g., the taxonomy proposed
by Hufkens and Browne (2019). For the sake of concreteness, we consider in our
discussion mainly transport puzzles (e.g., Sokoban, Rush hour) and constraint
satisfaction puzzles (sometimes also called “Japanese logic puzzles,” the most
well-known example being Sudoku).

4.4.1 Applications

Puzzles have been used in basic cognitive science research, e.g., Kotovsky
et al. (1985) analyzed several izomorfs of the famous Tower of Hanoi puzzle,
showing that some of them are 16 times more difficult than others; this research
highlights the impact of problem representation on difficulty.

The main practical application of measures is to predict difficulty based
on complexity measures. Such a prediction is useful for the sequencing of puz-
zles or presentation of puzzles to users. A typical example is the indication
of Sudoku difficulty in newspapers. A specific application area where the no-
tions of difficulty and complexity are critical is procedural content generation
(Togelius et al., 2011). Estimation of difficulty is an important step in the au-
tomatic creation of game content (evaluating and filtering candidate puzzles).
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4.4.2 Measures

The basic complexity measures for puzzles are the size of the problem (e.g.,
the size of the grid, the number of elements in the puzzle) and the length of a
solution, i.e., the number of steps necessary for solving the puzzle.

Many puzzles (particularly transport puzzles) can be expressed as a search
within a state space of puzzle configuration. Properties of this state space
(e.g., the structure of paths, redundancy, bottlenecks) can be used as com-
plexity measures; additionally, it is possible to build a computational model
that traverses the state space and simulates human behavior (Jarušek and
Pelánek, 2011).

Primi (2001) analyzed Raven’s Progressive Matrices (often used in “IQ
tests”), identifying the perceptual organization and the amount of information
(a measure combining the number of elements and the number of rules) as
complexity measures most predictive of difficulty.

Another approach is based on constraint relaxation (Pelánek, 2014), which
is based on the observation that difficult puzzles often have “close-but-not-
valid” solutions. We can thus formulate complexity measures based on the
increase in the number of solutions (or decrease in the shortest path length)
when some constraint in the puzzle is relaxed (we allow one repeated number
in a Sudoku row or one step through an obstacle in Sokoban).

Concerning difficulty measures, a specific aspect of puzzles is that it is
mostly not meaningful to talk about “incorrect answers.” Rather, some solu-
tion attempts are “not finished yet.” We can measure difficulty by unfinished
rate, but this measure is often not very informative, e.g., it does not distin-
guish between easy and extremely easy puzzles (they all have the unfinished
rate close to zero). In the case of puzzles, the primary focus of difficulty mea-
sures is thus problem-solving time.

For an illustration of specific results, Table 3 provides a summary of the
results reported by Jarušek and Pelánek (2011) and Pelánek (2014). The table
shows the correlation of various complexity measures with median problem-
solving time (a basic difficulty measure for logic puzzles). The results show
that simple complexity measures (size, length of solution) correlate mostly
only weakly with difficulty. However, for some puzzles (Rush hour), even such
simple measures can provide a good prediction of difficulty. Where basic com-
plexity measures provide weak correlation with difficulty, it is often possible
to design complexity measures that lead to high correlation; however, these
measures are often quite puzzle-specific and non-trivial even for puzzles with
simple rules (as is the case of Sudoku).

5 Complexity and Difficulty in Introductory Programming

In the previous section, we focused on the breadth of the discussion. Now, we
demonstrate a deeper analysis of difficulty and complexity measures for one
educational domain: introductory programming.
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Table 3 Correlations between complexity measures and difficulty measured as the median
problem-solving time for several puzzles.

puzzle complexity measure r

Sudoku number of givens 0.25
constraint relaxation 0.56
linear combination of measures 0.84

Sokoban path length 0.19
computational model 0.39

Rush Hour path length 0.77

Table 4 Data used for the analysis of programming exercises. The scaffolding denotes how
many items provide an initial partial program to complete. Attempts include both successful
and unsuccessful sessions. The median time is computed from the successful attempts only.

Exercise Levels Items Scaffolding Attempts Median time

Spaceship 9 85 0% 135,000 50 sec
Shapes 7 54 44% 34,000 82 sec
Turtle Blockly 8 77 60% 117,000 81 sec
Turtle Python 5 46 89% 34,000 92 sec
Python 9 73 100% 21,000 180 sec

initial program:
right(15)
forward(100)

solution:
for i in range(4):
  right(15)
  forward(100)
  right(150)
  forward(100)
  left(75)

Fig. 3 Compass – example of an item from Turtle Python exercise.

We use data from five exercises summarized in Table 4. The first three
exercises use a block-based programming interface (Bau et al., 2017), and the
other two use Python programming. Some items include scaffolding in the
form of an initial partial program, see Fig. 3. All solutions have between 2 and
24 lines (or blocks corresponding to lines), with medians ranging from 5 lines
in the Spaceship exercise to the 9.5 lines in the Shapes exercise.

