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To provide practice and assessment of computational thinking, we need specific problems students can solve.
There are many such problems, but they are hard to find. Learning environments and assessments often use
only specific types of problems and thus do not cover computational thinking in its whole scope. We provide an
extensive catalog of well-structured computational thinking problem sets together with a systematic encoding
of their features. Based on this encoding, we propose a four-level taxonomy that provides an organization
of a wide variety of problems. The catalog, taxonomy, and problem features are useful for content authors,
designers of learning environments, and researchers studying computational thinking.
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1 INTRODUCTION

Computational thinking is an important skill that is currently getting significant attention in both
research and educational practice. The scope and definition of computational thinking are still
being settled. However, there is a general agreement on the basic components of computational
thinking, which include algorithmic thinking, abstraction and decomposition, testing and debugging,
parallelism, and pattern recognition (see, e.g., [20, 25, 55, 65]).

Even though computational thinking is typically described with a rather broad scope, specific
learning tools and research studies often focus on just a single type of activity, e.g., block-based
programming in Scratch [39] or multiple-choice questions about programs [51]. Some activities
(e.g., block-based programming in microworlds) are used repeatedly but often scattered in various
publication venues, learning environments, and apps under varied terminology. Researchers often
pick one of these common activities and analyze it in detail [23] or study the convergence validity
of two activities [50]. Such results are useful, but they need to be considered and interpreted in the
broader context of other computational thinking activities.

For further development of learning environments and assessment tools for computational
thinking, we need a large database of specific problems and an organizational structure that will
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allow us to use the database efficiently—a recent systematic review on assessing computational
thinking concluded that such a database and organization is currently missing [60].

In this work, we aim to cover this gap by mapping a diverse landscape of computational thinking
problems. Specifically, we focus on well-structured computational thinking problems intended
for beginners. Well-structured problems are problems that have clear problem statements and
evaluation criteria; we consider only problems that can be automatically evaluated by the learning
environment (e.g., problems with a unique correct answer or with formal goal criteria that can
be verified by a program). The well-structured problems that we consider are directly relevant to
both practice and assessment. We acknowledge that many activities for computational thinking are
not well-structured, e.g., open-ended creative activities in Scratch [67] or CS unplugged activities
[15]. We do not make any claims about the relative benefits of well-structured and ill-structured
problems; both are clearly useful and should be combined. Although we consider only problems
aimed at beginners, we use a rather broad conception of beginners, including both K-12 students
and students in introductory university courses (particularly non-majors). Specific examples of the
usage of the considered type of problem are the international Bebras challenge [12, 13] and Hour
of Code activities [66].

We provide a mapping of the landscape of computational thinking problems. We propose a
taxonomy (problems, problem sets, problem families, problem classes) that provides an organization
of the many available problems. The taxonomy is based on a systematic mapping of problem features
that encode skills addressed by problems, the notation and mode of interaction, and the target
audience. We provide an extensive catalog of problem sets, together with the mapping of their
features.

The provided results are useful in several ways. For designers and content authors of learning
environments and assessments of computational thinking, they provide awareness of a wide range
of existing problems for practice and assessment, a tool for orientation and organization of problems,
and inspiration for the creation of novel problems (e.g., by combining problem features that are
currently not used together). We also provide descriptions and illustrations of an extensive set of
problem sets (Appendix B), which give specific inspiration for the designers and content authors.

For researchers, our work provides a way to contextualize the exploration of validity and
reliability of computational thinking assessments, which typically involve only some types of
problems. Our analysis of the current computational thinking research shows a predominance of
single problem class (“code interpretation”) and motivates research based on other types of problems.
The presented taxonomy of problems also makes predictions about the transfer of learning (practice
on one problem type leading to improved performance on a different problem type). This can serve
as a foundation for future research.

2 METHOD

This section describes our approach to mapping the landscape of computational thinking problems.
We describe the terminology that we use to discuss problems at different levels of abstraction. We
justify our choice of analyzed computational thinking skills and describe the iterative process used
to perform this study.

2.1 Terminology: Problem Taxonomy

Computational thinking and educational technology are currently discussed from many perspectives
using different terminology [46]. Therefore, we start by clarifying the terminology used in this
paper, specifically concerning problems, which we explore at several levels of abstraction.

There are many other terms that could be considered for describing the used levels of abstraction
(e.g., group, category, type, genre, kind). We have chosen a terminology analogous to biological
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Fig. 1. lllustration of terms used to describe a taxonomy of computational thinking problems
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taxonomic ranks: individual (problem), species (set), family, and class. One reason why we choose
this terminology is that it communicates the ordering of levels of abstraction more clearly than
other alternatives that we considered. Figure 1 provides an illustration of the used terms.

e A problem is one specific instance. Other terms used as synonyms for a problem are a question,
an item, an exercise, or a challenge. Example: “draw a pentagram using turtle graphics and
block-based programming.”

e A problem set is a set of specific instances that share the same basic principles and presentation
aspects and are meant to be used together. They differ primarily in instantiation (e.g., specific
values or goals). For the purpose of practice or assessment, they are mostly replaceable (we
expect near transfer between them). Example: “using loops to draw basic geometric shapes
using turtle graphics and block-based programming”

e A problem family is a group of closely related problem sets that have similar rules and
principles of user interaction. They focus on the same core skills, but they can differ in the
inclusion of some skills and consequently in the target age group. Example: “turtle graphics
with block-based programming”

e A problem class is a generic form of problems with a similar form of user interaction and
similar practical usage (e.g., whether they are applicable in “paper&pencil” assessment). They
may differ in the scope of skills, but there is at least some common core. We expect at least
some transfer of learning within the problem class, i.e., practice on problems in a learning
environment should have a positive impact on an independent assessment using different
problems from the same class. Example: “block-based programming in microworlds”

We could also consider higher levels of abstraction (kingdom ~ well-structured problems for
computational thinking, domain ~ computational thinking), but these are fixed throughout our
discussion.

2.2 Computational Thinking Skills

In order to perform mapping of problems for the practice of computational thinking, we need to
decide what will be the scope of the considered problems — what kind of skills! do we consider
relevant. There is currently no clear consensus on an exact set of computational thinking skills.

1 Alternative terms used in literature with similar meaning are concept or knowledge component.
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Although different authors mostly agree on the basic demarcation of computational thinking and
the main skills, they differ in the exact selection and granularity of considered skills.

To determine which skills to consider, we have done an exploration and mapping of the literature.
We have focused only on research dealing with computational thinking for beginners; Denning
and Tedre [16] provide a wider discussion of computational thinking and highlight the difference
between computational thinking for beginners and professionals. From this area, we have analyzed
11 recent and highly-cited papers? that contain an explicit discussion of computational thinking
skills. The mapping showed several groups of skills based on their occurrence in literature (see
Appendix A for more details of the analysis).

Some skills are mentioned ubiquitously. This is particularly the case of algorithmic thinking
skills. For these, the difference between authors is mainly in the granularity of discussion and the
terminology used. For basic algorithmic thinking skills (sequences, loops, conditions) there is a
clear agreement. Abstraction and decomposition are also mentioned ubiquitously, but in this case, it
is much less clear what is precisely meant by these notions and what specific practice or assessment
problems should correspond to them.

Parallelism, incrementality, and testing are not considered in all analyzed papers, but they occur in
most of them. We consider them to be part of the core computational thinking skills. Then there is
a group of skills that are mentioned only in some studies and that cover a fuzzy transition between
core computational thinking skills, mathematics skills and general intelligence: data representation,
data analysis, pattern recognition, logical thinking, problem solving. We consider these skills in
our analysis since they are potentially relevant and can be naturally practiced and assessed with
well-structured problems.

Finally, there are several skills that are mentioned in many analyzed papers, but they are hard to
practice or assess with the use of well-structured problems: modeling and simulation, generalization,
and automation. These skills are more naturally practiced using open-ended projects or discussions
and thus are outside the scope of this paper.

