Design and Analysis of Microworlds and Puzzles for Block-Based
Programming

Radek Pelanek
Tomés Effenberger

Masaryk University

ARTICLE HISTORY
Compiled December 4, 2020

ABSTRACT

Background and Context: Block-based programming is a popular approach to
teaching introductory programming. Block-based programming often works in the
context of microworlds, where students solve specific puzzles. It is used, for example,
within the Hour of Code event, which targets millions of students.

Objective: To identify design guidelines and data analysis methods for the iterative
development of microworlds and puzzles for block-based programming.

Method: To achieve the objective, we provide a review of the literature, discussion
of specific examples of microworlds and puzzles, and an analysis of extensive student
data.

Findings: A wide range of programming microworlds share common elements. The
analysis of data is useful for iterative improvement of microworlds and puzzles,
serving several specific purposes.

Implications: Provided design guidelines and analysis methods can be directly used
for the development and improvement of tools for introductory programming.

KEYWORDS
introductory programming; block-based programming; microworld; puzzle;
difficulty; log analysis

1. Introduction

In this work, we study the intersection of three topics: block-based programming, mi-
croworlds, and well-structured problems (puzzles). This is not a negligible intersection,
e.g., it includes many activities within the popular Hour of Code event, which has mil-
lions of participants (Wilson, 2015). Any improvement in this area can thus have a
significant impact.

The three areas, whose intersection we study, are naturally related, but indepen-
dent (see Figure 1). Block-based programming (Bau et al., 2017) is a popular approach
used primarily for teaching introductory programming. It also has other applications,
e.g., in industry (Weintrop et al., 2017). Microworlds are small, but complete ver-
sion of some domain (Rieber, 1996). For example, a billiard microworld (Bertz, 1997)
is a two-dimensional world with Newtonian mechanics. Puzzles are a type of well-
structured problems, i.e., problems with clear rules and clear criterion for a solution.

programming

billiard
mstrial Alice \ microworld
applications

of block-based Scratch

programminV \
robot on a grid robot Karel

@e graphics in Java /
numbers computations
with blocks

puzzle games Sudoku well-structured
K j problems (puzzles)

Figure 1. We consider the intersection of three topics: block-based programming, microworlds, and puzzles.
Some topics (e.g., “turtle graphics”) can be placed in different positions in the diagram depending on their
specific realization.

block-based / microworlds

For something to be called a puzzle, we usually also expect it to have some inherent
attractiveness (this aspect is captured in the definition “Puzzle is fun, and it has a
right answer.” by Stan Isaacs).

These three areas can be combined in various ways. To clarify their relationships,
Figure 1 shows a Venn diagram of different combinations together with specific ex-
amples. Environments like Scratch (Resnick et al., 2009) and Alice (Cooper et al.,
2000) provide block-based programming in microworlds, but they are not (primar-
ily) puzzles—their focus is on open-ended activities. Block-based programming can
be used to solve a common well-structured problem like numerical computation (e.g.,
common problems in introductory programming like factorial or the greatest common
divisor), although these problems are by most people not considered too attractive
(“puzzle-like”). A billiard microworld (Bertz, 1997) is used for open-ended exploration
in physics, whereas Robot Karel (Pattis, 1981) is a typical example of a programming
microworld with a focus on solving specific puzzles. This microworld can be realized
in a standard textual programming language like Java (Becker, 2001), but also in
block-based programming. Turtle graphics (Caspersen and Christensen, 2000; Papert,
1980) is another typical example of a microworld that can be easily realized both in
block-based and text-based programming.

In this paper, we study the intersection of the three described areas. We do not
make any claims about the relative merits of approaches within and outside of the
intersection. For example, turtle graphics can be used both in an open-ended manner,
as well as for solving specific puzzles; microworlds can be programmed in block-based
languages as well as using textual ones. Each approach has different contributions to
the learning process. We do not aim to address such comparisons; some of these are
available in previous work (discussed below). Our starting position is that block-based
programming microworlds and puzzles can be a useful tool for teaching introductory
programming, and we aim at making this tool as good as possible.