5.1 Applications

The goal of our analysis is to explore the relationship between various difficulty
and complexity measures and how they are impacted by scaffolding and data
collection biases. In particular, our goal is not to find the single best difficulty
or complexity measure. It is worth reiterating that there is no such thing as
the best difficulty or complexity measure—the suitable choice depends on the
intended application.

For instance, Alvarez and Scott (2010); Sheard et al. (2013) considered
the use of complexity measures for estimating the difficulty of programming
assignments and exam questions. For such use, we seek a complexity measure
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that highly correlates with a difficulty measure. Which difficulty measure to
use for evaluation depends on which aspect of student performance we care
about; the failure rate is insufficient if we are concerned about the speed of cod-
ing and quality of the resulting code. We might care about multiple aspects of
performance, in which case we would use multiple difficulty measures for eval-
uation. When reporting results, clearly distinguishing between the complexity
and difficulty measures would be crucial since only the complexity measures
can be used in the real situation—no performance data are available at the
time of difficulty estimation.

Now consider a different use case: monitoring the quality of already de-
ployed items. A mismatch between the complexity and difficulty can help us
to detect misbehaving items; for example, an item intended to practice loops
that many students solve with just a sequence of commands. Note that if such
mismatch occurred in the previous case (difficulty estimation), we would try
to improve the complexity measure, even at the cost of lower interpretability.
In contrast, interpretability is helpful when diagnosing issues with items, and
the reasonable action might well be updating the item rather than trying to
fix the complexity measure.

5.2 Measures

In programming exercises, complexity can be measured using either the prob-
lem statement or solution. Using the problem statement, we can measure its
length, linguistic complexity, and references to external domains (Sheard et al.,
2013). Using the solution, we can measure its length, the number of program-
ming concepts, the number of flow-of-control structures (Alvarez and Scott,
2010), cyclomatic complexity (Whalley and Kasto, 2014), and Halstead com-
plexity measures based on the number of operators and operands (Ihantola
and Petersen, 2019).

The complexity can be influenced by other aspects, such as background
story, scaffolding (e.g., an initial partial program to complete), and the context
in which the item is solved. The background story seems not to significantly
impact the difficulty of introductory programming problems (Bouvier et al.,
2016; Craig et al., 2017). In contrast, a problem-solving context, such as pre-
viously practiced problems, can alter Bloom’s level of intellectual complexity
(Thompson et al., 2008; Gluga et al., 2012).

In the analysis that follows, we explore complexity measures that are based
on the number of concepts since these are universally applicable across all
programming exercises. We either search for predefined keywords or extract
the concepts by traversing the abstract syntax tree; the latter option allows us
to detect some programming patterns such as nested loops and recursion. We
compare several ways of aggregating the numbers of occurrences of individual
concepts into a single number, and we also explore the impact of incorporating
scaffolding into the concept-based complexity measures.
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We compare these complexity measures to three simple difficulty measures:
the failure rate, median response time, and the median number of attempts.
As the attempts we typically count all executions, except for the Python exer-
cise, where only evaluations on hidden test cases are recorded. In addition, we
explore two partially decontextualized estimates of difficulty using item diffi-
culty parameters of IRT and Elo models adapted to predict problem-solving
times (Pelánek and Jarušek, 2015; Pelánek, 2016).

5.3 Concepts

One way to measure complexity in introductory programming is to consider
all the concepts needed to solve the item. To define a specific measure for a
given exercise, we need to decide what the relevant concepts are and how to
aggregate them into a single number.

5.3.1 Concept Extraction

Concepts can be extracted either from the item statement or the solution. The
solution, being a program, is much more amenable to automatic processing.
Regardless of whether the students use a block-based or a text-based program-
ming language, the program can be transformed into an abstract syntax tree
(AST), allowing for concept extraction techniques that are independent of the
specific exercise. The item statements, in contrast, are more diverse; they can
include a grid world (Spaceship exercise), a picture to draw (Shapes and Tur-
tle exercises), or a text statement in a natural language, together with some
test cases (Python exercise). Moreover, the involved concepts are usually more
apparent from the solution than from the statement.

A straightforward approach to extract concepts from the solution is to
search for a set of keywords, such as for and left. Alternatively, the concepts
can be extracted by traversing the abstract syntax tree of the solution. As the
nodes of the tree typically correspond to reasonable concepts, this approach
can be applied to any introductory programming exercise, without the need to
specify keywords to search for. It may be useful to look not only at the node
types but also at their content; for example, to distinguish calls of different
functions, to find local variables, and possibly to extract individual literal
values, such as angles in the Turtle exercises. Looking at the structure of the
abstract syntax tree, we can even detect programming patterns such as nested
loops and recursion.

5.3.2 Granularity of Concepts

Instead of attributing each keyword or AST node type to a distinct concept,
we may define some meaningful groups. It seems, for instance, plausible to
consider all comparison operators as a single concept. The granularity decision
is not just a binary one; the concepts form a hierarchy. For example, left(75)
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command could be considered as a fine-grained concept or as an instance of
one of the following broader concepts: left, rotate, turtle movement, turtle
commands, or, most broadly, any commands. We need to decide which level
of detail to use.