2.3 Ilterative Mapping of Problems and Their Features

Our goal is to perform the mapping of the landscape of computational thinking problems and
to organize them in a taxonomy. The proposed taxonomy is not meant to be the taxonomy of
computational thinking problems—in this context, it is not meaningful to search for a single,
universally correct taxonomy. Our aim is to have a taxonomy that is useful, in the same sense as
discussed, for example, by [37].

There are thousands of specific problems that can be used for the practice of computational
thinking. In order to organize them, we performed an iterative procedure that utilizes encoding
and analyses of problem features. By the generic term features, we denote properties of problem
sets; these include skills, mode of interaction with the user, target audience, and others. The central
aspect of the used procedure is a table with problem sets in rows and their features in columns.
The final table is available as a supplement to the paper (ct-catalog-features.csv).

2.3.1 Initial Phase. In the initial phase of the process, we performed the following steps: (1) The
initial mapping of computational thinking skills in literature (as described above). (2) The collection
of an initial set of well-known problems and problems used in specific, closely relevant sources
(particularly code.org and Bebras competition). (3) Construction of an initial set of problem
features based on existing literature; these included the identified computational thinking skills and
the properties mentioned in the exercise classification framework proposed by [45]. (4) Practical

ZPublished within the last 10 years, having more than 100 citations in Google Scholar database.
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deployment of selected problem types in the learning environment Umime informatiku®. This
helped us to clarify the applicability and features of various problems. (5) The coding of problem
features in the form of a table.

2.3.2 lterative Phase. After the initial phase, we repeatedly performed the following steps that led
to extensions, refinements, and structure clarification:

(1) The identification of candidate problem families and classes based on the encoded table. This
step combined manual insight and prior knowledge with the use of automatic data-mining
techniques (dimensionality reduction, clustering).

(2) Scanning through sources (e.g., code. org, Bebras competition) with the goal of identifying
problems that differ from the already included ones.

(3) The identification of “missing problems,” e.g., features or their combinations not sufficiently
covered by already included problems or problem classes with a small number or members.
This was followed by a specific search for these missing problems in literature and among
colleagues. When we failed to find suitable problems, we designed and deployed original
problems with the given characteristics.

(4) The refinement of the used encoding of problem features (including skills), particularly: the
splitting of features that usefully distinguish existing problems (finer granularity of those
features that occur in many problem sets), the omitting or joining of features that occur only
sporadically, and the clarification of the meaning of skills (taking into account their relevance
in the context of well-structured problems).

2.4 Criteria for Inclusion of Problem Sets

During the described process, we had to decide which problem sets to include. The choice of
problem sets was made based on the following criteria:

e The problem set must be in the scope of our interest, i.e., well-structured problems (clear
problem statement, clear solution) that can be evaluated algorithmically, problems for begin-
ners (K-12 or introductory university courses), and relevant to computational thinking (at
least to one skill that is commonly considered to be part of computational thinking).

o It must be possible to create a sufficiently large set of instances (at least 10 instances can be
easily created).

e The problem set must be sufficiently homogeneous to satisfy the near transfer expectation.
Preliminary problem sets with large diversity among instances were split into multiple sets.

e Included problem sets should be sufficiently different. When several preliminary problem
sets differed only in presentation aspects or some minor details, we tried to provide a single
description that focuses on the core aspects and abstracts the presentation aspects.

Overall, we included 93 problem sets organized into 34 problem families. These sets are briefly
described in Appendix B.

3 PROBLEM SET FEATURES

In this section, we describe which problem set features we have chosen for inclusion and how we
encoded them. We consider only fundamental principles of problems, not their presentation aspects
(e.g., story or time pressure) or their specific usage (e.g., problem ordering, recommendations, or
motivation features). Due to the focus on fundamentals, the problem sets and their features are
relevant for applications in both learning environments (practice) and assessments (testing).

Shttps://www.umimeinformatiku.cz/
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3.1 Skills

We have used the iterative method (described in Section 2.3) to reach a selection of skills that is in
line with previous research and useful for our purposes. Table 1 provides a listing of the used skills
and their brief description. We further clarify the relations of some interconnected skills.

The skills planning and sequences are both concerned with sequences of actions and their ordering.
We use planning to denote focus on the problem-solving aspect, whereas sequences to denote focus
on explicitly written instructions.

Skills related to abstraction, decomposition, and use of functions are clearly interconnected. We
use the following specific skills: data abstraction is focused on abstracting data (not behavior);
functions includes both behavior abstraction (focusing on a specific aspect of problem) and the
use of functions (as a method for formally specifying behavior abstraction); decomposition entails
the use of abstraction within the context of the whole problem (e.g., abstracting some steps into
standalone sub-problems).

The skills pattern recognition and pattern description were typically not distinguished in previous
work. However, our iterative process of mapping well-structured problems led to their separate
treatment since there are natural problems that clearly practice only one of these skills.

The skills iterative approach and testing are also closely related. We use testing when a problem
specifically involves a deliberate search for mistakes or formulation of a hypothesis about behavior.
Note that in the case of iterative approach (and, to a lesser degree, some other described skills), it is
often a description of what the student is doing, not necessarily a skill that is practiced or assessed.
This distinction may be important for student modeling or studies of assessment validity; for the
purposes of our problem landscape mapping, it is not fundamental.

To encode skills, we use three value encoding: 0 denotes cases where a skill is not relevant to
a problem set, 0.5 denotes cases where a skill is used to solve problems in a problem set but it is
not completely fundamental or it is used only partially, 1 denotes cases where a skill is required to
solve problems in a problem set.

3.2 User Interaction, Problem Appearance, and Audience

Table 2 describes several features that we used to encode user interaction style and problem
statement and notation. We encode user interaction properties along two dimensions: interactivity
and the number of choices (from how many possible actions students choose). Each of these
dimensions is classified into one of three categories described in the table. We also considered
the type of feedback provided by the environment (whether there is just a simple correctness
feedback message or more complex repeated feedback during the solution process). However, this
feature was strongly correlated with interactivity and thus did not provide additional information
for analysis. Although the interactivity and choices features are also mostly correlated, there are
multiple exceptions that capture useful aspects of several problem sets.

Computational thinking problems typically deal with some program or rules. The program
notation can take several forms; we distinguish 5 categories described in Table 2. We note that
the distinction between textual and block-based programming may be nuanced and there are
environments that facilitate the transition from visual to textual programming [33]. For the purposes
of our problem mapping, it was, however, mostly clear how to characterize a given problem.

Problems also differ in the appearance of the problem statement and characteristics of inputs
and outputs of programs; we distinguish 4 categories (numbers, text, image, microworld).

We also use a feature denoting the nature of used rules. Explicit rule means that the problem
statement clearly specifies what is the goal to be achieved and what are the means to achieving it
(e.g., programming assignments, logic puzzles like Sudoku). Hidden rule means that the problem
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Table 1. Description of computational thinking skills used for the mapping of problem sets

skill description

sequences constructing sequences of actions, understanding written sequences of
actions (particularly the importance of ordering)

loops understanding and using a repeated invocation of actions using loops (re-
peat, for, while)

conditions construction and interpretation of expressions with logical operators (and,
or, not); understanding and using conditional execution

functions understanding and using functions to capture some aspect of functionality;
ability to abstract behavior

variables using variables to capture changing information; understanding of basic
data types (integers, strings)

parallelism design and understanding of algorithms with multiple agents acting in

logical reasoning
planning

decomposition
data abstraction
pattern recognition
pattern description
iterative approach
testing

data representation

data analysis

parallel, including coordination and synchronization

using deduction to derive new information from given premises

choosing actions necessary to reach a goal, deciding the right order or
actions

dividing problems or data into smaller parts that can be tackled separately
using abstraction to simplify provided information

detecting patterns in a provided information

describing patterns using a concise notation

developing solutions iteratively with continuous monitoring of progress;
recognizing and fixing mistakes as they occur

forming hypotheses about behavior; deliberate and targeted searching for
mistakes

understanding and using data representation formats; understanding ad-
vanced data types (lists, dictionaries)

processing data to answer specific questions; interpretation of data visual-
izations

statement does not explicitly specify the rule behind the problem; the goal is to determine and
apply the rule. A typical example of hidden rule usage is the case of pattern recognition problems.