We focus on the design guidelines and data analysis methods that can be used
for designing and improving block-based programming microworlds and puzzles. Al-
though there is a rich literature on block-based programming, its focus is mostly on
general properties of block programming environments and issues like the comparison

to text-based environments (Bau et al., 2015; Chen et al., 2019; Xu et al., 2019). The
methodological literature is concerned mainly with open-ended problems, which are
close to the constructivism roots of microworlds (Papert, 1980). However, practical ap-
plications today (e.g., activities within the Hour of Code event (Wilson, 2015)) often
use puzzles with exact solutions rather than open-ended problems. The design of these
applications is sometimes focused too much on “shallow features” like the appearance,
animations, and sound effects, while they contain only simple puzzles, a small number
of puzzles, or a series of puzzles with a steep learning curve. As Brusilovsky et al.
(1997) highlighted already 20 years ago, it is not sufficient to have an attractive mi-
croworld; to make it useful, we also need a sufficient number of interesting puzzles to
solve in the microworld.

We provide a discussion of design guidelines for block-based programming mi-
croworlds and puzzles. We focus only on the design issues related to mechanics and
technology; we do not deal with the design issues relevant to aesthetics and story.
Although these are clearly highly relevant for creating any engaging activity, the de-
sign process with respect to them is similar to other puzzle games (Schell, 2019). Our
discussion of design guidelines is based on the review of literature and examples of spe-
cific microworlds and puzzles, particularly with the focus on variations of commonly
used microworlds “robot on a grid” and “turtle graphics”. Together with our extensive
experience in the design of microworlds and puzzles, this allows us to distill common
themes and design guidelines.

We also provide a discussion of educational data mining methods for data analysis
for iterative improvement of microworlds and puzzles. Specifically, we discuss methods
for A) the analysis of difficulty and complexity of puzzles, microworld elements, and
programming concepts, B) the analysis of solutions of a single puzzle. For each type
of analysis, we explicitly discuss its purpose, and we illustrate the application of the
method on data from real applications. We also identify gaps in the current state-of-
the-art of educational data mining for block-based programming.

The discussion and data analysis is based on our experience with the iterative
design of block-based programming microworlds and with the data collected by their
implementations (6 microworlds, over 400 puzzles, solved by tens of thousands of
students).

2. Related Work

As depicted in Figure 1, our work is focused at the intersection of block-based pro-
gramming, microworlds, and puzzles; moreover, we aim to employ educational data
mining techniques for iterative improvement of microworlds and puzzles. In this sec-
tion, we overview related research from the concerned areas. For identifying relevant
research, we used a combination of a search based on keywords for individual areas and
analysis of papers published in major relevant journals and conference proceedings.
In each case, there is a large body of existing research. We selected for our discus-
sion particularly works that are connected to the studied intersection of block-based
programming, microworlds, and puzzle design.

2.1. Block-based Programming

For the general principles of block-based programming, Bau et al. (2017) provide a
good recent overview, including a discussion of advantages of blocks over text, such

as avoiding syntax errors, providing expert-level view (chunking), and decreasing cog-
nitive load (no need to remember all available commands). Flannery et al. (2013)
describe a specific case study in the application of block-based programming. For a
wider context, Kelleher and Pausch (2005) provide a wide-ranging discussion of ap-
proaches to “lowering barriers” to introductory programming, including discussion of
many variations on block-based programming.

The terminology in this area is not entirely standardized. Alternative notions are
“visual programming” and “graphical programming”, which are sometimes used as
synonyms to block-based programming and sometimes as supersets. For example,
Weintrop (2019) considers only a specific realization of blocks with snapping under the
title block-based programming. In this work, we consider block-based programming
with a broad meaning—as programming done predominantly by dragging and clicking
blocks instead of writing code.

A large portion of the research on block-based programming is devoted to the com-
parison with the standard textual approach and with the transition from blocks to
text. For example, Bau et al. (2015) proposed an environment that should facilitate
the transition from blocks to code. Price and Barnes (2015); Weintrop and Wilensky
(2017) performed controlled experiments to test a hypothesis that it is beneficial to
start an introductory programming course with block-based programming even when
students will advance to text-based programming later. Chen et al. (2019) tackled a
similar question through a large-scale observational study. These studies found some
positive effects of using block-based programming but with several limitations and
caveats. A recent meta-analysis (Xu et al., 2019) concluded that there is some evi-
dence in favor of block-based programming but not very strong.

Another research direction focuses on user interface aspects of block-based pro-
gramming, specifically on the Blockly editor, which is probably the most common im-
plementation used to realize block-based programming concepts today. Fraser (2015)
discusses what the authors of Blockly learned about designing a block-based program-
ming language, e.g., left-right confusion (resolved by arrows) and loop-conditional
confusion (resolved by different colors of the blocks and different categories in the
blocks menu). Pasternak et al. (2017) provide tips for creating with Blockly. Weintrop
and Wilensky (2015) suggest that the block representation of code should match the
programming language to which the students are expected to move in the next phase
(for easier interpretation of the effects that the blocks bring).

