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ABSTRACT
One of the key aspects of educational data mining is estima-
tion of student skills. This estimation is complicated by the
fact that students skills change during the use of an educa-
tional system. In this work we study two flexible approaches
to skill estimation: time decay functions and the Elo rating
system. Results of experiments in several different settings
show that these simple approaches provide good and con-
sistent performance. We argue that since these approaches
have several pragmatical advantages (flexibility, speed, ease
of application) they should be considered in educational data
mining at least as a baseline approach.

1. INTRODUCTION
One of the goals of educational data mining is to estimate
skill (knowledge) of students. The problem of skill estima-
tion is the following: we have sequential data about student
performance (e.g., answers to exercises, timing) and we want
to estimate a latent student skill. The quality of the skill
estimate can be evaluated by its ability to predict future per-
formance. Once we have a reliable skill estimate, it can be
used in many ways: for guiding adaptive behaviour in intel-
ligent tutoring systems, for computerized adaptive practice,
or for providing feedback to students (e.g., in skillometers,
open learner models).

In skill estimation, there are two main approaches to dealing
with the sequentiality of the data. One approach is simply
to ignore the ordering of the data, i.e., to make a simplifying
assumption that students do not learn and the skill is a con-
stant. This approach is usually used with “coarse-grained”
skills (like “fractions” or even “arithmetic”), where the rate
of skill change is slow and thus the assumption of constancy
is reasonable. A typical example of this approach is item
response theory [3], which is used mainly for adaptive test-
ing. In this case the assumption is justified since we do not
expect students to learn during test. But even some models
used in adaptive learning systems do not consider the order
of data and treat all data points in same way (e.g., per-

formance factor analysis [19] or a model of problem solving
times [10]).

The second main approach is to make a fixed assumption
about learning and “hard code” it into the model. A typi-
cal example of this approach is Bayesian knowledge tracing
(BKT) [2, 22], which models knowledge as a binary vari-
able (known/unknown) with a given probability of switch-
ing from unknown to known. Another approach of this type
are models based on learning curves [16], which typically as-
sume a logarithmic increase in skill with respect to number of
attempts (e.g., a model of problem solving times with learn-
ing [9]). These types of models are used mainly with “fine-
grained”skills (e.g., a specific operations with fractions). For
their application it is necessary that the skills are correctly
identified, so that the model assumptions hold [2].

In this work we study educational application of two interre-
lated techniques – time decay functions and the Elo system.
These techniques are between the two above described ap-
proaches. They do take the sequentiality of the data into
account, but do not make fixed assumptions about learning.
Both techniques are rather flexible and thus are applicable
to wide range of skill granularity.

The first technique is based on time decay functions. Since
students skills and knowledge changes over time, the older
data are less relevant for the estimation than the recent data.
Thus it makes sense to use some kind of data discounting – in
analysis of sequential data this can be done using weighting
by a time decay function [12, 6]. Only little research in
student modeling has so far studied data discounting or some
similar temporal dynamics, e.g., using less data in BKT [17],
data aging [29], or effect of real time (not just ordering) in
BKT [20].

The second technique is the Elo system [4], which was origi-
nally devised for chess rating (estimating players skills based
on results of matches), but has recently been used also for
student modeling [13, 27]. In context of skill estimation we
interpret an attempt of a student to answer an item as a
“match” between the student and the item. This approach
updates a skill estimate based on the result of a last match
in such a way that implicitly leads to a discounting of past
attempts.

The goal of this work is to explore applicability of time de-
cay functions and Elo system in educational data mining.



More specifically to study the following questions: What is
a good time decay function in the context of educational
data mining? How sensitive are results with respect to pa-
rameters of time decay function and Elo rating? How do
these approaches compare to other student modeling tech-
niques? To answer these questions we apply the techniques
different contexts and we use for evaluation several differ-
ent datasets. The obtained results are quite stable and
favourable for these approaches, and thus we also discuss
their possible application in intelligent tutoring systems.

2. MODELS FOR SKILL ESTIMATION
We study the skill estimation in two context: modeling of
correctness of student answers (the only measure of perfor-
mance is correctness of the answer, possibly also the number
of hints used) and modeling of problem solving times (the
only measure of performance is a time to solve a problem).