Finally, we also encode the target audience, i.e., for whom is the problem set suitable. Since
many problems are applicable for quite a wide range of students, we use only coarse encoding:
elementary school (age 6-10), middle school (age 10-14), high school (age 14-18), and university
(age over 18). We use binary encoding for each group (a problem set can be relevant to multiple

groups).

3.3 Feature Matrix

For each problem set that we included in our catalog, we encoded all the described features. The
complete matrix is available as an electronic supplement (ct-catalog-features.csv). Table 3
shows the feature values averaged over problem families.

Note that in the case of skill features, this mapping is closely related to Q-matrix used in student
modeling [2]. However, the purpose of our mapping is the exploration of the landscape of problem
sets, not student modeling. For example, we do not specify the exact relation between multiple skills
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Table 2. Features of problem set describing user interaction style and problem notation

interactivity
1 minimal interactivity, e.g., multiple-choice questions or simple written answer
2 small interactivity, drag and drop
3 highly interactive environment that repeatedly reacts to student actions and
this reaction influences student cognition
choices
1 very limited choice; can be answered correctly by guessing (e.g., multiple-choice
questions with 4 options)
2 medium choice of actions; very small chance of guessing correctly (e.g., con-
structing program from prepared blocks, ordering of several items)
3 very high number of available actions; impossible to answer by random guessing

(e.g., writing a program)

program notation

program textual notation with in a general high-level programming language

blocks notation combining text and visual representation (e.g., block-based program-
ming, flowcharts, or diagrams composed of interconnected blocks with text
description)

symbols program or rules written using a small set of symbols, typically in a linear

fashion (e.g., simple rewrite rules, mathematics formulas, or a sequence of
arrows for describing movement)

text natural language text with intuitive semantics

none no explicitly written program or rule, actions are directly performed by a student

problem statement appearance, inputs, outputs

numbers input with numbers, operations with numbers

text text input, operations with text

image image input, operations with images

microworld typically 2D microworlds (grids) with agent position and potentially state
information

in one problem set (conjunctive/compensatory), which would be necessary for student modeling
purposes [44].

4 PROBLEM CLASSES

In this section, we provide a high-level overview of the landscape of well-structured computational
thinking problems by discussing the highest level of our proposed problem taxonomy: problem
classes.

These classes were determined using the iterative approach described in Section 2.3. One of
the steps in this approach was the repeated use of automated techniques to analyze the matrix of
problem set features. These techniques included clustering and dimensionality reduction. Figure 2
shows the principal component analysis (PCA) projection for the final data.

Based on this automatically constructed projection, we manually constructed a “landscape map”,
which aims to increase readability and also to incorporate aspects of problems that are not fully
included in the encoded features. This led to Figure 3, which provides a visual map of problem
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Table 3. Average values of features in problem families

notation rule appearance ul audience skills
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Interactive programming 1 1 1 1 3 3 1| 14 0.7 ] 0.7 =) 0.2 03 03 08 0.2 0.3
Find the answer 1 1 0.5 0.2 0.2 1 3 1/ 1| 1j09]| 1/08| 1 0.5 0.5 0.1 0.9 0.8 0.8
Turtle graphics with text-based lang 1 1 1.1 3 3 0.3/ 0.7| 0.7 | 1 0.7 0.7 0.5 0.7 0.8 08 02
Parson puzzles 1 1 105 2| 2 1 140 1] 1] 0.8] 1 0.2 0.2
Interactive querying 1 1 1 5 3 07 1 1 03 02 03 07 10205 1
Robot on grid (blocks) 1 1 1 3 2 1] 1 1 107 0.3 103 02 02 08
Robot on grid (arrows) 1 1 1 3 203070707 1 107 03 102 05 03 08
Turtle graphics with blocks 1 1 1 1] 3| 2 1 1 107 0.7 0.3 03 03 02 05 1 08 0.2
Shape drawing 1 1 1 1] 3| 2/ 03| 1j07 107 03 0.7 0.2 0.2 05 0.5 08 05
Interpreting sequence of actions 1 1 4l 2| 2 0.5 1 0.2
Code interpretation (block-based) 1 1 1 1 1 1 107 103 1 107 0.3
Code interpretation (text-based) 1 1 1 1 1 1 1| 1T 0.5 I 0.2 0.5
Evaluating formulas and queries 1 1 08 0.5 115 05 1 0.5 0.8 0.2 05 0.5 05 0.8
Mazes and sliding blocks 1 1 1 3 208 08 05 02 1 0.1 0.2
Commands in the microworld 1 1 1 32307 103 1 0.7 0.7 0.7 0.7 0.2
Planning scenario 1 1 1 1 207 103 0.2 03 05 102 03 0.5
Constraint satisfaction puzzle 1 1 1 3 205 1 105 1 05 0.5 0.5
Logic circuits 1 1 1 3 25 11 1 05 05 0.5 102
Textual logic puzzles 1 1 103 13 2 03| 1 07|07 0.8 102 0.2
The same pattern 1 1 1 2 207 10303 03 1
Detect the pattern 1 1 1 1.5/ 3 0.5 0.5 1
Complete the sequence 1 103 0.7 1| 1.3 T 02 03 1 0.5
Behavior abstraction 1 1 05 0.5 2 205 1 105 0.5 0.5 0.5 05
Data abstraction 10505 05 05| 1 2 205/ 10505 105 0.2 0.5
Image analysis 1 1 1 17 2 03 107 03 0.3 03 05 0.5 0.8 03 0.3
Word relations 1 1 105 15 15 1 05 105 02 0.5
Find a hidden configuration 1 1 1 05/ 05/ 3| 3 05| 1] 1 08 05 05 0.8 05 1
Find a hidden acceptance rule 1 103 103 3 30307 07 07 05 05 03 10505 1
Find a hidden mapping 1 1 1 3 30505 105 0.5 10505 1 05 1
Binary puzzles 1 1 1 3|23 1 1 0.7 0.5 05 0.2 0.5 0.7
Regexp golf 1 1 1 3| 3 1 08 1 1 0.8
Image representation 1 0.8 0.2 0.7 1 2 2 0.7 07 03 0.2 0.2 0.2 05 08 0.8
Text encoding 10802 1 1 1 3 07 107 0.7 0.5 107
Data visualization and understand. 11 1 1 1 1 15 1.5 1 105 0.5 05 0.5 0.5 08 08 1

classes and problem families. It captures the basic similarity relations among classes and positions
of problem families within the classes.

One point of these figures is to highlight the fact that the landscape of computational thinking
problems is rather continuous, without sharp boundaries between different classes of problems. Any
demarcation into discrete groups is thus slightly artificial (as is the case with most classifications
and taxonomies).

In the following discussion of classes, we describe common characteristics of problems in the
class. We also briefly mention both typical examples and edge cases that represent a transition
to other classes or disciplines other than computational thinking. Appendix B contains a catalog
of specific problem families and problem sets. In the following discussion, we reference problem
families in the catalog by the abbreviation PF followed by the family number in the catalog.

4.1 Programming in a Text-Based Programming Language

Although the aims behind the computational thinking movement are significantly wider than just
teaching students the basics of programming, programming is one of the standard activities that
is used as a part of computational thinking practice and assessment. This is for a good reason:
programming directly or indirectly uses many computational thinking skills (e.g., algorithmic
thinking, abstraction, decomposition, testing, and evaluation). The straightforward approach to
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practicing programming is to let students write code in a standard, text-based high-level program-
ming language. Programming in a text-based language is mostly relevant for older students. There
exists extensive research literature on introductory programming, which is mostly concerned with
introductory courses at the university level. [35] provide a good overview.

Typical problems of this type share the following features. They are interactive: students write
code, they can execute and test it. When they submit a solution, it is evaluated on hidden testing data;
if the solution is incorrect, a student is provided with the specific input on which the program does
not work [28]. The program inputs and outputs are typically texts or numbers. The primary skills
involved are algorithmic thinking skills (sequences, loops, conditions, variables, functions), being
incremental and testing. Advanced problem sets may also require data representation, abstraction,
decomposition, and overall integration of many computational thinking skills.