The difference between various granularities has an especially marked effect
once we use specific values in AST nodes. Since considering each literal value
as a distinct concept would result in dozens of concepts, most of which are not
much meaningful, we may wish to group all angles, all numbers, or even all
literals as a single concept.

As an example of various granularity levels, consider the Compass item
(Fig. 3). Distinguishing individual commands and literals, we may obtain
up to 9 fine-grained concepts: for, forward, left, right, int4, length100,
angle15, angle75, angle150. By grouping similar commands and types of
literals, we end up with six medium-grained concepts: for, move, rotate,
int, lengths, angles. We may even decide to use just three coarse-grained
concepts: loops, commands, literals.

It is unclear which granularity is useful to distinguish. Partially, it depends
on the expected population of users; distinguishing between various arithmetic
operators may be important for the primary school students, but probably not
so much for high school students. Furthermore, with higher granularity, there
is a trade-off between interpretability and the predictive power, so the purpose
of the complexity measure should be taken into account as well.

5.3.3 Aggregation of Concepts

Having found the counts of individual concepts, we now need to aggregate them
into a single number. Two basic approaches are counting the total number of
occurrences of all concepts (counts aggregation) and counting just the number
of unique concepts (binary aggregation). In the case of binary aggregation, the
contribution of each involved concept is the same, irrespective of how many
times it appears in the solution. Between these two extremes, there are many
ways to account for the number of occurrences while avoiding the excessive
contribution of a single concept, for example, by logarithmically scaling the
counts (log-counts aggregation).

To illustrate these three aggregations, consider the Compass item (Fig. 3)
again. Assume that we extract just keywords (no literals), group all turtle
commands, and obtain two coarse-grained concepts: for (1×) and commands

(5×). The binary aggregation results in complexity 2, while the counts aggre-
gation to complexity 6. For log-counts aggregation, we transform the counts by
ln(1+n) (to ensure nonzero values) and obtain complexity ln(1+1)+ln(1+5) ≈
0.7 + 1.8 = 2.5.

The difficulty of different concepts is not the same; for instance, the forward
command is an easier concept than for-loop. To account for the difficulty
of individual concepts, we can assign them weights before aggregating their
contribution. The weights could be either set manually by the author of the
items or estimated from the available data. For example, in the case that
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we have already collected performance data on many other items from the
exercise, we can fit the weights to maximize the predictive performance of the
complexity measure (Benedetto et al., 2020; Yaneva et al., 2019).

An alternative approach to set the concept weights, which does not rely
on historical performance data, is to assign lower weights to the concepts that
appear frequently, leading to a statistic known as inverse document frequency
(IDF) in the context of ranking relevant documents for a given term (Robert-
son, 2004). Treating concepts as terms and items as documents, we obtain the
following formula for a smoothed IDF: ln(N/n)+1, where N is the total num-
ber of items in the exercise, n is the number of items involving the concept,
and the +1 term ensures that all weights are strictly positive.

Let us illustrate the IDF on the Compass item. The for-loop is used in 36
out of 46 items, so IDF of for is ln(46/36) + 1 ≈ 1.25. Turtle commands are
used in all items, so IDF of commands is ln(46/46) + 1 = 1. The weights can
be combined with any of the three aggregations; the only change is that the
sums are now weighted. For example, the IDF-weighted log-counts complexity
is IDF(for) · ln(1 + n(for)) + IDF(commands) · ln(1 + n(commands)) ≈ 2.7.

5.3.4 Analysis

We compared five concept extraction approaches described in Section 5.3.1:
(1) keywords-based, (2) node types in the AST, (3) AST-based concepts utiliz-
ing node content but excluding literals, (4) AST-based concepts utilizing node
content and including literals, and (5) AST-based concepts including literals
and two programming patterns: nested loops and recursion. We aggregated the
concepts using log-normalized counts weighted by IDF and measured Spear-
man’s rank correlation coefficient with the median solving time. The results
are shown in Fig. 4.

Utilizing AST leads to a higher correlation than keywords-based extraction
across all five exercises, even though the basic AST approach is more auto-
matic in the sense that it does not require specification of keywords for the
given exercise. Even among the AST-based approaches, there are sometimes
significant differences. Whether to include literals depends on the exercise: if
figuring out the numbers requires some math (as is the case for lengths and
angles in the Shapes and Turtle exercises), then including the literals is likely
to improve the correlation.

