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Abstract—Research in learning technologies is often focused
on optimizing some aspects of human learning. However, the
usefulness of practical learning environments is heavily influenced
by their weakest aspects, and, unfortunately, there are many
things that can go wrong in the learning process. We argue that
in many circumstances, it is more useful to focus on avoiding
stupidity rather than seeking optimality. To make this perspective
specific and actionable, we propose a definition of stupidity, a
taxonomy of undesirable behaviors of learning environments, and
an overview of data-driven techniques for finding defects. The
provided overview is directly applicable in the development of
learning environments and also provides inspiration for novel
research directions and novel applications of existing techniques.

Index Terms—Computer-aided instruction, student modeling,
defects, data-driven techniques.

I. INTRODUCTION

Today, artificial intelligence techniques are widely used to
support human learning. The focus, particularly of research
papers, is on optimizing the learning experience. This is,
however, very hard. Learning is a complex process, and it
is difficult to formulate clear, universal “best practices” in
education. At the same time, there are many things that can
go wrong, for example, lack of motivation, lack of trust, or
missing prior knowledge. For any teaching agent, human or
artificial, it is nontrivial to avoid all potential pitfalls. Thus,
we believe that in the development of learning environments,
it may be more useful to focus primarily on avoiding stupidity
rather than achieving intelligence.

Our aim is to make the avoiding stupidity perspective
actionable. To do so, we consider the inverted formulation
of the aims of a learning environment: What makes a poor
learning experience? How to thwart student learning? These
questions lead us to consider possible ways how learning envi-
ronments could fail. Once we carefully map potential defects
and undesirable behaviors of learning environments, we can
use automated techniques to detect them. We are specifically
interested in hidden defects that manifest themselves only
in specific parts of the system or only for some subset of
students. Such defects cannot be reliably detected by simple
testing of the system. However, learning environments collect
extensive data, and it is possible to use data-driven techniques
to uncover these defects. The main focus of this work is thus
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on the iterative improvement rather than the initial design of
a learning environment.

We focus on detecting behaviors that are clearly wrong or
missing behaviors that are clearly missed opportunities. Ex-
amples of clearly wrong behaviors are accepting an incorrect
answer with praising feedback, assigning items that are too
difficult for a student, or showing a feedback message that is
not appropriate for the target audience of the learning environ-
ment. An example of missed opportunity is a situation where
some content is inadvertently inactive or hard to find, and thus
a simple change of navigation may have a nontrivial positive
impact. Another example is a missing feedback message for
a very common error, particularly when other, less common
errors have feedback messages.

In an idealized setting, a learning environment that is
presented to students does not contain any defects. We would
like to avoid problems by good, research-based design and
to find all remaining problems by testing before shipping
the product to users. However, when we take into account
real-world constraints, such an approach is not necessarily
optimal. The development of an error-free system and con-
tent is very expensive. With a limited budget, we face the
choice between developing a very well-designed and well-
tested environment with limited functionality and content and
developing an environment with rich functionality and wide
content, which, however, may contain some defects. This is,
of course, not a binary choice but a choice along a continuous
spectrum. The appropriate choice depends on the setting. For
example, a different choice is suitable for a project for teaching
mathematics in English (which can potentially have a very
large audience and project budget) and a learning environment
for a specialized topic in a language with a small number
of native speakers (which necessarily has a small budget). In
many settings, it is more rational to aim at an environment
with wider coverage and to systematically employ methods
for the detection of defects.

The main aim of this work is to highlight the perspective
of avoiding stupidity in the context of the development of
learning environments and to make this perspective actionable.
We focus on learning environments that provide students with
practice opportunities and collect data on student performance
(which can be used for automated detection of defects). We
clearly distinguish among defects, undesirable behaviors of
learning environments, and their negative effects on students.
We discuss the main types of these negative effects and
propose a taxonomy of undesirable system behaviors. We
focus on hidden defects and provide an overview of data-
driven techniques for finding them, together with specific ex-
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amples. The presented taxonomy and overview of techniques
can serve as a useful tool in the practical development of
learning environments. For researchers, it provides impulses
for the development of new techniques for the detection of
defects and inspiration for the reinterpretation of some existing
techniques. For example, student modeling techniques are
typically motivated by the need to provide adaptive instruction;
our discussion shows that they may also be useful for defect
detection.