Typical cases of this type correspond directly to the above-given description, varying in their
choice of language, specific environment, and scope of programming concepts addressed (PF 1).
For some types of programming constructs (e.g., working with files), it is possible to use a less
interactive version where students only submit an answer (PF 2).

There are also other potential variations and transitions to other problem classes. When using
scaffolding code, which students only slightly modify, there is a smooth transition toward code
interpretation problem class. A specific example is the Parson puzzle (PF 4), where the goal is
to recover the correct ordering of program lines. Interactive querying (PF 5) is at the transition
toward data analysis class; it has a similar mode of interaction as standard text-based programming
problems but targets different skills. Text-based programming can be combined with microworlds
(e.g., PF 3). The combination with microworlds can also lead to more open-ended activities, e.g.,
competitions of virtual robots [58].

4.2 Block-Based Programming in Microworlds

Text-based programming in a standard, high-level programming language is typically the final aim of
teaching programming. For novices, it is, however, quite intimidating. Consequently, there have been
many attempts at lowering the barriers to programming [32]. A common approach is the use of block-
based programming, which significantly simplifies syntactical aspects of programming and lets
students focus on algorithmic skills [4]. Block-based programming is often used in combination with
microworlds; [47] provide an overview specifically of the intersection of block-based programming,
microworlds, and well-structured problems.

A microworld is a simplified representation of some domain [49]. Microworlds are useful not just
for learning programming but also for other domains (e.g., physics microworlds). In the context of
programming, the most common microworld consists of a 2D world with a movable agent and very
simple rules, e.g., a robot on a grid with obstacles or an agent which draws pictures by movement
(turtle graphics). A problem is typically specified as a goal state for the agent or the world (e.g.,
reach a target square or draw a figure).

As in the case of text-based programming, the realization is typically interactive: students use
blocks to construct a code and repeatedly execute their code until they find a solution. As opposed
to text-based programming, in microworlds, there is usually a single initial configuration that is
used for the purpose of automatic evaluation of solution correctness*. This means that nearly any
problem can be solved by a long sequence of elementary actions without a need to use constructs
like loops or variables. This can be prevented by the use of limits on the length of code. The
main skills practiced by this problem class are algorithmic thinking skills (particularly sequences,

“In principle, it would be possible to use multiple input states in a similar fashion to text-based programming. In practice, it
is difficult to realize a clear user interface for this approach.
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conditions, and loops), planning, and testing. Secondary skills are pattern detection and description,
decomposition.

This problem class is relevant to a broad audience. By tuning the complexity of the microworld
and available instructions, it is possible to achieve a wide range of problem difficulties. With simple
commands and graphical blocks, it is possible to design problems that are solvable even by children
who cannot read. On the other hand, it is possible to design microworld puzzles that are challenging
even for university students [47].

Typical members feature a robot on a grid (PF 6, PF 7) or drawing microworld (PF 8, PF 9). By using
sequences of arrows instead of blocks with text, there is a smooth transition toward the problem-
solving class. [36] describe several types of scaffolding in block-based environments; with the use of
these scaffoldings, we obtain a smooth transition toward the code interpretation class. Block-based
programming in microworlds also has close connections outside computational thinking (e.g.,
geometry skills) and natural transition toward open-ended activities, e.g., the programming of
multimedia stories (Scratch, Scratch]Jr, Alice) or physical robots (e.g., Lego Mindstorms, Lego WeDo,
Ozobot, Beebot, Dash&Dot).

4.3 Code Interpretation and Understanding

This problem class is still focused on programming. The task, however, is not to produce code but
rather to correctly interpret provided code. Students are given a fragment of code and have to
answer a question testing their understanding of the code. A typical question is “What is the output
of the code?” There are also many other options, e.g., “Which input leads to such and such output?”,
“What is the purpose of this code?”, “Is the syntax correct?” (see e.g., [22, 64]). These problems are
very useful for quick assessment of students’ understanding; several studies have explored the
validity of assessments using these types of problems [23, 51]. They are also useful as a tool for
learning: [40] argue that it might be better to start teaching CS1 with a focus on comprehension
of program execution and only later writing code; [54] describe and evaluate PRIMM (Predict,
Run, Investigate, Modify, Make) approach to teaching programming, where the first step is code
interpretation.

Problems in this class usually have low interactivity: either a selected response format (multiple-
choice question, drag and drop) or a short written answer. The skills practiced by them are mainly
algorithmic thinking skills. Compared to code writing, these problems do not involve incremental-
ity, testing, debugging, or planning. However, they allow more targeted addressing of common
misconceptions and difficult concepts. See [59] for the most common misconceptions in block-based
introductory programming and [48] for a comprehensive review of misconceptions and difficulties
in text-based introductory programming,.

In the case of producing code, there is a non-trivial step between block-based programming and
text-based programming. In the case of code interpretation, the transition can be much smoother.
The same code can often be expressed in a high-level programming language, block-based notation,
flowchart, or even slightly structured natural language, and the transition between these formats
can be rather smooth. These problems are relevant to a broad audience since they can naturally
cover the whole range of difficulties from trivial (print "Hi"; print "Hello") to tricky (e.g.,
understanding nuance of Python operations with lists).

Although the transition is smooth, it is possible to distinguish several main problem families:
simple sequences of actions in microworlds (PF 10), code interpretation with block-based notation
and focus on control flow structure (PF 11), code interpretation with a high-level programming
language, which also considers syntactical aspects of the code (PF 12), and evaluation of formulas
and queries (PF 13). The first three families are concerned with sequences of actions, whereas the
last one is concerned with a single expression.
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4.4 Problem Solving and Logic Puzzles

Problems in this class involve clearly specified rules and a desired target state or situation; the goal
is to find a path to the goal state or satisfy all provided constraints. They often involve microworlds.
The main difference from previous problem classes is that the problems here do not feature explicitly
written programs. Instead, students perform actions directly within the given microworld. This
class is at the boundary between computational thinking and mathematics since the focus is on
general problem-solving skills and logical thinking (specifically planning and logical deductions).

This problem class is quite rich and contains problems with a variety of interaction modes. It
would be possible to create subclassification, e.g., based on the existing taxonomy of puzzles by [26].
However, this class is not completely specific to computational thinking; the skills practiced by
problems in this class are closely relevant to mathematics, physics, and other domains. Therefore,
we have included in the catalog only several problem families representative of the main directions.

Typical puzzles relevant to computational thinking are mazes and sliding block puzzles (PF 14).
They can be naturally used as a preparation for block-based programming in microworlds since
they often use similar kinds of microworlds and rules. A particularly interesting variant is the
case where the puzzle is solved by placing commands (represented by symbols) directly into the
microworld(PF 15).

Other relevant puzzles focus on logical reasoning and deduction. These typically involve minimal
interaction: a student often iteratively fills in some information (often in a grid), but feedback is
provided only after the solution is completed. For these reasons, they are sometimes called “pencil
puzzles” [8]. Specific examples are abstract logic puzzles based on constraint satisfaction (PF 17);
a well-known instance is Sudoku. Near the boundary with the data representation class is the
construction of logic circuits (PF 18).

There are also puzzles dominated by natural language text (PF 19, PF 16). To solve these problems,
students need to correctly understand and interpret the text. Due to the importance of text, this type
of problem has close connections to reading comprehension skills — similarly to word problems
in mathematics, for which the interplay between numerical and reading comprehension skills is
clearly documented [14].

4.5 Non-interactive Pattern Recognition and Abstraction

The main characteristic of this problem class is that it involves a hidden rule; the student needs to
determine the rule and apply it (without necessarily explicitly formulating it), e.g., given a sequence
of numbers, the goal is to find the next one (which follows according to the sequence rule). Strictly
speaking, this type of problem is not completely well-structured since a student may find alternative
solutions and argue that they are also acceptable. However, it is possible to create problems where
the correct solution is clearly better than any alternative, and thus the problem becomes sufficiently
well-structured.