To explore the granularity, we used the full set of AST-based concepts,
including literals and programming patterns, and manually defined a hierar-
chical clustering of the concepts into seven levels in each exercise. The lowest
granularity levels contain about four concepts (e.g., commands, control flow,
variables, math), while the highest granularity levels have tens of concepts
(individual functions, operators, and even literals). To create the hierarchy,
we started with the most granular concepts and gradually grouped those that
we perceived as the most similar, e.g., left and right as turn, then turn,
forward, and backward as move, etc.
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Fig. 4 Impact of used concepts on the Spearman correlation with median solving time,
using log-normalized counts weighted by IDF as a complexity measure.
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Fig. 5 Impact of concept granularity in the complexity measures on the Spearman corre-
lation with median solving time. Each line corresponds to one possible aggregation of the
concepts into a single number.

For each granularity, we computed six aggregated complexity measures, us-
ing three options for normalizing the concept counts (binary, log-normalized,
untransformed counts) and optionally weighting the concepts by IDF. Finally,
for each granularity and aggregation, we measured the Spearman’s rank cor-
relation coefficient with the median solving time. The results are shown in
Fig. 5.

The granularity seems to be a crucial choice, especially for the binary
aggregation. In our case, the highest correlations with the time difficulty were
achieved at the highest granularities. Whether the increase in the correlation
is worth the increased number of concepts and worse interpretation of the
complexity measure depends on the intended application.

The type of aggregation can be a crucial choice as well, but the differences
between the aggregations tend to get smaller if the granularity is sufficiently
high. Across examined exercises, the log-normalized counts with IDF weights
usually achieve either best or close to best correlations with the time difficulty.
We have also measured correlation with the failure rate; the log-IDF measure
is also among the best in this case, although it is usually slightly outperformed
by the binary-IDF measure.

5.4 Relations Among Measures

There are many complexity and difficulty measures, but it is not obvious how
they relate to each other and which of them to use for decision making. Some
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Fig. 6 Pearson’s correlation coefficients of difficulty and complexity measures for program-
ming exercises.

measure similar aspects and are thus redundant; others add new information
to the mix.

5.4.1 Measure Similarity

The similarity of individual measures is illustrated in Fig. 6. This figure shows
Pearson correlation coefficients for every pair of measures across our exercises.
The first six measures represent different aspects of difficulty, and the last
three represent complexity. Concepts coarse, medium, and fine are log-counts
aggregated AST-based concepts, including literals and programming patterns
of granularity 1, 4, and 7 (as used in Section 5.3.4).

We identified four general emerging patterns. (1) Difficulty measures cor-
relate more with other difficulty measures than with complexity measures and
vice versa. (2) There are differences in correlations within difficulty and com-
plexity groups of measures across exercises. (3) Failure rate and median at-
tempts tend to correlate less with other measures. One possible explanation
for low correlations of failure rate is the effect of biases that are discussed later
in Section 5.6. (4) Measures median log time and Elo time correlate almost
perfectly in all exercises.

5.4.2 Canonical Correlation Analysis

Fig. 6 showed that difficulty measures and complexity measures form two
groups that do not correlate as well with each other. However, for a task like
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problem sequencing, it is desirable to estimate the difficulty of a new problem
solely based on complexity. To improve the correlations, we turn to Canonical
Correlation Analysis (CCA) (Hotelling, 1936; Thompson, 1984).

CCA is a statistical method for analyzing correlations between two or more
sets of random variables. It does so by finding linear combinations of variables
in each set, creating canonical components. The coefficients in linear com-
binations are chosen in such a way that the correlation between canonical
components is maximized.

CCA can be naturally used to study the relationship between difficulty and
complexity measures. It can be used to study two questions: 1) Which aspects
of student performance (difficulty) can be predicted based on the properties
of item statements (complexity)? 2) How should we sequence problems? The
first question is answered by analyzing correlations (referred to as loadings) of
individual measures with the corresponding canonical component. Difficulty
measures with higher loadings are better explained by complexity measures.
The second question is answered by looking at canonical components that pro-
vide a compromise between difficulty and complexity. The CCA computation
automatically filters measures that are “reasonable.” If we were to use some
unrelated measure of problem complexity (difficulty), it would not have any
relation to student performance (problem properties), and thus it would have
a small loading.

5.4.3 Python Exercise Example

We now illustrate the computation of CCA on the Python exercise. The two
sets of variables are difficulty measures (failure rate, median attempts, me-
dian time, median log time, Elo time, expected solving time) and complexity
measures (concepts coarse, concepts medium, concepts fine). The exact linear
combinations of measures for each canonical component are specified in Fig. 7
next to each axis.

Fig. 7 shows a scatter plot of combined difficulty and complexity measures,
together with the Pearson correlation coefficient. Each dot represents a single
problem, and its color represents the level it belongs to. It shows a reason-
able correlation and suggests the feasibility of estimating difficulty based on
complexity. Fig. 7 then shows correlations of individual measures with the
canonical component. For Python exercise, median log time has a very good
correlation with difficulty, and it will be best estimated using complexity mea-
sures. On the other hand, the median attempts measure does not correlate at
all, which suggests it is not a useful measure for this exercise.

