BEEM: Benchmarks for Explicit Model Checkers

Radek Peldnek *

Department of Information Technologies, Faculty of Informatics
Masaryk University Brno, Czech Republic
xpelanek@fi.muni.cz

Abstract. We present BEEM — BEnchmarks for Explicit Model check-
ers. This benchmark set includes more than 50 parametrized models
(300 concrete instances) together with their correctness properties (both
safety and liveness). The benchmark set is accompanied by an compre-
hensive web portal, which provides detailed information about all models.
The web portal also includes information about state spaces and facilities
for selection of models for experiments.

The address of the web portal is http://anna.fi.muni.cz/models.

1 Introduction

The model checking field underwent a rapid development during last years. Sev-
eral new, sophisticated techniques have been developed, e.g., symbolic methods,
bounded model checking, or automatic abstraction refinement. However, for sev-
eral important application domains we cannot do much better than the basic
explicit model checking approach — brute force exhaustive state space search.
This technique is used by several of the most well-known model checkers (e.g.,
Spin, Murphi). The application scope of the explicit technique has been extended
significantly by progress in computer speed and algorithmic improvements and
many realistic case studies showed practical usability of the method. Even some
of the software model checkers (e.g., Java PathFinder, Zing) are based on the
explicit search.

There is also a significant body of research work devoted to the improve-
ment of explicit model checking. Unfortunately, many papers fail to convincingly
demonstrate the usefulness of newly presented techniques. In order to perform
high quality experimental evaluation, researchers need to have access to:

— tool in which they can implement model checking techniques,
— benchmark set of models which can be used for comparisons.

At the moment, there is a large number of model checking tools (see [4]),
but the availability of benchmark sets is rather poor. The aim of this work
is to contribute to the progress in this direction. We present BEEM — a new
benchmark set with a web portal.

* Partially supported by GA CR grant no. 201/07/P035.

This short paper presents the main rationale and design choices behind
BEEM. Detailed documentation is given in a technical report [10], which presents
description of the modeling language and used models, functionality and real-
ization of the web portal, and an example of an experimental application over
the set.

2 Experimental Work in Model Checking

In order to support the need for benchmarks, we present an evaluation of ex-
periments in model checking papers. We have used a sample of model checking
publications; experiments in each of these publications were classified into one
of the following five categories:

Q1 Random inputs or few toy models.

Q2 Several toy models (possibly parametrized) or few simple models.

Q3 Several simple models (possibly parametrized) or one large case study.

Q4 An exhaustive study of parametrized simple models or several case studies.
Q5 An exhaustive study with the use of several case studies.

Table 1. presents the quality of experiments in papers from our sample (de-
tailed description of the classification and list of all used papers and their clas-
sification is given in [10]). Although the classification is slightly subjective, it
is clear from Table 1. that there is nearly no progress in time towards higher
quality of used models. This is rather disappointing, because more and more
case studies are available. Low experimental standards make it hard to assess
newly proposed techniques; the practical impact of many techniques can be quite
different from claims made in publications. This obstructs the progress of the
research in the field. Clearly, a good benchmark set is missing.

The need for benchmarking, better experiments, and thorough evaluation of
tools and algorithms is well recognized, e.g., experimentation is a key part of
Hoare’s proposal for a “Grand Challenge of Verified Software” [6]. There is also
significant interest in benchmarks in the model checking community (see e.g.,
Corbett [3], Avrunin et al. [5], Atiya et al. [1], Jones et al. [8]). Nevertheless,

Table 1. Quality of experiments reported in model checking papers. We have used
a sample of 80 publications which are concerned with explicit model checking and
contain an experimental section (for details see [10]). For each quality category, we
report number of published papers in years 1994-2006.

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

QL - - 1 1 1 1 1 3 2 4 2 1 1
Q - - 3 3 2 3 3 1 2 2 2 1 -
Q - 2 1 3 1 2 2 1 3 2 2 4 1
Q4 1 - - - 1 - 1 4 1 1 2 - 2
QB - - - 1 - - - - 1 - 1 - -

the progress up to date has been rather slow. The main obstacle in developing
model checking benchmarks is the absence of a common modeling language —
each model checking tool is tailored towards its own modeling language and even
verification results over the same example are often incomparable.

Although the development of benchmarks is difficult and the model checking
community will probably never have a universal benchmark set, we should try
to build benchmarks as applicable as possible and steadily improve our experi-
mental analysis. This is the goal of this work.

3 BEEM

Modeling Language Models are implemented in a low-level modeling language
based on communicating extended finite state machines (DVE language, see [10]
for syntax and semantics). The adoption of a low-level language makes the man-
ual specification of models hard, but it has several advantages. The language has
a simple and straightforward semantics; it is not difficult to write own parser
and state generator. Models can be automatically translated into other modeling
languages — at the moment, the benchmark set includes also Promela models
which were automatically generated from DVE sources.