Problems of this type are non-interactive or with very simple interaction: typically multiple-
choice questions or simple drag-and-drop exercises. The skills practiced by this type of problem
are dominantly pattern detection and abstraction. This type of problem is often used beyond the
computational thinking context, particularly in testing general intelligence and abstract reasoning
[10].

A typical example of a problem from this class is “complete a sequence” (PF 22): given a series
(or matrix) of symbols, the goal is to fill in a missing one. Other commonly used problems are word
problems like “word analogy” and “odd one out” (PF 26). The solution of these problems requires
the use of abstraction. However, this problem family is on the boundary of computational thinking
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and language skills and its relation to other computational thinking problems is not completely
clear; future research is needed to clarify this.

We have also collected or created problems specifically for computational thinking context: data
abstraction (PF 24), behavior abstraction (PF 24), and analysis of images (PF 25).

4.6 Interactive Hypothesis Testing

This problem class is also based on the “hidden rule” principle. The difference is that in the previous
case, all the information for solving the problem was provided statically, whereas in this case, the
student interactively proposes testing inputs that help to determine the rule. A key part of the
problem-solving aspect is thus the choice of suitable inputs.

The realization of problems in this class is necessarily interactive: the student chooses some
inputs and the environment provides the answer for the experiment. The goal is to use as few
attempts as possible to determine the hidden rule. The main skills practiced by these problems are
forming hypotheses and efficient testing. Other skills depend on a specific problem; they typically
involve abstraction, pattern recognition, and logical thinking.

Problems in this class do not have a standard name or classification; there are denoted by
several different names, e.g., “inductive reasoning game” or “black box puzzle” To organize these
problems, we have collected various specific examples (e.g., Mastermind, Zoombinis, Eleusis, Zendo,
Mao, Laser black box) and classified them by what is hidden: a specific configuration (PF 27), an
acceptance rule (PF 28), or a mapping between states (PF 29).

4.7 Data Representation and Analysis

Problems in this class concern methods for data representation and analysis. This class is related to
pattern recognition and abstraction class — representations of data are typically closely connected
with recognizing and describing patterns. In the case of this class, the focus is on the explicit
description of patterns. The description can be in some special-purpose notation (describing
embroidery patterns using arrows) or using a standard data representation scheme (describing color
images using RGB codes). Solving these types of problems may require some specific knowledge
behind the data representation scheme. The main focus, however, is typically on computational
thinking principles: recognizing patterns and constructing their algorithmic descriptions. This
problem type forms a bridge between basic pattern recognition (where the rule is not verbalized) and
general-purpose programming (which can be used, as one of its applications, to describe patterns).
Typical examples for data representation focus on binary numbers (PF 30), image representation
(PF 32), or text encoding (PF 33). Description of patterns can be done using regular expressions
(PF 31).

Data representation is interconnected with data analysis and data visualizations. These topics
are more suitable for open-ended exploration. Nevertheless, it is possible to devise well-structured
problems that practice basic analysis and visualization skills, e.g., questions asking about an
interpretation of a provided visualization or a choice of a suitable analysis approach (PF 34).

5 DISCUSSION

In this work, we provide an extensive catalog of problem sets for the practice and assessment of
computational thinking and describe the properties of these problem sets. Based on the analysis of
these properties, we propose a taxonomy that provides an organization of computational thinking
problems. To conclude, we now discuss the potential uses of the presented catalog and taxonomy.
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5.1 Current Use of Computational Thinking Problems

To explore the current usage of the identified problem classes, we analyzed research papers in a
recent systematic review on the assessment of computational thinking [60]. This review paper
used a systematic procedure to identify computational thinking assessment papers and classified
assessment types as traditional, portfolio, or other. We analyzed all papers identified as using a
“traditional” assessment. Within these, we found 20 papers that used well-structured problems and
included sufficiently detailed information to determine what kind of problems was used.

Within this sample, the clearly dominant problem class is “code interpretation.” This class was
used in some form in nearly all of these papers. Other repeatedly used classes are “block-based
programming in microworlds” (6 papers) and “problem solving and logic puzzles” (3 papers). Other
problem classes were used only very sparsely. The dominance of “code interpretation” has several
good reasons: problems from this class are easy to realize and evaluate (they can be mostly realized
using general multiple-choice questions), and understanding code offers possibilities to test many
computational thinking skills; it is a natural form specifically for evaluation of algorithmic thinking
skills, which are the core computational thinking skills.

However, it is possible that the dominant usage of code interpretation is also due to the com-
bination of historical and practical reasons and that there are important facets of computational
thinking which are not well-assessed using these types of problems and which could be assessed
using different problem classes. We believe that the usage of other problem classes should be
seriously considered in future research on computational thinking assessment.

5.2 Design of Computational Thinking Problems

We provide a large collection of problem sets that are systematically organized. It is thus possible to
relatively easily find inspiration for a specific purpose. A possible future extension is to construct
a database of specific instances of problems that can be directly used. The described features of
problems can be used for recommendations or adaptations in personalized learning environments.

The provided map and feature encodings provide inspiration for the design of new problems by
focusing attention on combinations of features that are not yet sufficiently covered. The above-given
analysis of problem usage in the current assessment clearly shows the absence of problems focusing
on abstraction, decomposition, and pattern recognition. In our catalog, we have provided several
problem sets focusing on these topics. These are, however, less standard and mature than problems
focusing on algorithmic thinking skills, and they could be clearly further developed and improved.

Specifically, we consider as a useful direction attempts to construct “bridges” between existing
problem classes. As a specific illustration, we have identified the following gap. For abstraction and
decomposition skills, there are available relatively simple activities with images. On the other hand,
these skills are used in programming problems, where their usage is complex and mixed with other
skills. Can we create some intermediate problems that will help students more smoothly practice
their abstraction and decomposition skills?

5.3 Research on Computational Thinking

One of the criticisms of the computational thinking movement is the use of unsupported claims
about the transfer and generalizability of skills [61]. The presented taxonomy can be used for
a clearer formulation of the scope of research studies and for the study of research questions
concerning the validity of assessment and of learning transfer.

Our taxonomy implicitly makes predictions about convergent validity and transfer of learning.
The taxonomy indirectly specifies how close two problems are: if they are in the same problem set,
they are very close; if they are in different classes, they are far away. The natural hypothesis is
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“the convergent validity and level of transfer should be high for problems that are close and low
for problems that are far” This is a specific hypothesis that can be experimentally evaluated; such
evaluation is, however, a major undertaking since we have discussed a large set of problems (note
that current research of this type is scarce and typically involves just two types of problems).
Our main aim is to propose the overall approach to the organization of the landscape of compu-
tational thinking problems. The specific taxonomy and specific catalog of problem sets constitute
our best effort at the current situation, not a proposal for a final product. We suppose that future
research will find a violation of the hypotheses of the above-given form and that the presented
taxonomy will be improved by revisions. We believe that the proposed version is a useful start.
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A SKILLS: LITERATURE MAPPING

For the analysis of the treatment of computational thinking skills in literature, we have analyzed
a sample of papers that are recent (published in the last 10 years) and highly cited (at least 100
citations in Google Scholar): [1, 3, 7, 20, 25, 30, 38, 53, 55, 63, 67].

Comparison of covered skills across papers is not straightforward because authors differ in the
used terminology and in the granularity in which they discuss skills (e.g., “algorithmic thinking”
versus “variables”). We have created a compromise skill list and for each paper classified its coverage
of the skill with ternary classification: 0 = not covered, 0.5 = partially covered, 1 = covered. The
value 0.5 is used in cases where the terminology or granularity does not fit exactly ours, and thus
the coverage of the skill may be only implicitly implied. Table 4 provides the results.
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Table 4. Overview of skills considered in highly-cited overview papers about computational thinking

Barr, Brennan,  Seiter, Kalelioglu Zhang,
Stephen- Resnick, Foreman, Mannilaet Weintrop Angeliet etal, Shute et Hsuetal., Grover, Nouri,
son, 2011 2012 2013 al. 2014 etal. 2016 al., 2016 2016 al., 2017 2018 Pea, 2018 2019
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data analysis
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pattern description (pattern
generalization)

logical reasoning ]

v -

planning, problem solving [ ]
iterative approach (being »
incremental)
testing
automation

-
o0 O 0 < @

[ 3 Y ]
L]
[ ]
@
00 & O G

modeling and simulation

o 00c o

generalization (transfer to different ° °
fields)

Note that a similar analysis was recently independently reported by [9]. They use a slightly
smaller sample of reviewed papers but reach very similar conclusions about the covered skills as
we do.