2.2. Microworlds

Rieber (1996) characterizes a microworld as “a small, but complete, version of some
domain of interest” and discusses the relation of microworlds to simulations and games.
The two most common microworlds used for teaching programming are turtle graphics
and robot on a grid world, which is often called Karel the Robot based on the book
that popularized this concept (Pattis, 1981). We discuss these two microworlds in more
detail in the rest of the paper.

The beginnings of the use of microworlds for programming education are connected
to Seymour Papert, who discussed this idea particularly with relation to turtle graph-
ics. He considered microworlds mainly as a tool for explorations and for realizing con-
structivist ideas in education (Papert, 1980). Later works on microworlds are also often
connected to constructivism (Hoyles et al., 2002; Rieber, 1992). In many recent appli-
cations of microworlds, however, solving well-structured problems plays an important

role. For example, many activities within the Hour of Code event (Wilson, 2015) use a
combination of microworlds and puzzles. Xinogalos (2012); Xinogalos et al. (2006) dis-
cuss the application of the robot microworld for teaching object-oriented programming
in Java. Papadopoulos and Tegos (2012) provide an overview of several programming
microworlds and their goals.

Brusilovsky et al. (1997) provide a link between microworlds and block-based pro-
gramming by discussing “mini-languages”—simplified languages that are useful partic-
ularly for programming within microworlds; they consider specifically several variants
of the robot Karel world. They highlight several important features of mini-languages,
e.g., simplicity, naturally visible operations, and attractiveness for the intended cate-
gory of students.

2.3. Puzzles

The design of puzzles for programming microworlds can be inspired by ideas from puz-
zle games. Linehan et al. (2014) performed an analysis of four commercially successful
puzzle games and summarised their common features by the following four principles
that have high relevance to programming puzzles: “1) the main skills learned in each
game are introduced separately, 2) through simple puzzles that require only basic per-
formance of that skill, 3) the player has the opportunity to practice and integrate that
skill with previously learned skills, and 4) puzzles increase in complexity until the next
new skill is introduced.” Schell (2019) provides a high-level discussion of general game
design, including many principles that are relevant for programming puzzles, e.g., that
the puzzle should “invite the players to be solved”. Browne (2015) discusses puzzle
design principles focusing particularly on logic puzzles.

A key aspect of puzzle design is the understanding of factors influencing puzzle dif-
ficulty. This issue has been studied for many puzzles, e.g., Tower of Hanoi (Kotovsky
et al., 1985) and other transport puzzles (Jarusek and Pelanek, 2011), or Sudoku
(Peldnek, 2011). A good predictive model of puzzle difficulty is one of the steps nec-
essary for the automated creation of puzzles, which falls under the more general topic
of a “procedural content generation” (Shaker et al., 2016).

Concerning puzzles specifically for programming education, Vahldick et al. (2014)
provide an overview of such puzzles and games. Many of these puzzles use block-based
programming, e.g., LightBot, Robozzle, and many Hour of Code activities (Wilson,
2015). Hicks (2016) explored the possibility of allowing students to create their own
puzzles and found that the game editor should impose some constraints to enforce
the best practices for puzzle games authoring. For example, it is crucial to require the
authors to complete their own puzzles.

2.4. FEducational Data Mining

Educational data mining can be used for many different purposes (Romero and Ven-
tura, 2013). A common one is student modeling (Pelanek, 2017) that can be used for
the adaptive behavior of learning systems. We are interested particularly in techniques
that can be used for iterative improvement of learning systems—Baker (2016) discusses
such techniques under the title “stupid tutoring systems, intelligent humans”, Aleven
et al. (2016) call this approach “design-loop adaptation”. Other closely related re-
search concerns the analysis of educational games; a common topic in this direction is
the analysis of level progression (Harpstead and Aleven, 2015; Hicks et al., 2016; Horn

et al., 2016).