2.1 Overview of Relevant Models
In item response theory the main model is the 3 parameter
logistic model, which assumes a constant student skill θ and
three item parameters: b is the basic difficulty of the item,
a is the discrimination factor, and c is the pseudo-guessing
parameter. The model assumes that the probability of a
correct answer is given by a (scaled) logistic function:

Pa,b,c,θ = c+ (1− c) ea(θ−b)

1 + ea(θ−b)

A specific case of this model is a 1 parameter model, which
is obtained by setting c = 0, a = 1; this model is also called
the Rasch model.

A model of problem solving times [10] uses parameters with
analogous meaning and assumes a log-normal distribution
of problem solving times:

fa,b,c,θ(ln t) = N (aθ + b, c)(ln t) =
1√
2πc

e
− (ln t−(aθ+b))2

2c2

Bayesian knowledge tracing [2, 22] models a changing skill.
It is a hidden markov model where skill is the binary la-
tent variable (either learned or unlearned). The model has
4 parameters1: probability that the skill is initially learned,
probability of learning a skill in one step, probability of in-
correct answer when the skill is learned (slip), and proba-
bility of correct answer when the skill is unlearned (guess).
The skill estimated is updated using a Bayes rule based on
the observed answers.

2.2 Time Decay Functions
Time decay function are used in the study of concept drift [6,
12, 21]. Concept drift is relevant example for modeling the
change of user preferences in recommender systems, where
the inclusion of temporal dynamics into models can improve
their performance [15]. A different area that uses temporal
discounting is economics and study of decision making [5],
where temporal discounting and time decay functions are
studied mainly with respect to decisions about future. All

1BKT can also include forgetting. The described version
corresponds to the variant of BKT that is most often used
in research papers.

Figure 1: Examples of time decay functions.

these areas can provide useful inspiration for student mod-
eling (e.g., the choice of the time decay function), but are
not directly applicable.

A time decay function assigns a weight to a data point (stu-
dent performance) that happened in the past. As a measure
of “time” we use a number of attempts (denoted n). Other
possibilities are to use a “real time” (seconds from the at-
tempt) or “semi-real time”, which counts the number of at-
tempts but takes into account big pauses (e.g., larger step
for a day switch). Figure 1 shows several natural candidates
for time decay functions, which we have evaluated in our
experiments.

Let us apply time decay functions to student modeling. In
the case of modeling correctness of answers, we have data
of the following type: student s gave to an item i an answer
with correctness csi (usually a binary variable, in case of
a “partial credit model” [25] it can also have a continuous
value between 0 and 1). The skill of a student s is estimated
as a weighted average of csk with weights given by the time
decay function, i.e., θs =

∑
f(k)csik/

∑
f(k), where ik is

the item solved by the student k steps into the past. This
skill estimate is in the range [0, 1] and can be directly used
to predict future performance.

We also study modeling of problem solving times. In accor-
dance with previous research [10, 23], we work with the log-
arithm of time, since raw times are usually log-normally dis-
tributed. Now we assume data of the type: student s solves
a problem p in a logarithm of time tsp. We denote θsp a “lo-
cal skill estimate” on a particular problem: θsp = mp − tsp,
where mp is a mean time to solve the problem p. A current
skill of a student s is estimated as a weighted average of
these local estimates with weights given by the time decay
function: θs =

∑
f(k)θspk/

∑
f(k), where pk is the prob-

lem solved in k steps into the past. The skill estimate can
be used to predict performance on an unsolved problem p
as follows: ˆtsp = mp − θs. Note that with a constant weight
function this approach is equivalent to the baseline person-
alized predictor used in [9, 10].



Compared to more complex students models (BKT, model
of problem solving times) the outlined approaches to esti-
mating student skill are quite simple. The advantage of
this simplicity (apart of simplicity of implementation and
application) is that they make minimal assumptions about
the behaviour of students, e.g., this approach can naturally
accommodate forgetting (as opposed to BKT, where the in-
clusion of forgetting means an additional parameter) and
also such effects as a change of working environment (e.g.,
switching from a computer with mouse to notebook with
touchpad can increase problem solving times for interactive
problems).

2.3 The Elo System
The basic principle of the Elo system is the following. For
each player i we have an estimate θi of his skill, based on
the result R (0 = loss, 1 = win) of a match with another
player j the skill estimate is update as follows:

θi := θi +K(R− P (R = 1))

where P (R = 1) is the expected probability of winning given
by the logistic function with respect to the difference in es-
timated skills, i.e., P (R = 1) = 1/(1 + e−(θi−θj)), and K is
a constant specifying sensitivity of the estimate to the last
attempt.