B CATALOG OF PROBLEM SETS

This appendix presents a catalog of problem sets grouped into problem families. Problem families
are denoted by numbers; problem sets within a family are denoted by letters. The catalog does
not aim at completeness but rather wide coverage. Specifically, the choice of problem sets within
families is illustrative: in most cases, it would be possible to mention more problem sets within a
family or to organize them in a slightly different manner. For each problem family, we also include
an example. Due to limited space, these examples are not completely specified problems but only
illustrations that highlight specific aspects of the problem family. The examples are either abstracted
versions of commonly used problems or problems that we developed for the Umime informatiku
learning environment (https://www.umimeinformatiku.cz/).

The matrix of problem set features is available as an electronic supplement to the paper (file
ct-catalog-features.csv).

B.1 Programming in a Text-Based Language

PF 1 Interactive programming

The goal is to write a program in a high-level language (e.g., Python) to solve a given (parametrized)
problem. A program is automatically evaluated using hidden testing data. This is a standard setting
in introductory programming (usually called autograder), realized in many tools (see [35] for
references).
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(A) Expressions and conditions. Simple problems with num-
bers and text messages that require only expressions and
conditional execution.
(B) Loops. Problems using loops (for, while), typically simple oot Bxpected
computations with numbers (e.g., sums, divisibility). o 1113 17 19
(C) Strings and lists. Problems that require the use of strings
and lists.

Print all prime numbers in a given interval

def print_primes(a, b): >>> print_primes(10, 20)

PF 2 Find the answer

The goal is to write a program for a specific task and submit only the result of the computation on
a specific input. This is useful, for example, for situations where the autograder approach may be
more technically difficult to realize.

(A) Text file analysis. The goal is to compute requested information for a
given text file (e.g., the text of a book).
(B) Bitmap image processing. The goal is to recover information hidden in a
provided bitmap file (e.g., using minor color differences which are not
perceptible by the eye). fin the most frequent word
(C) Math problems. Problems with numbers that cannot be easily solved with-
out programming, e.g., “find the sum of all natural numbers below 1000,
for which the digit sum is 13 A well-known collection of such problems
(but mostly too advanced for novices) is Project Euler (projecteuler.net).
(D) Tabular data analysis. The goal is to compute requested information based
on a given tabular data (e.g., Olympic medal table).

Submit

PF 3 Turtle graphics with a text-based language
The goal is to draw a specified image in a turtle graphics microworld (vector graphics with a
relative cursor). Historically, turtle graphics was used with the Logo language [41]; nowadays, it is

commonly used with Python [24].

(A) Loops. Drawing polygons, stars, and other simple regular shapes using loops. %
max_item = item

(B) Variables. Drawing spirals and “growing patterns” using variables and simple
functions.
(C) Recursion. Drawing fractals using recursive functions.

=

PF 4 Parson puzzles
The goal is to recover the correct ordering of program lines for a specified

problem (the input is a sample solution with randomly ordered lines) [42]. max_item = 0
(A) Syntax and semantics. Simple programs with loops and variables, where
the focus is on the basic syntax and semantics of programming constructs .~ ceq:
(nesting, importance of command order). Qof Eind pan(seq):
(B) Algorithms. Simple algorithms that can be written in a few lines of code  i¢ item > max_iten:
(e.g., sorting, binary search).

return max_item
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PF 5 Interactive querying

Given data and a query formulated in a natural language, the goal is to write the query in a formal
language (e.g., SQL queries over database tables, XPath queries over XML documents, or spreadsheet
queries). The interface is interactive, i.e., students can write queries and see results. Similarly to
PF 1, it is possible to use evaluation on hidden testing data.

Select names of book that

(A) Basic queries. Queries over simple data using logical operators and several were published before 1950.

attributes. name author year
. . . The Hobbit Tolkien 1937
(B) Multiple data sources. Queries over data from several sources (e.g., multiple  pyne Herbert 1965

: Matilda Dahl 1988
tables in database). Heidi Spyri 1880

(C) Advanced queries. Queries using more advanced concepts (e.g., “Group scicct name £rom ...
by”).

Submit

B.2 Block-Based Programming in Microworlds

PF 6 Robot on a grid (blocks)

In a microworld with a robot on a 2D grid, the basic goal is to get the robot to a target location using
movement actions (forward, turn left, turn right). The microworld may contain specific elements
that make the goal more complex, e.g., obstacles to be avoided, objects to be collected, colored cells
in the grid (used for conditional movement), enemies. A classic version of this microworld is Karel
the Robot [43], which was used with text-based programming. Nowadays, this type of microworld
is commonly used with block-based programming. [47] provides a discussion of design issues and
[21] a specific analysis.

(A) Basic movement. Programs are simple sequences of basic ac-

tions. L4 repeat until
9

(B) Loops and conditions. Programs utilize loops or conditional ° move forward
movement (e.g., based on the color of cells or the presence of 20 o 8
A4 move forward
obstacles). o0 Rim  right

(C) Parallelism. There are multiple robots in the microworld; pro- & ©
grams have to address coordination issues.

PF 7 Robot on a grid (arrows)

The same basic type of microworld as PF 6, but instead of blocks, programming is done with a
linear sequence of arrows. This approach makes it intuitive and simple to start with. At the same
time, this setting allows complex problems by the use of functions. Each line of commands defines a
function; these functions can be repeatedly called. Specific examples are LightBot [19] or RoboZZle
(robozzle.com/).

(A) Basic movement. Simple sequences of basic actions.

(B) Loops and conditions. Programs utilize conditional execution
(e.g., with respect to the cell colors) and looping realized by
simple tail recursion.

(C) Functions and recursion. By utilizing recursion, it is possible to
express complex behavior even with the very simple notation.

SN
F2 ¢ & 2
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PF 8 Turtle graphics with block-based language

The same turtle graphics microworld with interactive interface and automatic evaluation as in
PF 3, but with block-based programming interface and a selection of problems aimed at younger
students.

(A) Basic movement. Program is specified with blocks using a
few simple commands (forward, left, right).

(B) Loops. Drawing polygons, stars, and flowers using loops.

(C) Variables and spirals. Drawing spirals and “growing pat-
terns” using variables.

repeat 12 x

repeat 12 x
[‘move forward [ 10]
[tum right _£30]

[ tum _right__£30]

PF 9 Shape drawing

This is another variation on the drawing microworld—similar to PF 8 but with a different focus. In
this case, the agent moves to specific coordinates or in an absolute direction (as opposed to the
relative movement used in turtle graphics). The agent is capable of drawing several elementary
shapes (circle, square, triangle) of specified size and color. The goal is to produce a given shape by
suitably combining the elementary ones [6, 47].

(A) Basic drawing. Short sequences of movement and drawing steps.
(B) Combined and repeated shapes. Use of loops to draw patterns with simple *
structure; construction of combined shapes by a suitable ordering of n
drawing actions. =
(C) Debugging and functions. Problems feature ready-made code for a given
shape, but with a minor bug; the goal is to find and correct the mistake. t '{}‘
Problems may also include prepared functions (draw a house), which ‘ ‘
have to be used.

B.3 Code Interpretation and Understanding

PF 10 Interpreting sequence of actions

Given a simple microworld, the goal is to interpret the effect of a sequence of actions or to fill in
missing actions into a provided sequence. The focus is on the ability to mentally imagine the effect
of actions and on the understanding of the impact of their ordering.