II. OUR APPROACH TO AVOIDING STUPIDITY

We start by providing an overall overview of the approach
that we propose. We define what we exactly mean by the
term stupidity and discuss the distinction between stupidity as
a system action and its effects on students. We also describe
methods that we used to reach specific lists of defects and their
negative effects, which are then described in the following
sections.

A. Defining Stupidity

In order to make the avoiding stupidity perspective action-
able, we need to clarify what we are actually trying to avoid.
We define stupidity as a behavior of a learning environment
that is clearly wrong or missing behavior that is clearly a
missed opportunity. Behavior is any system action that is
visible from the student’s perspective; missing behavior is an
unperformed action. Wrong means “negatively impacting long-
term learning.” This negative impact can be caused in different
ways, for example, by undermining motivation, trust, or the
effectiveness of learning. A missed opportunity is an action
that would significantly improve long-term learning at a low
cost.

A key part of the definition is clearly. Long term impact of
actions in a learning environment is often hard to establish. We
are interested in behaviors that are clearly wrong (or clearly
a missed opportunity) once detected; that is, once the specific
aspect of system behavior is highlighted, most human experts
would agree that it is problematic. Additionally, it should be
quite clear what type of action to take to correct it. That does
not mean that stupidities are trivial mistakes or that people who
caused them are stupid. The clear aspect of stupidities often
involves the use of hindsight bias. For example, once experts
are shown difficulty statistics for items, they can clearly see
problems that they would miss without these statistics [|1].

The term stupidity, even when technically defined as above,
may be perceived pejoratively. In the following, we thus use
the term undesirable behavior as a synonym for stupidity in
the above-given sense.

B. Defects, Undesirable Behaviors, and Their Effects

In the discussion of deficiencies of learning environments,
it is useful to clearly distinguish system actions and student
reactions (effects of the action). It is easy to conflate them,
especially with ambiguous terms like “demotivation,” which
can be used to describe both a system action (e.g., assigning
a too difficult task) and the student reaction (e.g., frustration
and decreased self-confidence).

The undesirable behaviors, which we aim to describe and
detect, are performed by the system. These behaviors are
wrong insofar as they have negative effects on the students—
these negative effects are the reasons why certain actions
are wrong. In most cases, we cannot use these negative
effects to detect defects directly. Most of them are compli-
cated psychological constructs. They can manifest themself
only after a long time, often as a cumulative reaction to
multiple actions with nontrivial interaction with the student’s
particular situation. For example, presenting repetitive items
may contribute to disinterest, but if the student is just doing
assigned homework in the learning environment, the disinterest
may only manifest in the student’s decisions outside the
environment.

To clearly distinguish between causes and effects, it is
useful to consider terminology used in software engineering
for describing software anomalies. The IEEE standard [2]]
distinguishes defects, failures, and problems. A defect is a
specific deficiency of a product (e.g., a mistake in the code). A
defect can cause a failure, which is an event when a product
does not perform required actions. A failure typically leads
to a problem, which is a negative situation experienced by
people using the product. We utilize this approach, using the
term undesirable behavior instead of failureﬂ Also, instead
of the generic term problem, we use the more specific phrase
negative effect on students.

Fig. [I] shows a diagram that depicts the causal relations be-
tween defects, undesirable behaviors of learning environments,
and negative effects on students. Defects are specific problems
in the realization of the learning environment (e.g., texts
of tasks, parameter settings, implementations of algorithms).
These defects manifest themselves as observable undesirable
behaviors of the system, having a direct impact on students’ af-
fect and cognition processes. These direct impacts are typically
unobservable; cumulatively, they lead to potentially long-term
changes in student state (demotivation, incompetence). In the
end, they result in observable behavior of students: nonuse,
misuse, or poor performance.

The figure is, of course, simplified. We do not claim that it
is a complete depiction of all negative consequences and their
relations. The main aim of the figure is to clarify the main
notions and to provide guidance in our search for defects that
can be corrected.

