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ABSTRACT
Personalized educational systems are able to provide learners ques-
tions of speci�ed di�culty. Since learners di�er, the appropriate
level of di�culty may vary and it may be impossible to �nd an
universal se�ing. We implemented a version of an adaptive ed-
ucational system for geography practice that allows learners to
adjust di�culty of questions. We evaluated this feature using a
randomized control experiment. �e overall results show only a
small e�ect of the adjustment. A more detailed analysis, however,
shows that for some groups of learners the e�ect can be important,
although not necessarily advantageous. �e collected data from
the experiment provide insight into how to tune question di�culty
automatically.
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1 INTRODUCTION
User modeling allows us to develop personalized learning environ-
ments that make learning experience tailored towards individual
learners. Using learner modeling techniques [4] we can estimate
probability that a learner can answer a question or solve a problem.
Based on these predictions we can automatically choose items of
appropriate di�culty [11].

But what is an appropriate level of di�culty? �is is typically a
parameter that is speci�ed externally by developers of a learning
system. �e choice of this parameter has been addressed in previ-
ous research, but without clear results. �e general idea that the
best activity is neither too easy nor too di�cult was formulated
as Inverted-U Hypothesis [1]. Lomas et al. [7] found that in the
context of their simple educational game easier problems lead to
higher engagement, but lower learning. A similar research was
done using Math Garden so�ware [6]. �e authors compared three
conditions and showed that the easiest condition led to the best
learning (mediated by a number of solved tasks). Our previous
work [13] in the case of the adaptive practice of geography facts led
to di�erent conclusions, showing be�er results for both long-term
engagement and learning for more di�cult questions.

Moreover, it seems probable that there is not a single optimal
di�culty for everyone. So a natural idea is to allow learners to
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manipulate the di�culty of questions. In addition to be�er tailored
system behaviour, previous research suggests that a sense of control
(or even perception of control, rather than the actual objective
level of control) can increase engagement [8]. On the other hand,
research on self-regulated study [3] shows that people are prone to
mismanaging their own learning.

�e principle of dynamic di�culty adjustment has been explored
mainly in computer games (see for example [2]). In educational
research the most relevant research explored self-adaptation of
di�culty in math practice [5]. �e authors used adaptive practice
system for basic arithmetic, with possible se�ing of di�culty on
one of three levels: 60%, 75%, 90% success rates. �eir results
show that preferred di�culty varies based on age and gender of
students, but they did not �nd any impact of the availability of
di�culty se�ing on learning, engagement, or students’ self-belief.
�e study, however, has several limitations, e.g., se�ing of success
rate interacted with gami�cation aspects of the user interface and
the used sample size was small (48 students in each condition).

We present similar experiment, but for a di�erent type of knowl-
edge (learning geography facts) and using a large scale experiment
with thousands of users and millions of answers. We allow learners
to adjust the di�culty of questions and use randomized control
trial to evaluate the impact of this feature. Similarly to the previous
study we �nd pa�erns in learners’ behaviour with respect to the
se�ing of di�culty, but we do not �nd any large impact on engage-
ment or learning, at least in the global analysis of data. Once we
disaggregate the results, some interesting results emerge, particu-
larly for a group of learners who prefer easy questions – for these
learners the di�culty adjustment feature leads to lower e�ciency
of learning, but higher engagement. �e results also provide insight
for automatic se�ing of target di�culty. �is paper is a full version
of [9].

2 SYSTEM AND EXPERIMENT
We use a system for an adaptive practice of geographical facts, e.g.,
names and locations of countries or cities. �e system is available
online at outlinemaps.org. It does not work with any personal infor-
mation about learners like age or gender. It allows learners to sign
up to keep their practice history, but this functionality is used only
by 2% of them. �e system is available in many languages (Czech,
English, German, Russian, Slovak, and Spanish), but most users
are from the Czech Republic (85%) and Slovakia (10 %). Learners
use the system on their own or during school sessions. During
the experiment we did not have any control or contact with users,
speci�cally we did not provide any external incentives to users.

Learners can use the system with di�erent maps and types of
places (e.g., European states); these contexts di�er widely in their
di�culty (prior knowledge) and the number of items available to
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practice (from 10 to 170). Distribution of answers is highly uneven,
most learners practice a few popular maps.

�e system collects data about the correctness of answers and
based on the collected data it estimates the current knowledge of a
particular learner and personalizes the provided practice [11]. A
key parameter in the adaptive algorithm is “target di�culty”, which
sets the average success rate of learners that the system is aiming
at. �e algorithm uses a learner model to construct personalized
questions for each learner so that the probability of answering
correctly will be close to the target di�culty [10, 11].

In previous experiment [13] we varied target di�culty between
experimental groups. In the current experiment we let some learn-
ers modify the parameter based on their preferences. �e practice
within the system is presented in groups of 10 questions, a�er each
series of 10 questions the systems shows a summary feedback to
learners. At this moment we have inserted a new dialog box with a
question “How di�cult would you like the questions to be?” with
5 choices: “much harder”, “harder”, “same”, “easier”,’ “much easier”,
see Figure 1. We call answers to these questions “ratings” (not “set-
tings”, because in a placebo condition they do not have any impact
on the algorithm).