There exists several extension to the Elo system, the most
well-known are Glicko [7], which explicitly models uncer-
tainty in skill estimates, and Trueskill [8], which can be used
also for team competitions. The Elo system has also been
used previously in modeling of correctness of student an-
swers by interpreting student solution attempt as a match
between a student and an item [13, 27].

In the case of problem solving times we can apply the method
as follows: for each student we have an skill estimate θs, for
each problem we have a difficulty estimate dp. When the
student s solves the problem p in the logarithm of time tsp
we update these estimates as follows:

θs := θs +K(E(t|s, p)− tsp)

dp := θp +K(tsp − E(t|s, p))

where E(t|s, p) is an expected solving time for a student s
and problem p, which is given as E(t|s, p) = dp − θs.

The value of the constant K determines the behaviour of the
system – if K is small, the estimation converges too slowly,
if K is large, the estimation is unstable (it gives too large
weight to last few attempts). An intuitive improvement,
which is used in most Elo extensions, is to use an “uncer-
tainty function” instead of a constant K. Previous work on
using the Elo system for student modeling [13, 27] used ad
hoc uncertainty functions selected for particular application.

An important difference of application of the Elo systems
in its typical domains (chess and other competitions) and
in student modeling, is the asymmetry in student modeling
between students and problems. Particularly we typically
have much more students than problems and consequently
more data about particular problems than students. Thus
it makes sense to use different uncertainty functions for stu-
dents and problems.

2.4 Relation between Time Decay and the Elo
System

Both described approaches are closely related – they can
both capture changing skill and do not make any specific
assumptions about the nature of the change, they just give
more weight to recent attempts. The close relation between
these two approaches is apparent particularly in modeling
of problem solving times. Using the previously described
notation of a local performance θsp = dp − tsp, the update
rule of the Elo system can be rewritten as follows:

θs := θs +K(E(t|s, p)− tsp) = θs +K(dp − θs − tsp) =
θs +K(θsp − θs) = (1−K)θs +Kθsp

Now if we consider a sequence of n solved problems and
assume an initial skill estimate 0, the final skill estimate is
given by:

θs = K

n∑
i=1

(1−K)n−iθspi

The resulting expression is very similar to the estimation
with exponential decay function, the main difference is the
use of mp (mean problem solving time) versus dp (difficulty
parameter estimated by the Elo system), but since problems
are usually solved by large numbers of students and difficulty
parameter is quite easy to estimate [9], this difference is not
practically important.

The relation with time decay function is not so straightfor-
ward for applications of the Elo system to correctness data,
which uses the logistic function, and for extension of the Elo
system with uncertainty function. Nevertheless, some sort
of temporal dynamics is inherently included in all variants
of the Elo system. Extension usually correspond to the use
of a steep decay function during first few student attempts
and flatter decay function later, when the skill estimate is
more stable.

3. EVALUATION
We present evaluation of time decay functions and the Elo
system on several different datasets. Rather than perform-
ing one exhaustive experiment with one dataset, we per-
formed several basic experiments in different settings (dif-
ferent types of datasets, simulated data).

3.1 Simulated Data
Using simulated data we explore how well can the Elo sys-
tem and estimation using time decay functions approximate
previously studied models (mentioned in Section 2.1). We
use the following type of experiment: we generate data us-
ing one of the standard models and then try to fit the data
using one of the studied approaches (the Elo system, time
decay functions).

The first experiment concerns comparison of the Rasch model
(one parameter logistic model) and the Elo system. These
two approaches are very similar, since both assume one stu-
dent parameter (skill), one item parameter (difficulty), and
the same functional form of the probability of correct answer
(logistic function with respect to the difference between skill
and difficulty). The differences between these approaches
are in the assumption about constancy of parameters and in
parameter estimation methods. The Rasch model assumes



Figure 2: Correlation between generated and esti-
mated difficulty parameters for different number of
students. JMLE = Joint maximum likelihood esti-
mation, Elo = Elo system, PC = proportion correct.

that the parameters are constant, specifically that the skill
is constant (i.e., no learning). The standard method for esti-
mating parameters of the Rasch model is the iterative proce-
dure joint maximum likelihood estimation (JMLE) [3]. The
Elo system does not make any specific assumptions about
the constancy or change of the skill or difficulty and tracks
these parameter in more heuristic fashion.