(A) Movement in a maze. A maze microworld, where actions correspond

. o . . w5
to movement (cardinal directions or movement toward objects in [ 4 & ¢ ARSBENC
the maze). e~ s
(B) Cube stacking. A microworld with several stacks of cubes and ac- A—C
tions for moving one stack on top of another. 9 1) S

PF 11 Code interpretation (block-based)

Given a code in block-based programming (or semi-structured text or control flow diagram), the
goal is to determine the output or answer multiple-choice questions about the behavior of the code.
The code can manipulate numbers, texts, or control an agent in a microworld. [23] describe a large
collection of these problems.
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(A) Loops. The code is a sequence of commands, a loop, or two F p |
nested loops. Loops use a fixed number of iterations. x Satatng

(B) Conditions and while loops. The code contains conditional exe- SO
cution. 8 F

(C) Variables. The code manipulates variables. ) wil coect: P

PF 12 Code interpretation (text-based)
Given a code in a high-level programming language (e.g., Python), the goal is to answer a multiple-
choice question about its behavior.

(A) Basic constructs. Determine the output of a short code fragment; pri-
marily useful for practicing basic constructs (expressions, conditions,
loops). xe

(B) The behavior of worked-out examples. Questions about the behavior of a  print(x + )
worked-out example, e.g., a function for computing digit sum. Primarily

useful for practicing functions and data structures.

What will this code output?

4 5

PF 13 Evaluating formulas and queries
Given a formula or query in a specific formalism, the goal is to determine the result of the formula
(either as a selected response or a constructed short answer).

(A) Logic expressions. For a given logic expression (using standard operators like
and, or, not), determine its truth value. SUM(B2:B4)
(B) Spreadsheets formulas. For a given spreadsheet table and a formula (e.g.,

SUM(A3:A7)), determine its value or interpretation. : i : :
(C) SQL queries. For a given database table and SQL query, determine the result 2 4 3 0

of the query or its interpretation. 0131510
(D) Regular expressions. Decide whether a regular expression matches a given 8 7

word.

B.4 Problem Solving and Logic Puzzles

PF 14 Mazes and sliding blocks
The goal is to find a path to a goal state in a 2D grid microworld or a maze. The problem is interactive,
i.e., the student controls an agent that moves in the maze. [29] present an analysis of difficulty

factors for this type of puzzle.
(A) Maze with conditions. Basic pathfinding in a maze; the maze can have

special conditions, e.g., no left turn, keys and doors, 3D maze with ladders
and holes.

(B) Maze with optimization. The goal is to find a path through a maze while
optimizing a certain criterion, e.g., the number of coins collected or fuel-

efficiency. é
(C) Sliding block puzzles. Given a 2D grid with several pieces, the goal is to 0o O

slide the pieces to a goal configuration. Well-known specific examples
are 15 puzzle, Rush hour, and Klotski.

(D) Pushing agent. Similar to sliding block puzzles, but with a single agent
that pushes pieces. A well-known example is the Sokoban game, more
modern and complex examples are Stephen’s Sausage Roll or Baba Is You.
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PF 15 Commands in the microworld

This problem has a similar setting as PF 6, PF 7, or PF 14 but students neither control agents directly
nor do they write a standalone program. Instead, the commands for agents are placed directly into
the microworld and executed when the agent reaches them. A specific example is the Arrow game
described by [47]; other related examples are OzoBot (physical robot capable of reading commands
drawn as sequences of colors) or The Incredible Machine game.

(A) Basics. Basic movement of a single agent, e.g., using arrows for a

change of direction and jumps for overcoming obstacles. . !
(B) Multiple agents. Setting with multiple agents, where it is necessary

to address coordination issues (avoiding collisions). ! ! !
(C) Changing state. Problems where it is necessary to take into account {i§ =

changing state of the environment (e.g., disappearing arrows, explo- [§F 4

sions).

>4@
-»1‘*._
% e

PF 16 Planning scenario
A problem is given as a textual description of a planning situation with several constraints. The
goal is to find a solution (sequence of steps) that satisfies all requirements.

(A) Transport puzzles. The goal is to get some objects to target locations according
to given rules. Well-known examples of this type are river crossing puzzles (e.g.,
jealous husbands, missionaries and cannibals). :{‘]’; 2?::2{5“']';?
(B) Scheduling. The goal is to plan a sequence of actions while satisfying given time How doyou
constraints, e.g., Aircraft Scheduling in [17]. measure 4iters?
(C) Water pouring puzzles. The goal is to measure a specified volume of water using E) EP
several water jugs with a known integer capacity. Well-known research use of
these puzzles is for the illustration of the Einstellung effect [34].

PF 17 Constraint satisfaction puzzle

This type of puzzle is a specific instance of a general constraint satisfaction problem [56]. The
problem takes the form of a grid that is partially filled with numbers, lines, or similar objects. The
goal is to fill the rest of the grid so that all conditions are satisfied.

(A) Symbol placement. The goal is to find the position of symbols within a grid. |52 1.7
Examples: Sudoku, Tents, Easy as ABC, Skyscrapers. ofst L1 [l

(B) Find the path. The goal is to find a path (or several paths) through a grid, sat- [«[ [ [s[ 3] | 1
isfying both local constraints and some global condition (e.g., non-branching, s RO
visiting all squares). Examples: Slitherlink, Number links, Nurikabe. B

PF 18 Logic circuits

The goal is to build a specified functionality using elementary logic gates (and, or, not). The problem
is typically presented in interactive form using standard computer science notation. It is also
possible to present these problems using non-computer metaphors, e.g., the flow of water, wooden
machine, or bottle recycling [17].

(A) Combinational circuits. Circuits using only the basic logic gates (and, or, not), g\o—:)D_c X
e.g., the addition of two two-bit numbers.
(B) Sequential circuits. Circuits that use memory, e.g., a counter. Y
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PF 19 Textual logic puzzles
Given a set of statements in a natural language, the goal is to determine specifi
logical deduction.

(A) Interpreting statements. Given a situation (e.g., described by an image)

Z:25

¢ information using

and

a sentence, determine whether it is valid or what is the consequence of the
action. Specific example (bomb deactivation): Given a schema of a bomb and
a deactivation instruction, the goal is to choose the correct action. A complex,
multiplayer version of this problem is the popular game Keep Talking and
Nobody Explodes.

(B) Knights and knaves. This is a type of logic puzzle, popularized by [57], where

some characters can only answer questions truthfully and others only falsely.
Given a set of statements by several characters, the goal is to determine who
is a knight and who is a knave.

(C) Logic grid puzzle. Given a set of statements about several persons, the goal is

to determine features of individual persons (similarly to PF 17, this is a special
case of constraint satisfaction problem). The most well-known instance of

All creatures with wings
are in the mountains.

True False

this type of puzzle is called Zebra Puzzle or Einstein’s Riddle [11]).

B.5 Non-interactive Pattern Recognition and Abstraction

PF 20 The same pattern
Given a set of images, the goal is to find pairs that show the same pattern.

(A) Simple identity. The images are completely identical. The problem is
non-trivial in cases where the set contains images with closely similar
patterns (e.g., various snowflakes).

(B) Rotations and reflections. The images are identical but may be reflected
or rotated.

(C) Graph isomorphism. The images show graphs (nodes and edges); the
goal is to match isomorphic graphs. The problem can be presented
without graph terminology, e.g., as matching of animals made of sticks
and nuts [31].

PF 21 Detect the pattern

N
X
A

NI
S
Yy

In these problems, there is an explicitly formulated rule for a pattern, and the goal is to find or

create the pattern in a given data.

(A) Select the pattern. Given a set of objects, the goal is to select a subset that
corresponds to the given rules. A well-known example is the “Set game”,
which is played with cards that vary in four features (number, shape,
color, shading) across three possibilities (e.g., circle, triangle, and square
for shapes). The goal is to find a triplet of cards, such that for each one of
the four features, the three cards must display that feature as either all
the same or all different.