Figure 1: Dialog box shown a�er each practice set (10 ques-
tions) in the case of placebo and adjustment condition.

We have performed a standard randomized control trial with the
following experimental conditions:

• normal – a control group, a standard version of the system
without the dialog box,

• placebo – the dialog is shown, but does not have any impact
on the behaviour of the adaptive algorithm,

• adjustment – the dialog is shown and the answer changes
the target di�culty se�ing (-20%, -10%, 0%, +10%, +20%).

In all cases the initial se�ing of the target error rate parameter is 35%
(the value is based on results of the previous experiment [13]). �e
experiment was performed from October 2016 to January 2017 and
we have collected roughly 8 200 000 answers from 85 000 learners.
To make our research reproducible we make the analyzed data set
available1.

3 ANALYSIS OF USER RATINGS
At �rst, we analyze ratings provided by users. Mostly, we have
only one rating from a particular learner per context. Majority
of learners do not provide any rating at all. Since the ratings are
provided a�er �nishing a practice set, we assume the main factor
determining a learner’s rating is an error rate achieved during the
1h�p://data.outlinemaps.org/2016-ab-user-di�culty-adjustment.zip
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Figure 2: Learners’ ratings with respect to the error rate
achieved during the recent practice set. Solid lines stand for
placebo condition, dashed lines stand for adjustment condi-
tion. �e shaded areas shows 95% con�dence intervals.

recent practice set, therefore we divide all ratings to buckets based
on the error rate. Figure 2 shows the relation between ratings and
the recent error rate (based on the last 10 questions).

�e basic relation is intuitive – successful learners want more
di�cult questions, unsuccessful learners want easier questions. �e
“appropriate” ratings have the shape of inverted-U curve with the
maximum at the error rate around 35%. �is result is in agreement
with our previous experiments that showed that target error rate
35% is suitable [13].

For high error rates the results are intriguing. As could be ex-
pected the ratio of “bit harder” ratings is very small. Unexpectedly,
highly unsuccessful learners o�en provide “more di�cult” rating.
Although the number of highly unsuccessful learners is relatively
small, this trend is statistically signi�cant and consistent for both
placebo and adjustment conditions. We interpret this trend as pres-
ence of a systematic “irony” in responses of a subgroup of users
and we hypothesize that the this behaviour is connected to disen-
gagement with the system. �is result should serve as a caution
– learners expressed preferences may re�ect not just their true
preferences with respect to the concerned question, but may also
incorporate other aspects of their (a�ective) state.

At the �rst sight, the lines in Figure 2 should be the same for
both experimental conditions, but there is a di�erence between
the placebo (solid line) and the adjustment (dashed line) condition.
Learners assigned to the adjustment condition seem to be more
satis�ed. To get an idea why this is happening, consider learners
that achieve an average error rate E during the recent practice set.
Generally, a part of learners is able to achieve this error rate E
using the original se�ing. A number of learners satis�ed with it is
proportionally the same for both conditions. A number of learners
unsatis�ed with the achieved error rate E is lower in the case of
adjustment condition, because the learners where allowed to set
a di�erent di�culty. For similar reason, the adjustment condition
contains also learners satis�ed with the error rate E who are not
able to achieve this error rate using the original se�ing.

�e data also show a relation between ratings and context dif-
�culty. �e percentage of “much harder” ratings increases with
decreasing context di�culty (e.g., European states are easier than
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Figure 3: Comparison of engagement for the three experi-
mental conditions. Engagement is measured as the ratio of
learners who provide at least 100 questions (le�) or use the
system for at least 12 minutes (right). Error bars show 95%
con�dence intervals.

African cities, at least for users of the used system). �is observation
indicates that our algorithm for adaptive practice is not adaptive
enough and there is room for improvement – the algorithm could
take into account the di�culty of a particular context.

4 ENGAGEMENT AND LEARNING
�e analysis of learners’ ratings provide interesting insights, but
the main point of the experiment is to �nd whether the dynamic
adjustment leads to higher engagement and learning.

As a measure of engagement we use a survival rate – the ratio
of learners who answer at least 100 questions. Since learners in
the case of adjustment condition change di�culty of practice and
questions with di�erent di�culty lead to di�erent response times,
we also measure the ratio of learners practicing at least 12 min-
utes2. For discussion of the choice of metric see [12]. �e results
are presented in Figure 3. As expected, the engagement for the
placebo condition is worse than for the control group. �e dialog
box asking for learners’ ratings has negative impact on learners’
engagement. For the adjustment condition the negative e�ect of
the dialog is partially compensated by the bene�ts of the di�culty
adjustment. However, the bene�ts of the di�culty adjustment are
not su�cient to considerably overweight the disadvantage of the
additional dialog box.