We performed the following experiment. The simulated data
are generated using the Rasch model with skills and diffi-
culties generated from standard normal distribution. The
data are then fitted using JMLE and the Elo system and we
compare the fitted values of parameters with the generated
values. As a metric of fit we use the correlation coefficient.
The Elo system with constant K leads to significantly worse
results than JMLE, but if we use a suitable uncertainty
function, the two estimation procedures give very similar
results (correlation mostly above 0.99). A suitable uncer-
tainty function is for example the hyperbolic function a

1+bx
,

with parameters a = 4, b = 0.5. Suitable parameters can be
easily found by grid search, the performance of the system
is quite stable and the precise choice of parameter values is
not fundamental to the presented results.

In the case that we have complete data about answers or
data are missing at random, even a simple “proportion cor-
rect” statistics gives good prediction of item difficulty. How-
ever, in real systems data are not missing at random, par-
ticularly in adaptive systems more difficult items are solved
only by students with above average skill.

Figure 2 shows the results for such scenario. Data are gener-
ated using the Rasch models, portion of the data is missing,
the availability of answers is correlated with student skill
and item difficulty. The data are generated for 100 items
and different number of students, the results are averaged
over 50 runs. In this scenario, results for “proportion cor-
rect” are significantly worse than for the other two methods,
detailed analysis shows that the estimates are wrong par-

ticularly in the middle of the difficulty range. Results for
JMLE and Elo are nearly identical, the graph demonstrates
that the difference in the amount of available data is more
important than the difference between the estimation pro-
cedure used. If we have enough data, the JMLE is slightly
better than Elo, but for small amount of data Elo is even bet-
ter than JMLE. Note that this scenario is optimistic for the
JMLE, since the simulated data adhere to the constancy of
skill assumption, whereas any real data will contain at least
some variability. We have performed similar experiments in
the case of problem solving times. The results are similar,
again we get similar performance and a suitable uncertainty
function is the hyperbolic function.

Another experiment concerns comparison of the Bayesian
knowledge tracing and skill estimation using time decay func-
tions. Similarly to the previous experiment, we simulated
data from a BKT model with fixed parameters. Then we
use the BKT model and the time decay approach to make
predictions and compare them using the AUC metric (re-
sults for RMSE metric are similar). For the predictions we
use the BKT model with the optimal parameters, i.e., those
used to generate the data. This is again overly optimistic
case for BKT, as we assume that the data fully correspond
to the assumptions of the model and that we know the cor-
rect parameter values. To make the comparison fairer, the
estimation using time decay has at least the information
about the initial probability of learned skill. Even in this
setting, time decay approach gets close to BKT. For BKT
parameters 0.5, 0.14, 0.09, 0.14 (taken from [20] as average
BKT parameter values from the ASSISTments system), the
AUC values are 0.822, 0.815. The time decay function used
is the exponential function e−0.3n; similarly to the previous
experiment the choice of optimal value of the parameter can
be done easily using an exhaustive search.

3.2 Real Data
At first we describe experiments with models of problem
solving times. For this evaluation we use data from the
Problem Solving Tutor [11], which is an open web portal
with logic puzzles and problems from mathematics and com-
puter science. For comparing different models we use root
mean square error (RMSE) metric.

The results show that time decay functions can bring im-
provement of predictions. Figure 3 shows results for the
exponential decay function. As the graph shows, the opti-
mal parameter k for the exponential function e−kn is around
0.1. Hyperbolic function 1/(1 + kn) achieves similar results
as the exponential function, with optimal values of the pa-
rameter k in the interval 0.2 to 1.2. The sliding window and
linear function within sliding window achieve significantly
worse results.

Different problem types behave similarly with respect to
which time decay functions and which parameter values bring
the best improvement. They, however, differ in the amount
of improvement. For some problems the improvement is
only minor – these are for example Tilt maze and Region
division, which are rather simple puzzles where we do not
expect significant learning or other temporal effects affecting
performance. Hence it is not very useful to discount data
about past attempts. On the other end are problems like



Figure 3: Results for exponential time decay function e−kn for varying k; the graph shows normalized RMSE
(with respect to constant time decay function). Left: Data from Problem Solving Tutor (problem solving
times), Right: Algebra data set (correctness data).