In the following sections, we discuss the elements in this
figure in more detail. Section [lII| provides a discussion of the
negative effects on students and their relations. Section
provides a detailed taxonomy of undesirable behaviors, that is,
the specific system actions that cause these negative effects.

C. Related Work

Our approach in this work is unique in the attempt to
explicitly define the notion of stupidity. The overall perspec-
tive, however, is closely connected to several other threads
in the current research. One class of related research is the

'As opposed to many other software systems, learning environments
typically do not have a clear specification since learning is hard to formally
specify. Without clear specification, it is too strong to use the term “failure.”
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Fig. 1. Overview of the avoiding stupidity perspective to improving learning environments.

design loop adaptivity (3] and closing the loop studies [4].
These works are typically formulated in terms of “improving”
learning environments rather than finding stupidities but share
the aspect of identifying a weak spot of a system and changing
it. The data-driven detection of defects can be seen as a special
case of human-in-the-loop and intelligence augmentation |J3].
A specific proposal for the use of intelligence amplification in
the development of learning environments is Baker’s proposal
for “Stupid tutoring system, intelligent humans” [|6]. Baker
uses “stupid” mostly as a synonym for “simple,” whereas we
use “stupidity” to denote mistakes, so the specific focus of
our work differs. However, there is high-level agreement on
intelligence amplification and the use of many simple tech-
niques (rather than one complex one). In the closely related
field of recommender systems, McNee et al. [7] formulated
the “don’t look stupid” principle—the importance of avoiding
poor recommendations that can undermine user trust in the
recommender system.

From an engineering perspective, the focus on stupidities is
related to the focus on the weakest link. A specific example
in education is the “What’s most broken?” study [8]. In
software engineering, there is traditionally a strong focus on
debugging and testing—accepting the reality that people make
mistakes and developing systematic techniques for finding
these mistakes [9]].

D. Method

In the following sections, we provide overviews of specific
negative effects, undesirable behaviors, defects, and methods
for detecting them. These issues are covered in the literature
under many names, often just as a sidenote in research papers
that primarily focus on different topics. It is thus not feasible
to perform a systematic review based on keyword search.
Instead, we used an iterative process to construct the presented
overviews. This process involved several interconnected steps:

o We started with our own extensive experience with the
development of learning environments, cataloging spe-
cific problems that we have encountered and techniques
that we have used for their detection.

o We identified classic pedagogical works relevant to the
development of learning environments and used the in-
verted approach, that is, formulation of violations of
established pedagogical principles.

o We performed manual clustering of similar undesirable
behaviors. For identified clusters, we tried to formulate
additional similar undesirable behaviors.

o For drafted formulations of undesirable behaviors, we
searched for research works that address the specific
issues.

e We considered techniques widely used in educational
data mining and artificial intelligence in education (e.g.,
student modeling) and tried to find their uses for the
detection of defects and undesirable behaviors.

The core focus of the process was the taxonomy of undesirable
behaviors, which is presented in Table[l, We performed several
iterations of the above-given steps during which we refined the
taxonomy.

III. NEGATIVE EFFECTS ON STUDENTS

In this section, we describe the negative effects and re-
lationships among them. Having a good mental model of
the negative effects expands our notion of “clearly wrong,”
helping us more accurately judge which system actions are
likely to cause which negative effects, including the indirect
and unobservable ones. As this is a vast and complex topic,
we necessarily need to greatly simplify the matter. We provide
pointers to the relevant literature that offers a deeper coverage.

The literature is also helpful in identifying possible
problems—actions that were previously demonstrated to cause
these negative effects. Frequently, it is useful to take an
inverted formulation of previous research results, that is, to
think about how we can break the recommendations or which
actions could cause a given negative effect.

We gradually build a terminology to label various effects
(and groups of effects), attempting to clearly distinguish
between actions and effects. This separation facilitates clearer
thinking about undesirable behaviors of systems and students
and guides the creation of the taxonomy by grouping un-
desirable behaviors with similar effects. A shared concise
vocabulary also streamlines the discussion in the next chapter.

A. Distrust

Distrust refers to not believing that the system is a good
tutor. It is a negative affect towards the learning environment
and demotivates using it.