Thantola et al. (2015) provide an overview of research concerning the application
of educational data mining techniques specifically for programming education. We
highlight specifically recent research related to introductory block-based programming.
Aivaloglou and Hermans (2016) performed an exploratory analysis of data collected
from Scratch (Resnick et al., 2009) and found that in an open-ended setting, most
students do not use programming abstraction concepts such as functions and exhibit
undesirable programming practices such as code duplication. Brown and Altadmri
(2014) reported that educators often do not agree on which are the most frequent
misconceptions of novice programmers and that the educators’ intuition usually does
not match the observations.

Piech et al. (2012) argue that it is necessary to explore not only the final submitted
program but also the student’s path towards the solution in order to reveal the stu-
dent’s misconceptions. They propose a data-driven approach for constructing a finite
state machine that describes a given programming problem, where the states corre-
spond to clusters of similar program snapshots. To cluster the program snapshots,
they use a similarity measure based on comparing snapshots’ abstract syntax trees
and sequences of function calls.

Grover and Basu (2017) developed block-based programming problems to examine
misconceptions. They found that even after successful completion of an introductory
programming course, middle school students do not understand well basic program-
ming concepts such as loops and variables. Grover et al. (2017) describe an iterative
process to develop block-based programming problems with evaluation rubrics to mea-
sure computational thinking skills, using detailed log data and even screen recordings.
Kelleher and Hnin (2019) analyzed which factors contribute to higher cognitive load
in block-based programming puzzles. For example, using methods that are not yet
familiar to the students increase the cognitive load, while locking some blocks in the
solution (so that the students cannot modify them) decrease the cognitive load. On
the other hand, the number of steps and attempts were not good predictors of the
cognitive load.

Several studies focus on the automatic generation of hints for introductory pro-
gramming problems from log data. To deal with the diversity of possible programs,
Lii et al. (2014) suggest using world-states (outcomes of the programs, e.g., a path
traversed by the robot) instead of code-states. Another strategy to reduce the vari-
ability of the collected programs is to canonize them (Rivers and Koedinger, 2017). To
compare hint generation algorithms, Price et al. (2019a) define a quality measure us-
ing an expert-annotated dataset with both block-based and text-based programming
problems.

3. Design of Block Programming Microworlds and Puzzles

In this section, we discuss the design of microworlds and puzzles for block-based pro-
gramming in general. In the next section, we illustrate the discussed general issues
using specific examples.

Our aim is to provide design “guidelines”, not “solutions”. We explicitly highlight
decisions that need to be made and list potential options. The specific choice of a
suitable option depends on the context of a particular application (e.g., the target
audience).

3.1. Goals

Before discussing the design guidelines, it is useful to explicitly formulate the goals we
want to achieve by using block-based programming microworlds and puzzles:

e To practice computational thinking (Shute et al., 2017), particularly problem-
solving skills and a “debugging approach” to solving problems.

e To introduce (demonstrate) basic concepts in programming, e.g., sequencing, the
importance of action order, repetition, conditional evaluation, variables.

e To motivate students to learn more about programming.

Notably, the goal of block-based programming puzzles is not to teach all intricacies
of real-life programming, but rather serve as a gentle introduction to programming.
As a consequence, we want to make the solution process enjoyable and interesting for
solvers, transferring most of the difficulties to designers. Authors of the microworld
and puzzles should do the hard work of creating a nice world and puzzles such that
they “want to be solved” and have an elegant solution, which may be nontrivial, but
should be within reach of a novice programmer. Such a combination can make the
solver feel powerful.

The above-stated goals are not, of course, universal. A specific application may
have slightly different goals and may differ in the weight given to individual goals.
Such differences may (and should) translate into design decisions.

3.2. Designing the Microworld

The design of a microworld is a balancing act—our aim is to find a suitable trade-
off between simplicity and complexity of the microworld. On the one hand, we want
to aim at simplicity. We do not try to teach everything, but a specific aspect well.
Therefore, it is useful to strip the microworld rules and the available commands to the
necessary minimum, so that the microworld is easily understandable even to complete
novices. At the same time, the microworld needs to have sufficient complexity to allow
interesting puzzles and the potential for the illustration of several computer science
concepts. Novelty is a key aspect in engagement (Lomas et al., 2017)—the microworld
should thus enable sufficiently many elements that can be (incrementally) introduced
to keep solvers engaged.

Since motivation is a key goal, the microworld should be attractive and intu-
itive. An important step to achieving this is the use of “naturally visible operations”
(Brusilovsky et al., 1997). This is most easily achieved with microworlds with the
following attributes:

e a two-dimensional world with an agent,

e the agent has coordinates x,y, direction, and potentially other attributes,

e the world can contain other objects (e.g., obstacles, treasures, other agents),

e the agent can detect some aspects of the world (e.g., other objects, background
color),

e the agent has movement actions and potentially other actions that modify the
world (e.g., pick, draw, shoot).