5.4.4 Results for All Exercises

We applied the same analysis to all programming exercises; the results are in
Fig. 8 and Table 5. Correlations between difficulty and complexity is very good
in all five exercises. The relation between them is mostly linear and subsequent
levels contain both more complex and difficult problems. The only exceptions
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measure loading

failure rate 0.16
median attempts -0.01
median time 0.93
median log time 0.98
Elo time 0.91
expected solving time 0.94

concepts coarse 0.80
concepts medium 0.87
concepts fine 0.94

Fig. 7 Left: Scatter plot of difficulty and complexity canonical components for Python
exercise. Next to each component, there is its definition in the form of a linear combina-
tion of measures. The ρ in the bottom right corner is the Pearson correlation coefficient.
Right: Correlations (i.e., loadings) of individual difficulty and complexity measures with
their corresponding canonical component.

to this are Spaceship exercise, where difficulty is not increasing as much with
complexity, and Python exercise, where the level focused on drawing with text
is significantly more difficult and complex. There are visible gaps between
problems in Spaceship and Turtle Python exercises that could be filled with
new, appropriately complex problems to make the transition between levels
smoother.

Table 5 allows a deeper inspection of individual measure importance. Cor-
relations of failure rate vary due to biases that are discussed later in 5.6.
Median attempts measure is inconsistent between exercises as well. This time
because of implementation details and what is considered an attempt in dif-
ferent exercises. Median time and median log time have very good correlations
across exercises. Median log time is better suited for the Spaceship exercise,
where solving times increase quickly for the last problems. Conversely, median
time is better suited for the Turtle Python exercise, where solving times grow
linearly with increasing complexity. Elo time and expected solving time also
behave similarly, and their correlations are negatively affected by outliers seen
in Fig. 8.

Differences in complexity measures are much less pronounced than in diffi-
culty measures. All granularities of concepts correlate very well. Finer concepts
are more important for text-based exercises (Python and Turtle Python exer-
cise). For block-based exercises, even coarse concepts are sufficient predictors
of problem complexity.
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Fig. 8 Measures for programming problems: CCA projection

Table 5 Correlations of individual difficulty and complexity measures with their corre-
sponding canonical component across all exercises.

Measure Shapes Spaceship Python Turtle P. Turtle B. Avg.

failure rate 0.58 0.78 0.16 0.85 0.59 0.59
median attempts 0.51 0.60 −0.01 0.84 0.64 0.52
median time 0.93 0.80 0.93 0.98 0.98 0.92
median log time 0.91 0.96 0.98 0.91 0.95 0.94
Elo time 0.90 0.97 0.91 0.88 0.95 0.92
expected solving time 0.89 0.93 0.94 0.81 0.94 0.90
difficulty avg. 0.79 0.84 0.65 0.88 0.84

concepts coarse 0.97 0.99 0.80 0.87 0.96 0.92
concepts medium 0.91 0.97 0.87 0.93 0.97 0.93
concepts fine 0.94 0.99 0.94 0.95 0.83 0.93
complexity avg. 0.94 0.98 0.87 0.92 0.92

5.5 Scaffoldings

Programming problems are notoriously known to be too difficult for students
due to the high cognitive load they impose. One strategy to decrease the in-
trinsic cognitive load of programming problems is to provide scaffolding in the
form of a partial program to complete (Van Merrienboer and Krammer, 1990;
Kelleher and Hnin, 2019). Students can examine and run the provided code,
and they need to modify or extend it to solve the problem. By reducing the
intrinsic cognitive load, such scaffolding can considerably impact the difficulty
of the problem. How to incorporate the information about the scaffolding into
a complexity measure is, however, unclear.
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Four out of the five examined exercises use scaffolding in the form of an
initial partial program. Only some items have such scaffolding, and this pro-
portion varies across exercises; specifically, these proportions in the Shapes,
Turtle Blockly, Turtle Python, and Python exercise are 44%, 60%, 89%, and
100%, respectively. The extent of the scaffolding in the individual items varies
as well; from just a single command or a function header, to a whole function
to use, to almost a correct solution that requires just a slight modification, ba-
sically serving as a worked example. The median number of lines (or Blockly
blocks that correspond to a new line) in the provided initial program is 2.5 or
3 in all four exercises.

5.5.1 Scaffolding-Aware Measures

One simple way to account for the scaffolding in a complexity measure is to
reduce the weight of the concepts that appear in the scaffolding. We have used
the following weights, parametrized by a scaffolding penalty α. The higher
the penalty, the more discounted the scaffolded concepts are; setting α = 0
corresponds to the complexity measures that do not account for the scaffold-
ing while α = 1 results in no contribution of the scaffolded concepts to the
complexity.

For binary aggregation, the non-scaffolded concepts have weight 1, while
the scaffolded ones 1−α. For the counts aggregation, the weights are nsol − αnsc,
where nsol is the number of occurrences of the concept in the solution, and
nsc is the number of occurrences in the scaffolding. Similarly, the log-counts
aggregation use weights ln(1 + nsol − αnsc). For example, the scaffolding-
aware log-counts complexity of the Compass item (Fig. 3), using α = 0.5, is
ln(1+nsol(for)−αnsc(for))+ln(1+nsol(commands)−αnsc(commands)) ≈ 2.3.