Models and Properties Most of the models are well-known examples and
case studies. Models span several different application areas (e.g., mutual ex-
clusion algorithms, communication protocols, controllers, leader election algo-
rithms, planning and scheduling, puzzles). In order to make the set organized,
models are classified into different types and categories. The benchmark set is
large and still growing (at the moment it contains 57 parametrized models with
300 specified instances). Source codes of all models are publicly available. Models
are briefly described and include pointers to sources (e.g., paper describing the
case study), i.e., BEEMalso serves as an information portal.

The benchmark set includes also correctness properties of models. Safety
properties are expressed as reachability of a predicate, liveness properties are
expressed in Linear temporal logic. Since an important part of model checking
is error detection, the benchmark set includes also models with errors (presence
of an error is a parameter of a model).

Tool Support The modeling language is supported by an extensible model
checking environment — The Distributed Verification Environment (DiVinE) [2].
DiVinE is both a model checking tool and a open and extensible library for a
development of model checking algorithms. Researchers can use this extensi-
ble environment to implement their own algorithms, easily perform experiments
over the benchmark set, and directly compare with other algorithms in DiVinE.
Promela models can be used for comparison with the well-known model checker
Spin [7].

model description Manually

MDVE XML crested
””””” \pr _e;;r(_)c:eén_r/__ N
model model
Promela DVE
Hat .
g&gig?e Automatically
generated
State
Space reachability
verification|
analyzator
summary R st. space verification
statistics statistics results
st.space |_ | model i
info info Web
interface
summary | _ | list of]
info instances

Fig. 1. Overview of the realization of the web portal. The user provides two files:
parametrized model and its description. All other information is automatically gener-
ated.

Web Portal The benchmark set is accompanied by an comprehensive web por-
tal, accessible at http://anna.fi.muni.cz/models, which facilitates the exper-
imental work. The web provides (see Fig 1. for overview of realization):

presentation of all information about models, their parameters, and correct-
ness properties,

— detailed information about properties of state spaces of models [9] including
summary information,

verification results,

web form for selection of suitable model instances according to a given cri-
teria,

— instance generator, which can generate both DVE models and Promela mod-
els for given parameter values.

All data can be downloaded. Since model descriptions are systematic (XML
file), it is easy to write own scripts for manipulation with models and automation
of experiments.

4

Summary

The aim of this paper is not to present “the ultimate benchmark set” but rather:

— to provide a ready-made set for those who want to compare different model

checking techniques and to facilitate experimental research,

— to encourage higher standards in model checking experiments,
— to stimulate the discussion about benchmarks in the model checking com-

munity.

Detailed description of the benchmarks set, example of an experimental appli-

cation, and direction for the future work can be found in the technical report [10].

Acknowledgement I thank Pavel Krc¢al and to members of the DiVinE group,
particularly Ivana Cernd, Pavel Simecek and Jifi Barnat, for collaboration, dis-
cussions, and feedback.

References

1.

10.

D. A. Atiya, N. Catano, and G. Liiettgen. Towards a benchmark for model check-
ers of asynchronous concurrent systems. In Fifth International Workshop on Au-
tomated Verification of Critical Systems: AVOCSs, University of Warwick, United
Kingdom, Sept. 12-13 2005.

J. Barnat, L. Brim, I. Cerns, P. Moravec, P. Rockai, and P. Simecek. Divine - a tool
for distributed verification. In Proc. of Computer Aided Verification (CAV’06),
volume 4144 of LNCS, pages 278-281. Springer, 2006. The tool is available at
http://anna.fi.muni.cz/divine.

J. C. Corbett. Evaluating deadlock detection methods for concurrent software.
IEEE Trans. Softw. Eng., 22(3):161-180, 1996.

J. Crhov4, P. Krédl, J. Strejéek, D. Safranek, and P. Simec¢ek. Yahoda: the database
of verification tools. In Proc. of TOOLSDAY affiliated to CONCUR 2002. F1 MU
report series, 2002. Accessible at http://anna.fi.muni.cz/yahoda/.

M. B. Dwyer G. S. Avrunin, J. C. Corbett. Benchmarking finite-state verifiers. In-
ternational Journal on Software Tools for Technology Transfer (STTT), 2(4):317—
320, 2000.

T. Hoare. The ideal of verified software. In Proc. of Computer Aided Verification
(CAV’06), volume 4144 of LNCS, pages 5-16. Springer, 2006.

G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

M. Jones, E. Mercer, T. Bao, R. Kumar, and P. Lamborn. Benchmarking explicit
state parallel model checkers. In Proc. of Workshop on Parallel and Distributed
Model Checking (PDMC’08), volume 89 of ENTCS. Elsevier, 2003.

R. Pelanek. Typical structural properties of state spaces. In Proc. of SPIN Work-
shop, volume 2989 of LNCS, pages 5—-22. Springer, 2004.

R. Pelanek. Web portal for benchmarking explicit model checkers. Technical
Report FIMU-RS-2006-03, Masaryk University Brno, 2006.