(B) Create the pattern. Given a set of objects, the goal is to manipulate them
(according to some rules) so that the desired pattern is created. This
mechanism is used in tile-matching video games like Bejeweled or Candy
Crush Saga.

AA
A ©O

00
o Bm
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PF 22 Complete the sequence
Given a sequence of objects that obey a hidden rule, the goal is to determine the rule and deduce
the next object in the sequence. Interaction is typically realized as a multiple-choice question. This
problem is commonly used in general intelligence testing [10].
(A) Number and letter sequences. The principles used in rules include repetitions, "Il N
arithmetic and geometric sequences, and modular arithmetics.
(B) Geometric sequences. The principles used in rules include rotations, axial ~ (B A\ [
symmetry, movement in space, and permutations of colors and fill patterns. 4 g
(C) Raven’s progressive matrices. Geometric pattern organized in a a matrix (the
original formulation used 2 X 2 matrices, a common form uses 3 X 3 matrices). () B A ©

PF 23 Behavior abstraction ) )
Given several examples of function behavior, the goal is to deduce the

behavior and apply it in another setting.

N
"
&

(A) Image transformation. The behavior is a transformation of images b "
(e.g., rotation, reflection, permutation of colors, change of size, and
their combinations).

(B) Word transformation. The behavior is a transformation of a word
(e.g., addition or removal of a letter, permutation).

I
B

EE
i
il = B

S|
I

PF 24 Data abstraction
Given several images, the goal is to organize them with the use of abstraction.

(A) Abstraction ladder. The problem is given as a pattern of images with
several missing ones. The goal is to fill in the missing images from 4
a selection in such a way that each column of images represents an o x5
abstraction ladder (going from the most concrete to the most abstract).
(B) Graph neighbors. The goal is to find a correspondence between “maps”  * L
(images with several regions) and their graph representation (dual *
graphs), see e.g., Encoded Treasure Map in [17].

*

*
*
*
*

PF 25 Image analysis
Given several images, the goal is to assign them a correct description. The images and descriptions
are prepared in such a way that the assignment requires the use of abstraction or decomposition.

(A) Image decomposition. Given several images, the goal is to decompose them
into several constituent parts that are used repeatedly in these images. .\ .15 49 A

(B) Image codes. Given several images and their compact codes, the goal is to
determine the principle behind the codes and determine codes for several P°Y9°n(s19) O
other images. The codes are cryptic sequences of letters or numbers, polygon(4, 30) D
which denote some properties of images.

(C) Function headers. The descriptions are function calls with parameter polygon( 2, 7) <:>
values.
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PF 26 Word relations
Given a set of words, the goal is to choose one of them or to find a new word by reasoning about
their relations and properties [27].

(A) Word analogies. Word analogy is a common verbal reasoning problem
that can be seen as a practice of abstraction. The illustration shows a
common form of this problem, i.e., given an example pair, the goal is to
fill in the second word in a second pair in such a way that the relationship
is the same.

(B) Odd one out. Given a set of words, the goal is to determine what they
have in common and select a word that does not belong to the group.

dog — puppy
cat —

pine, spruce, daffodil, fir

B.6 Interactive Hypothesis Testing

PF 27 Find a hidden configuration
The goal is to determine a hidden configuration of some objects using a limited number of queries.
The rules of a specific problem specify possible configurations, queries, and the form of the answer
to queries.
(A) Categorical objects. A well-known example is the Mastermind game [18], where
the hidden configuration is a sequence of colored pegs. The query is also a
sequence of pegs; the response is information on the number of correctly
placed pegs and the number of correctly colored (but misplaced) pegs. Another g ® =

example is the Pizza pass problem in Zoombinis game [52]. Y ) 8
(B) Position in a grid. The goal is to determine the position of objects in a grid. For ® © ® ®
example, the configuration may be the position of mirrors in a black box and a : : i:

query corresponds to pointing a laser into the black box and observing where
the beam leaves the box.

PF 28 Find a hidden acceptance rule
The goal is to determine a hidden acceptance rule in a limited number of attempts. In each attempt,
a student provides a specific object and gets a binary response (accepted or not accepted).

(A) Object features. The object is composed of several features; the acceptance rule
is based on these features. Example: the Alergic cliffs puzzle in the Zoombinis

game [52]. o

(B) Multiple object configurations. The rule concerns configurations of objects, e.g., X
colorful building blocks (Zendo game) or number sequences. A well-known HE x
example is Wason’s 2-4-6 task [62]. ®

(C) Move sequences. The rule concerns the acceptance of moves within a game, e.g., ®0 6 x

the movement of figures on a grid (Penultima game) or card sequences (Eleusis
game, Mao game).
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PF 29 Find a hidden mapping
The goal is to determine a hidden mapping that transforms an input state into an
output state. The student’s attempt consists of choosing an input state and observing 4 . g
an output state. The goal is typically formulated as an output state for which the -
student has to find a corresponding input state (in a limited number of attempts). ®—
(A) Memory-less mapping. There exists a direct systematic correspondence between —
inputs and outputs, e.g., Mudball wall in the Zoombinis game [52].
(B) Mapping with memory. The output depends not only on the current input but — u
also on previous ones, e.g., the mapping corresponds to a finite-state machine.

B.7 Data Representation and Analysis

PF 30 Binary puzzles
Given a set of clues, the goal is to fill a grid with binary values (0, 1) so that all clues are satisfied.
This problem family can be seen as a special case of constraint satisfaction puzzles PF 17 that is
tailored specifically toward the use of binary values. [5] provide specific examples and analysis.
(A) Binary numbers. The clues concern the binary representation of
numbers and arithmetic operations over them (addition, subtraction).

. i . . Y Z A=Band3
(B) Logic operations. The clues concern logical operations (and, or, not), , B>X
which are performed in a bitwise manner over rows and columns. | C=notY
. ) . X=A
(C) Crosswords. The clues may involve both binary numbers and logic
C 0<Z<A

operations and contain cyclical references. Solving a problem thus
requires planning and logical reasoning.

PF 31 Regexp golf

Given a set of positive and negative examples (words), the goal is to write a regular expression
that matches only the positive examples. The problem is interactive: a student writes a regular
expression and is shown which words it matches.

(A) Basic expressions. Problems requiring only the basic usage of regular expression figure  football
. L re rien
syntax (wildcards, letter groups, repetition). fee  dog
. o fin f
(B) Advanced expressions. Problems requiring more complex syntax (word bound- " &5
aries, backreference) and problems requiring a compact description of patterns

due to a short limit on the length of a regular expression. Check

PF 32 Image representation
Given an image and its representation (as a text or a list of symbols), the goal is to fill missing parts
(parts of the description or parts of the image) or choose a matching image and description.

(A) Arrow sequences. Repetitive line images (e.g., simple embroidery patterns)

represented as a sequence of arrows describing moves. ,2)
(B) Bitmaps and vectors. Images represented in a simplified bitmap or vector E‘z‘ B
format (e.g., list of zeros and ones for individual pixels, lines represented (6,2)
by coordinates). Es 5))

(C) Color codes. Matching colors and their RGB codes.
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PF 33 Text encoding

The goal is to transform a text using a given procedure that modifies its representation. Simple
problems require just a straightforward application of provided transformation rules; more complex
problems require pattern recognition and logic to deduce used rules.

(A) Coding. Representation of text using common coding schemes (e.g.,

ASCII table, Morse code). 2354 —> RIDE
(B) Ciphers. Transformation of text using simple ciphers (e.g., transposi- 6412 —> PEAR
tion, monoalphabetic substitution). 2764 — ROPE
(C) Compression. Text compression using simple algorithms (e.g., run- 2415 —
length encoding, dictionary methods, delta encoding).
PF 34 Data visualization understanding
Given visualization of data, the goal is to answer questions that test the
understanding of the visualization. N e 7
(A) Matching tables and graphs. The goal is to match a data table and ;ms
a corresponding or two different visualizations of the same data. cherries

apples pears plums cherries

(B) Interpretation. For the visualization of some real-world data, the
goal is to answer multiple-choice questions about its interpretation.

7 13 18 25
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