The accounting for the scaffolding interacts with the choice of the concepts,
including their granularity and weights. In the Turtle exercises, for instance,
scaffolding is often used to free the students from guessing the size of the
drawing or an atypical angle. If the scaffolding in the Compass item were
right(90) instead of right(15), it would not be much helpful. It suggests
that accounting for the scaffolding could be more effective when used with
sufficiently granular and weighted concepts.

5.5.2 Results

Fig. 9 shows that even such a simple accounting for the scaffolding can be
helpful. Across all exercises, reducing the weight of the scaffolded concepts
increased the Spearman correlation with the median solving time. The con-
cepts in the scaffolding should not, however, be disregarded completely: for
α = 1, the correlation is in most cases lower than when the information about
scaffolding is unused (α = 0). In the examined exercises, α between 0.25 and
0.5 typically results in the highest correlation.

While this straightforward accounting for the scaffolding increased the cor-
relation with median solving time, it decreased the correlation with the failure
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Fig. 9 Impact of accounting for scaffolding in the complexity measures on the Spearman
correlation with median solving time. Each line corresponds to one possible aggregation of
the concepts into a single number. The concepts that occur in scaffolding are discounted by
the scaffolding penalty.

rate. This effect might be partially attributed to the following bias: first items
in each level usually provide an extensive scaffolding, so they appear simple
when scaffolding is accounted for; at the same time, these items have a rela-
tively high failure rate. As they introduce new concepts, they might be difficult
to solve even with scaffolding. Moreover, they are often visited by users who
just briefly explore the content and do not seriously attempt to solve it.

5.6 Biases

Biases are the inherent product of imperfect, i.e., not uniformly random,
data collection. Anything from structured content to personalized interactions,
while useful traits from the pedagogical point, can cause biases in collected
data. The data being collected simply does not cover the whole reality, but
only part of it. This missing information is the reason why it is hard to combat
and compensate for biases. It is worth noting that biases only affect difficulty;
complexity, independent of performance data, is not affected.

In this section, we focus only on the ordering bias (Čechák and Pelánek,
2019). There are also other biases; these include attrition (Eagle and Barnes,
2014), mastery (Nixon et al., 2013; Murray et al., 2013; Pelánek, 2018), and
self-selection biases (Brooks et al., 2015).

Ordering bias occurs when students are solving problems in a similar order.
The causes are typically fixed problem order in the system or students being
incentivized to solve problems in a predefined order. Under these conditions,
the observed difficulty of problems at the beginning of the solving sequence
is overestimated, and the difficulty of problems later in the solving sequence
is underestimated. This is caused by at least two underlying effects: student
learning and student attrition.

To illustrate this point, we compare two problems on opposite ends of order-
ing in Python exercise, Multiples and Nonzero product. Initial scaffolding and
example solution codes of both problems are in Fig. 10. Arguably, Nonzero
product should be more difficult than Multiples as it requires knowledge of
multiple programming constructs and the use of the idea of accumulating in-
termediate results. However, both problems have similar median solving times
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initial program:
def multiples(n):
   print("Two times", n)

initial program:
def nonzero_product(numbers):
    return 0

Fig. 10 Initial program (scaffolding) and the author’s solution to Multiples and Nonzero
product problems from Python exercise.

Fig. 11 Left: Violin plot showing the distribution of problem orders in individual solving
sequences. It shows only problems from a single level of Python exercise. The shape and
width of the violin are given by kernel density estimation of the underlying distribution
of solving sequence ordering. Inside each violin, there is also a box plot with a white dot
marking the median. Right: Bar chart showing unfiltered and filtered failure rates for the
same problems used in the left plot.

of 144 and 140 seconds for Multiples and Nonzero product respectively. The
majority of students visited Multiples as their first problem, while the major-
ity of students visiting Nonzero product have already seen at least 17 other
problems. Such difference in student population in terms of their prior expe-
rience is what causes observed difficulty to be similar even for problems with
arguably dissimilar true difficulty.

We present one more example of ordering bias found in the Python ex-
ercise. The problems in this exercise are grouped into levels and presented
visually as such. This creates multiple natural entry points at the start of each
level for incoming users. Some of these users are just exploring the system,
trying out a few problems, and not solving problems seriously. Non-serious
attempts artificially increase the failure rate despite difficulty being compara-
ble to difficulties at the given level. Non-serious attempts are not distributed
evenly across problems; they tend to occur mainly at the beginnings of levels.
Hence, the failure rate of problems is biased based on the order in the level.