Slitherlink (more advanced logic puzzle) or Broken Calcu-
lator (practice of calculations), where the improvement is
larger and the best results are obtained by steeper decay
functions. For these problems learning is more significant
and thus it is sensible to take into account particularly last
few attempts.

In previous work [9] we have proposed a model of problem
solving times that makes a fixed assumption about learn-
ing, particularly the assumption of logarithmic improvement
with respect to the number of attempts (in agreement with
the research on learning curves). For the used dataset, this
model does not bring any systematic improvement in predic-
tions, whereas time decay functions do improve predictions
(see [14] for more detailed analysis of this comparison). Thus
it seems that for the used dataset there are temporal effects
in the performance of students that do not easily conform
to the assumptions of learning curves – the dataset con-
tains nonstandard educational problems and logic puzzles
and some of the problems require “insight”, not just appli-
cation of some fixed set of principles.

So far we have used the time decay functions with respect
to the number of attempts. Another option is to use the
time decay function with respect to real time or to take
at least some aspects of the real time into account, e.g.,
to consider large pause between attempts (similarly to the
approach used in [20]). We have performed experiments with
this extension, but the results stay very similar or bring only
small improvement (using linear combination of number of
attempts and the logarithm of passed time [14]).

In Figure 3 we have evaluated the parameter of time de-
cay function with respect to the problem type. We can do
similar analysis with respect to students. If the student’s
performance is improving fast, then the optimal time de-
cay function for him is steep, i.e., there is some relation
between learning and optimal choice of the time decay func-
tion. However, this relation is not straightforward, as steep

decay function can also mean high autocorrelation without
learning, e.g., when the student accesses the educational sys-
tem from different environments (mouse vs touchpad) or at
different conditions (morning vs night).

The results for the Elo system over this dataset are similar
and we summarise them only briefly. Even the basic Elo
system achieves similar predictions as the model of problem
solving times from [10]. The extension of the Elo system
that uses the uncertainty function with parameters deter-
mined from experiments with simulated data can achieve
improvement over the previously published model by 1 to 3
percent in RMSE [24].

For experiments with student models that predict correct-
ness of answers we used an Algebra I dataset from KDD Cup
2010 (binary correctness) and ASSISTment dataset with
partial credit data [25] (correctness is a number between
0 and 1 depending on the number of hints used). In both
of these datasets each item has a knowledge component as-
signed and we compute skills for these specified knowledge
components.

Although this is different setting and completely different
datasets from the previous experiments, the results are very
similar (Figure 3). For the choice of a time decay func-
tion we have analogical results: exponential and hyperbolic
functions work best, sliding window (in both versions) is
significantly worse. The choice of optimal parameters for
time decay functions is again similar (usually around 0.1 for
exponential function) and again we observe differences be-
tween different skills (knowledge components). For generic
skills (like “Identifying units”, “Entering a given” in Alge-
bra), time decay does not bring an improvement. For spe-
cific skills (like removing constant in linear equation), the
optimal time decay function is steep and improves perfor-
mance, i.e., for these skills there is significant learning and
hence it pays to give large weight to recent attempts.



Figure 4: Comparison of JMLE and Elo estimates
of difficulty of geography items (country names).

For the Elo system in the context of correctness of answers,
we have applied and evaluated the system in an educational
application for learning geography (names of countries) –
slepemapy.cz. We use the Elo system to estimate the prior
geography knowledge of students and difficulty of countries.
Similarly to the above reported experiments with simulated
data, the Elo model (with uncertainty function) achieves
very similar results as the joint maximum likelihood esti-
mation for the Rasch model (see Figure 4). The Elo sys-
tem is much faster and more suitable for online application
than the iterative JMLE procedure. To estimate the prob-
ability of correct answer after a sequence of attempts at
a given country we use a model that combines aspects of
performance factor analysis [19] and the Elo system. This
combined model achieves better results than both standard
performance factor analysis and Bayesian knowledge trac-
ing. More details about this application and evaluation are
given in [18].

4. DISCUSSION
We have performed experiments in different settings and
with different datasets. Basic results are quite consistent.
The Elo system and estimation using time decay functions
are simple and flexible approaches, which can match more
specific models (Rasch model, Bayesian knowledge tracing)
even if the data are generated exactly according to the as-
sumptions of the more specific model. For the choice of
time decay function, it seems that for student modeling it is
most useful to use either exponential or hyperbolic function
(our experiments do not show systematic significant differ-
ence between these two). Sliding window and linear function
within sliding window lead to worse results.