Allowing learners to adjust the target di�culty of their prac-
tice results in lower error rates during practice, see Figure 4. �is,
however, does not necessarily mean be�er learning, it is probably
just a consequence of lower di�culty se�ing. To compare learning
among conditions, we utilize “reference questions” – for each con-
text separately every tenth question is selected randomly without
any in�uence of the adaptive algorithm and we use data from these
questions to construct learning curves (see [12] for more detailed
discussion).

When we compare conditions in this way, the results are compa-
rable – there are no signi�cant di�erences in overall learning rates.
Since many learners do not provide any ratings at all, it is not much
surprising – most learners in placebo and adjustment conditions

2�is time roughly corresponds to 100 answers on average.

Figure 4: Average error rate by a number of attempts (refer-
ence questions are excluded). �e shaded areas shows 95%
con�dence intervals.

Figure 5: Learning curves for easy contexts.

keep the original target error rate and thus their practice is the
same as for the control group.

However, a more detailed analysis shows that for speci�c cases
there are some trends, particularly concerning easy contexts and
learners who prefer easier questions – in these cases the dynamic
adjustment seems to have negative impact on learning. Fig. 5 shows
the learning curves for 30% easiest contexts (e.g., Europe states);
in this case the learning is worse for the adjustment condition. It
is probably caused by learners’ tendency to set lower di�culty
even on easy contexts (e.g., by externally motivated learners from
schools).

Another more detailed analysis disaggregates the overall results
with respect to learners – speci�cally based on their preference for
easy or di�cult questions. We classify each series of a learner’s
answers on a particular context based on the learner’s average
di�culty se�ing – either the actual se�ing in the case adjustment
condition or the hypothetical se�ing in the case of placebo con-
dition. Based on this average di�culty se�ing we classify each
answer serie into one of 4 groups as shown in Table 1. �e results
for these groups are not comparable to each other, because they
o�en correspond to completely di�erent kinds of contexts or learn-
ers, but we can compare placebo and adjustment conditions for
each of these groups.

Figure 6 and Figure 7 show results for engagement and learning
rate disaggregated into these four groups. Figure 6 shows that



Table 1: �e classi�cation of answer series.

Group Average target error rate
G-easy at most 25%
G-default more than 25% and less than 45%
G-di�cult more than 45%
G-unknown N/A (dialog is always skipped)

Figure 6: Analysis of survival rates with respect to groups
of users based on their ratings. �e survival rates are com-
puted per context (e.g., European states). Error bars show
95% con�dence intervals.

for learners who have preference for easier practice the adjust-
ment leads to higher engagement. �ere is no signi�cant di�er-
ence between conditions for other groups. Figure 7 shows that
the adjustment leads to be�er learning for those who prefer more
di�cult questions and to lower learning for those who prefer easier
questions. �e results are interesting particularly for the group of
learners who prefer easy questions – for this group the adjustment
hampers the speed of learning, but increases engagement.

So although the summary results do not show large di�erences
between conditions, for speci�c learners the impact of the di�culty
adjustment can be important. Particularly it seems that some learn-
ers prefer easy questions which give them “good feeling” during
practice, but they do not practice knowledge they need to practice
and thus their learning is slower.

5 DISCUSSION
�e overall results show that in the case of the used adaptive prac-
tice system giving users control over question di�culty does not
bring a straightforward advantage. �e dialog box with the di�-
culty se�ing reduces engagement and the advantage brought by
be�er tailored di�culty is not su�cient to o�set this disadvantage.
A more detail analysis shows signi�cant e�ects on learners who
prefer easy questions. For them the adjustment leads to less e�cient
learning, but more engagement (longer practice).

Instead of giving learner option to tune di�culty, we should
probably develop methods for automatic adjustment of target di�-
culty. �e data from the experiment provide guidance for tuning
the target di�culty. �ey support the basic target error rate 35%.
�ey also show that this basic target error rate could be modi�ed
based on the di�culty of the speci�c practice context. Another

Figure 7: Analysis of learningwith respect to groups of users
based on their ratings. �e graphs shows the learning rate k
in the �tted learning function a ·xk (see Figure 5). Error bars
show 95% con�dence intervals.

factor that may be useful for automatic tuning of question di�culty
is the di�erence between in-school and out-of-school usage of the
system. Previous results [10] showed that students using the sys-
tem in school prefer easier questions that out-of-school users; the
data from the current experiment concord with this result.

�e results also show that there is systematic “irony” in learners
ratings – unsuccessful learners report that they want much harder
problems. �is shows limitations of dependence on collected sub-
jective data; this issue requires more a�ention in research.

We have studied only one speci�c implementation of dynamic
adjustment in a single educational system. It is possible that our
results are in�uenced by particular choices made in the implementa-
tion or by speci�c features of the geography domain. However, the
main results agree with previous research [5] that was done under
signi�cantly di�erent conditions. Although the issue requires more
research, the current results suggest that giving learners direct
control over question di�culty is not bene�cial.
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