Fig 11 (left) demonstrates that problems at the same level are solved by
students with widely different degrees of experience in the system. It shows
distributions of solving sequence ordering, i.e., how many problems a student
has visited, for the fifth level of Python exercise. Most students visiting the
first problem at the level have very little or no prior experience in the system.
In contrast, students have typically visited at least 30 other problems prior to
visiting the last four problems of the level.
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Fig 11 (right) shows the largest change in the failure rate for the first
problem in the level when non-serious attempts are accounted for. It shows
differences in failure rates of problems in the fifth level of Python exercise
after filtering. We filtered out attempts of students with less than three visited
problems in total and kept only students with at least three visited problems.
The figure shows a drop in failure rates after filtering, especially for the first
three problems of the level that are most affected by ordering bias. To further
prove the reasonability of filtering, the filtered failure rate for Python exercise
has higher correlations with concepts by 0.3–0.4.

Note that the level and exercise used for Fig. 11 have been deliberately
chosen to demonstrate the bias. Other levels of Python exercise show lower
sensitivity to filtering—differences between filtered and unfiltered failure rates
are around 0.1. Similarly, filtering has a small effect on the failure rate in other
programming exercises that we explored. One factor leading to the high effect
of filtering is the topic of the used level. It focuses on editing existing code and
finding errors in nearly correct solutions. Other levels require students mostly
to write new code from scratch. Although filtering is not always necessary, it
is highly useful in some cases.

6 Discussion

To conclude, we summarise the main points of our review and outline directions
for future work.

6.1 The Use of Complexity and Difficulty in AIED

One of our points in this paper is that it is useful to distinguish between
complexity and difficulty. However, we do not argue for a search for some
correct, universal measures of these concepts. Measures of complexity and
difficulty can be used in several ways in the development of adaptive learning
systems. When using these notions, it is necessary to take the purpose of their
application into account and to choose specific measures accordingly. Let us
discuss several typical AIED applications and their requirements on measures.

Adaptive choice of items. In computerized adaptive testing and adaptive
practice, one of the aims is to present students with items of appropriate dif-
ficulty, i.e., neither too easy nor too difficult (Pelánek et al., 2017). In these
applications, the difficulty measures are thus the main focus. Complexity mea-
sures here serve as a proxy that helps with the “cold start” problem with
difficulty measures—before we have (sufficiently large) student data, difficulty
measures cannot be computed. In this case, we are thus interested in a com-
plexity measure that correlates with difficulty as much as possible (Benedetto
et al., 2020). The interpretability of such complexity measures is not funda-
mental.
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Preparation of items. Another case where we seek a high correlation be-
tween complexity and difficulty measures is the preparation of items, partic-
ularly automated content generation (Kurdi et al., 2020). One approach to
content generation is to generate many items and then use the difficulty pre-
diction to filter suitable ones. Good predictions of difficulty are also valuable
for human content authors. Using such measures, the authors can get instant
feedback while preparing items and can tune the item to a better fit for the
expected use of items. Note, however, that this application requires care. In
the case of text complexity, this approach has been described as “writing to
the formula” (Benjamin, 2012); mechanical use of this approach can lead to
pedagogically unsuitable material.

Sequencing of items. Learning systems that are not adaptive provide to
students items in a fixed sequence. In this case, it is usually a good practice
to order the items from easier to more difficult, i.e., with respect to difficulty
(Scheiter and Gerjets, 2002). However, it makes sense to take into account
also complexity measures, e.g., it may not be a good idea to start with an
item that is easy (can be answered correctly by most students), but otherwise
rather complex (and thus potentially discouraging to new students). If we
want to automatize the construction of such ordering, we may need a suitable
compromise measure.

Item management and feedback for content authors. Difficulty and com-
plexity measures are useful for the management of items (e.g., the removal of
unsuitable items, updates of items) and as feedback for content authors (e.g.,
which items work as expected). In this case, we are interested in measures that
are easily interpretable, and we do not require a single number. For this use
case, it is useful to have measures that consider different aspects of items, and
we do not necessarily seek measures that highly correlate. In fact, outliers and
misalignment of measures can give us useful insight useful for the management
and further development of items.

The use case significantly influences the choice of exact metrics and the
interpretation of results. Consider as a specific example the case of items for
which two measures do not correlate. In the adaptive choice use case, this
situation indicates a “problem with measures”—we want to find measures
that correlate well for all items, i.e., the action taken should be “try to find
better measures.” In the item management use case, the result may indicate a
“(potential) problem with items”—if other items correlate, but a few do not,
it may mean that these items are in some way problematic and should be
removed or updated.

6.2 Measures and Their Relations

Details of complexity and difficulty measures depend on specific applications.
Nevertheless, there are many common elements. Particularly difficulty mea-
sures are mostly universal since they depend on data on student performance,
not on specifics of items. The common difficulty measures are the failure rate,
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median response time, and their group invariant (de-biased) versions computed
by models (e.g., item response theory models or the Elo rating system).