The choice of specific parameters is also quite consistent,
e.g., for the exponential time decay function e−kt the best
k is usually around 0.1. The differences between problems
of the optimal value of the parameter k (i.e., of the shape
of time decay function) are related to the speed of learning
for a particular problem type (knowledge component). This
relation is however not straightforward, because the time
decay approach captures not just learning, but also other

temporal effects (e.g., autocorrelation of result due to the
use of the system from different working environments). For
the uncertainty function of the Elo system a good candidate
is a hyperbolic function a

1+bx
, the specific parameters a, b

differ according to the exact application, but the values can
be easily found using a grid search and the performance of
the system is only mildly sensitive to the exact values.

The advantages of both studied techniques are their flexibil-
ity, small number of parameters, and easiness of application.
Flexibility is due to the weak assumptions about student be-
havior and allows for application in wide variety of contexts
– this was demonstrated by wide range of data used in our
evaluation (e.g., logic puzzles, math problems, knowledge
of country names). Small number of parameters reduces
the chance of overfitting and leads to stable results. Both
techniques are very easy to implement and have low com-
putational demands – predictions are easy to compute, the
Elo system and exponential time decay function can be even
used in online fashion without storing data about individual
student attempts.

Both studied techniques are quite general. Since they do
not make any specific assumptions, they should not be ex-
pected to bring an optimal performance results for a par-
ticular situation. But as we show, they can be easily ap-
plied in wide range of situations and provide reasonable per-
formance. Moreover, small improvements in performance
(which can be brought by more specific models) are often
not practically important for applications of skill estimates.
Even if more specific models are available, these simple ap-
proaches can be used to get quick insight into the data and
should be used in evaluations to judge the merit of more
complex models. The basic ideas of the Elo system and
time decay functions can also be incorporated into other
models, e.g., time decay functions could be quite naturally
incorporated into performance factor analysis [19].

Some of the natural features of these approaches can also be
useful for intelligent tutoring and adaptive practice. Con-
sider two students with the following history of answers to a
particular knowledge component: student A: 1, 1, 1, 1. stu-
dent B: 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1. Immediately after
these sequences, it is not useful to give any of these two stu-
dents more problems about this knowledge component, as
there is a high probability of a correct answer. But there
is clearly a difference between these students – whereas stu-
dent A probably has solid knowledge and there is little use
in returning to the knowledge component in the future, for
student B a review in the future would be certainly useful.
If we summarise the skill by a single number as is typically
done by BKT, it is hard to capture this difference. Using
time decay functions, it is easy to cover this situation – we
can estimate a “current skill” using a steep time decay func-
tion and a “long term skill” with a flat time decay function.

Recently, there has been several works that studied the Elo
system in the context of student modeling and adaptive
practice [1, 13, 26, 27, 28]. However the impact so far has
been rather marginal, particularly compared with Bayesian
knowledge tracing. As the discussion above suggest, the ap-
proach deserves more attention.
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Master’s thesis, Masaryk University Brno, 2014. To
appear.

[25] Y. Wang and N. Heffernan. Extending knowledge
tracing to allow partial credit: Using continuous versus
binary nodes. In Artificial Intelligence in Education
(AIED), volume 7926 of LNCS. Springer, 2013.

[26] K. Wauters, P. Desmet, and W. Van Den Noortgate.
Adaptive item-based learning environments based on
the item response theory: possibilities and challenges.
Journal of Computer Assisted Learning,
26(6):549–562, 2010.

[27] K. Wauters, P. Desmet, and W. Van Den Noortgate.
Monitoring learners’ proficiency: Weight adaptation in
the elo rating system. In Educational Data Mining
(EDM), pages 247–252, 2011.

[28] K. Wauters, P. Desmet, and W. Van Den Noortgate.
Item difficulty estimation: An auspicious collaboration
between data and judgment. Computers & Education,
58(4):1183–1193, 2012.

[29] G. I. Webb and M. Kuzmycz. Evaluation of data
aging: A technique for discounting old data during
student modeling. In Intelligent Tutoring Systems
(ITS), pages 384–393. Springer, 1998.