Figure 2 provides an illustration of two commonly used microworlds (which are also
discussed in more detail in the next section): a robot on a grid and turtle graphics.
Note that through the paper, we use simple, abstract symbols to depict microworlds
since our aim is to highlight similarities among different settings. Real applications

Robot on a grid Turtle graphics

> a |:| empty field
X XX @ token

= (0
o obstacle

|E| removable obstacle

|E| robot @ goal

Figure 2. Common microworlds: robot in grid, turtle graphics.

T, Y,

typically use much more concrete and elaborated graphics.

Many variations are, of course, possible. We can use other dimensionality of the
world. One dimensional world (e.g., moving along a street) is, however, hard to design
in such a way that it provides enough complexity for a sufficient number of interesting
puzzles and, at the same time, is intuitive and attractive. On the other hand, we can
go for a three-dimensional world (e.g., using obstacles of different height). A three-
dimensional world adds the possibility for a more attractive look of the microworlds.
For this reason, it is used in many current applications. However, it does not add
anything fundamental from the design point of view, and it has the disadvantage of
increasing the cognitive load of solvers by making the interface more complex. A two-
dimensional world seems like a good compromise between simplicity and complexity.

A natural extension of basic versions of microworlds is the addition of multiple
agents—these can be either “friends”, which have to be coordinated, or “enemies”,
which have to be defeated. This aspect introduces interesting principles both from the
computer science perspective (parallelism, coordination, communication) and from the
puzzle design perspective. Often it is also quite natural and intuitive.

3.3. Choosing Blocks and Block Menu

The design of the microworld is closely connected to the choice of available blocks and
the design of the block menu. The main choices concerning blocks and block menu
are: what blocks to use, how to display them, and how to organize them.

3.8.1. Content of Blocks
The basic types of commands (blocks) are the following:

(1) Elementary commands: basic actions in the microworlds like movement, drawing,
pick up, shooting.

(2) Basic control flow instructions: simple repetition (repeat k times), conditional
repetition (while), conditional execution (if, if-else).

(3) Additional programming concepts: variables (setting, changing, and using values),
functions (definition, call).

Elementary commands are clearly necessary—without them we would not be able
to use the microworld. It is possible to use only the elementary commands (e.g., for
simple puzzles involving only a sequence of actions in the microworld). However, to
provide meaningful practice of programming, we need to include also the basic control
flow instructions. Functions without parameters and return values can be still realized
rather easily, but for additional programming commands (variables, functions with

parameters), it is challenging to design the block-based programming interface to be
intuitive and easy to use—the use of variables in blocks is typically rather clumsy
compared to text-based programming. A microworld should offer enough interesting
puzzles even without these additional concepts. They can be included, but mainly as
an extension for interested students.

3.8.2. Form of Blocks

Blocks can be either textual or pictorial. Programs built with textual blocks closely re-
semble textual programs and are more common. Pictorial blocks have lower expressive
power, but they are sufficient for many puzzles and have several advantages: compact-
ness, attractiveness, and accessibility for pre-readers. A well-known environment that
uses pictorial blocks is ScratchJr (Flannery et al., 2013); in this environment, even
nontrivial concepts like message-passing are successfully expressed using blocks. The
transition between pictorial and textual blocks can be realized as a smooth transi-
tion®. The design of blocks also requires attention to user interface aspects—these are
discussed by Fraser (2015).

Block-based programming interfaces further differ in the way the individual blocks
are connected into a complete program. There are three common options:

e Predefined square-grid into which blocks are placed. This option provides clear
guidance on what to do to create a program but also is the most restrictive.

e Snapping blocks, the most common form of blocks, implemented, e.g., in Blockly
(Fraser, 2015) and Scratch (Resnick et al., 2009). In contrast to a predefined
square-grid, users can create arbitrarily nested programs.

e Mowing tiles, known from Parson’s puzzles (Parsons and Haden, 2006). Without
snapping, it is easier to move the blocks around and swap them; on the other
hand, nesting becomes less intuitive.