Complexity measures depend on the specific format of items. Nevertheless,
even for them, it is possible to find several common approaches:

– size, i.e., how long is the item statement (e.g., word, sentence, or text
length, the length of an expression or equation, the number of lines of code
of a program, the size of a grid of a logic puzzle),

– the length of solution (e.g., the number of steps in a sample solution),
– concepts (e.g., part-of-speech tags or types of subordinate clauses, arith-

metic operations, control structures in code), which are quantified as a
simple count or a weighted sum, often using weights based on a variation
of TF-IDF (term frequency—inverse document frequency).

Whatever specific application of complexity and difficulty measure we are
aiming for, it is useful to understand relations among candidate measures. A
primary tool for this analysis is a simple pairwise correlation analysis. When
we have a large number of measures, it may be useful to use unsupervised
machine learning techniques to find clusters of related measures. For example,
several studies have used principal component analysis to group complexity
measures (Sheehan et al., 2014; Graesser et al., 2004). In our analysis, we have
illustrated the use of the canonical correlation analysis—a technique used to
study relations between two sets of variables. This technique naturally fits the
setting of complexity and difficulty measures and can provide useful insights.

As our overview of results from several domains clearly shows, relations
between complexity and difficulty measures vary quite a lot. In some cases,
we can get a high correlation between complexity and difficulty even when
using relatively simple measures. This is the case for some logic puzzles (e.g.,
Rush hour where the length of the solution path is predictive of difficulty) or
introductory programming (where the number of concepts used in the sample
solution is predictive of difficulty).

In other cases, it is challenging to capture complexity using measures that
can be easily computed, and it may be nearly impossible to obtain a high cor-
relation between complexity and difficulty using reasonably simple measures.
This is the case particularly for items that combine natural language text and
some underlying domain principles—a typical case is word problems in math-
ematics, which we discussed in some detail. Consequently, for some domains,
some of the above-outlined applications may not be achievable. However, even
simple measures can be useful; we just have to focus on applications other
than prediction. For example, even simple complexity measures can be useful
for sequencing or for feedback to content authors.

6.3 Distinguishing Complexity and Difficulty

We believe that it is useful to carefully distinguish the notions of complex-
ity and difficulty. The measures that we have discussed could be, of course,



36 Radek Pelánek et al.

used even without such distinction. We can analyze and employ measures like
the length of item statement or median response time without giving them
labels complexity and difficulty measures (or giving them all the same label).
However, distinguishing the two notions leads to greater clarity, easier com-
munication, and inspiration for both research and development.

The clear treatment of complexity and difficulty is helpful particularly
for highlighting similarities between studies in different educational domains.
There are many studies that focus on the prediction of a difficulty measure
based on complexity measures (see, e.g., our discussion in Section 4). However,
when discussing the work directly in terms of specific measures, these stud-
ies may look quite unrelated. Once we have clear terminology, transfer across
domains is easier. For example, text complexity measures can be very use-
ful in the development of systems for learning mathematics or programming
(Daroczy et al., 2015; Sheard et al., 2013). A well-used terminology can lead
to easier communication and better presentation of research results—a mes-
sage of a study is clearer when presented as a relationship between complexity
and difficulty measures instead of a relationship among a group of specific
measures.

A clear terminology also facilitates generalization and provides inspiration
relevant for both practice and research. In the introductory programming set-
ting, we may start with a question “Should we sequence problems with respect
to success rate or the number of used programming concepts?” Once we have
the clear terminology of complexity and difficulty at hand, this naturally leads
to a more general question “Should we sequence problems with respect to
difficulty or complexity?” And this, in turn, suggests other useful questions:
“Has this question been studied in other domains? What other complexity and
difficulty measures may be relevant?”

6.4 Limitations and Future Work

An important topic concerning complexity and difficulty measures is the role
of context. In this paper, we focus mainly on basic measures that do not take
the context into account and provide only a brief discussion and illustrations of
the role of context and potential biases. This topic requires further clarification
and research into methods for dealing with it.

Another topic that requires more attention is how to incorporate scaffold-
ings into measures of difficulty and complexity. The use of scaffoldings is a
crucial pedagogical principle in learning systems (Jumaat and Tasir, 2014).
However, with basic measures of complexity, scaffoldings tend to lead to para-
doxical results: increasing complexity (item statements are longer) but de-
creasing difficulty (items are easier to solve). We provide an analysis of the
role of scaffoldings for the case of programming exercises, and the analysis
suggests a suitable way of incorporating scaffoldings into measures. The topic,
however, deserves more attention in further work.
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A similar but more challenging topic is the use of hints. Hints can be seen as
an inherent part of an item, which influences both its complexity and difficulty.
The role of hints is very dependent on their specific use in a particular learning
system, particularly on the chosen approach to the availability of hints. When
are hints available? On-demand (whenever students want), after a time limit,
or based on a decision of an adaptive algorithm based on a student model?
The presence of hints can also lead to “gaming the system” behavior, which
can have a nontrivial impact on difficulty measures (Baker et al., 2008). For
these reasons, it is challenging to study difficulty and complexity measures
in the presence of hints. Nevertheless, due to the common presence of hints
in intelligent tutoring systems, this challenge should be addressed in future
research.
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