In addition to the trade-off between simplicity and flexibility, this choice affects how
convenient it will be to practice various programming concepts. In particular, as the
predefined square-grid does not allow for nested structures, trying to practice loops
with them would be rather cumbersome. On the other hand, using a grid with multiple
rows, one row per function, naturally forces students to think about a suitable function
decomposition.

3.3.3. Block Menu

We also need to decide how to present the available blocks to users. There are two
basic options:

e Flat block menu, i.e., all available blocks are shown. This approach is easy to use,
but it is feasible only with a small set of commands (approximately up to 10).

e Hierarchical block menu, i.e., blocks are sorted into categories. This approach
allows usage of a rich command set but leads to a slightly slower creation of
programs (more clicks necessary for the choice of a block). It can also increase
cognitive load as the solver needs to remember the location of blocks within the
menu. This risk can be mitigated by the use of a well-designed hierarchy.

1 As done, for example, in OzoBlockly, https://ozoblockly.com/.

3.8.4. Scaffolding Blocks

The scaffolding principle (Jumaat and Tasir, 2014) can be used in several ways with
respect to blocks. Introductory problem sets can be used with the flat block menu,
with only a limited set of commands available (to facilitate easy onboarding). Advanced
problem sets can use a full set of commands organized in the hierarchical block menu
(to allow sufficient complexity). It is also possible to use the scaffolding of blocks. For
example, we can introduce some actions in steps, increasing the flexibility with which
they can be used:

(1) Action with a fixed parameter (“turn right 90 degrees”).

(2) Action with a choice of a parameter from a limited set (“turn right [30/60/90]
degrees”).

(3) Action with a variable parameter (“turn right X degrees”, keyboard input of X).

3.4. Setting up Limits

An important element of block-based programming puzzles is the use of a limit on the
number of blocks. There are two main reasons for the use of limits:

e To enforce the use of more complex blocks (loops, conditions, functions) and
thus to force students to learn the programming concepts (instead of making
programs as a long sequence of elementary actions).

e To make problems more interesting and challenging and to increase the puzzle-
solving aspect.

These goals can also be achieved in other ways. We can require generalizability: the
created program should work in several settings (e.g., different initial positions of the
agent). This approach may even be pedagogically preferable to the use of limits, as it
is more closely connected to typical applications of programming beyond microworlds.
However, this approach leads to a more complex user interface and user interaction.
The use of limits is typically much simpler, mostly sufficient, and prevalent in current
block-based programming puzzles.
The basic idea of a “limit” can be realized in different ways:

e Hard limit: The user interface counts the blocks and does not allow users to
place more blocks than the limit.

e Soft limit: It is possible to finish the puzzle with more blocks than the limit; the
solver only gets feedback that the solution was not optimal.

e Implicit limit: Even in the absence of an explicit limit, there may be practical
implicit limits. When we use a block canvas without scrolling, the size of the
canvas automatically creates a limit on the number of blocks.

In the case of explicit limits, the limit may have different scopes. The basic type of
limit is on the total count of blocks. Other possibilities are limits on specific types of
blocks (e.g., “3 times movement, 2 times shooting, unlimited control blocks”) or limits
per functions (e.g., “each function can have at most 5 blocks”). It is also necessary to
choose what counts as a “unit” in counting the limit. Is an “if” block a single unit, or
do we also count blocks within the condition?

10

3.5. Creating and Sequencing Puzzle Sets

Once we have a microworld and set of puzzles, these puzzles can be presented to
students in a wide variety of ways, e.g., a fixed sequence of puzzles, a list of puzzles
from which a student (or teacher) can freely choose, or a choice of puzzles by an
adaptive algorithm which takes student performance into account. In all these cases,
it is useful to have the set of puzzles structured into homogeneous sets (often called
“levels”).

Puzzles within one level should be similar along many of the above-discussed design
aspects:

the use of the same blocks in the menu,

the use of same (or closely similar) microworld elements,

solutions requiring similar programming concepts,

similar difficulty,

similar tightness of limits on the number of blocks (none, loose, tight).

Even though there is the variability of the presentation modes, in all cases, it is
suitable to focus on the sequencing, both sequencing of levels and sequencing of puzzles
within levels. The sequencing should support scaffolding (Jumaat and Tasir, 2014) and
a suitable increase of difficulty to match the increase in skills of students (Nakamura
and Csikszentmihalyi, 2014; Schell, 2019). There are also other aspects worth taking
into account, e.g., variability and novelty (Lomas et al., 2017).

The creation of good puzzle sets and their sequencing is difficult. For the autho