1) Causes: Wang [10] suggests several behaviors that could
undermine trust in learning environments: privacy and security
violations, unreliable access, unusability of user interface, and
poor quality of learning materials. Research from real class-
rooms gives further inspiration for other negative behaviors.
The results differ widely depending on the context, but there
are a few frequently reported teachers’ misbehaviors: confus-
ing or boring lectures, unfair assessment, poorly organized
materials, and teacher’s condescending or indifferent attitude
toward students, for example, insulting them, treating them
like children, and not answering their questions [[11]], [12].

2) Consequences: In real classrooms, distrust in the
teacher’s competence has been repeatedly identified as one
of the main sources of demotivation [11], [12]. Similar
consequences are likely in learning environments as well,
most critically for students with disabilities [10]. Baker et
al. |13] demonstrated that distrust can lead to gaming the
system, a form of misuse. In the related field of recommender
systems, trust is considered a critical property, especially for
the retention of new users [14], [[15]]. Indeed, showing just one
nonsensical recommendation can lead to distrust in the system
even if the other recommendations are perfect [7].

B. Disinterest

Disinterest refers to not believing that engaging would be
enjoyable. It is a negative affect towards a certain activity
or topic, and it reduces intrinsic motivation to engage in the
activity or learn the topic [16]. From the stupidity perspective,
it is useful to distinguish between personal and situational
interest [[17]]. Personal interest is much more stable, takes a lot
of time to develop [18]], and is unlikely to be undermined by
a single undesirable behavior. Situational interest, in contrast,
is fleeting and highly impacted by the features of the specific
activity.

1) Causes: Disinterest is caused by a lack of challenge,
novelty, or choice [16]. Several studies looked specifically at
features of educational texts [19]], [20]. An anti-problem view
of their findings suggests that situational disinterest can be
promoted by poorly organized, incoherent, vague, dull texts,
which are irrelevant or insufficient for the task at hand. These
findings are supported by studies in real classrooms; students
often report uninteresting materials and monotonous activities
as demotivators [21]]—[23]].

Similar to the situational interest is the concept of flow [24].
These two constructs highly correlate [25], and flow can be
viewed as a more extreme version of the interest [26]]. The
flow theory suggests three ways to reduce interest: unclear
goal, inappropriate difficulty, and insufficient feedback.

Malone created a taxonomy of features that promote intrin-
sic motivation in learning environments [[27]]. In addition to the
explicit goal, appropriate challenge, and frequent performance
feedback, the taxonomy also lists the appropriate level of
control, support of sensory and cognitive curiosity, endogenous
story related to the practiced topic, social recognition, and
an option to compete or cooperate. Similar taxonomies of
motivating features can be found in gamification literature
[28]. As noted by Malone, it is not necessary—and possibly

even not desirable—to incorporate all motivating features into
a single activity. One missing motivating feature is not an
issue; their complete omission is undesirable.

2) Consequences: Situational interest supports attention,
persistence, and motivation [[16]] and is even related to the qual-
ity of learning and deep understanding [[17]], [[18]. Omission of
features that elicit situational interest is especially problematic
for novices and low-performing students [18]], [26].

C. Frustration

Frustration refers to not believing that mastery of the topic
is achievable. It is a negative affect targeted mostly towards
the students themselves.

1) Causes: According to flow theory [24]], a general cause
of frustration is an excessive difficulty, which results in an
unproductive effort, failure, and feedback about one’s incom-
petence. Not all failures are frustrating, and some are useful
for long-term learning [29]. But some failures are unproductive
and frustrating; these may be caused by unclear instructions
[11], [30] or insufficient guidance [31]. Other failures are
productive but unnecessarily frustrating; these might be caused
by comparison to better students or inappropriately harsh
evaluation criteria (e.g., when a student does not receive any
credit for a multi-step item after a single mistake).

2) Consequences: Frustrating experiences are accompanied
by negative emotions and lower self-confidence, especially for
beginners [21]]. In extreme cases, they can even lead to learned
helplessness. The behavioral consequence of frustration may
be nonuse since students avoid potential failures to protect
their self-worth by not even trying [32]). If the students have to
use the system, frustration can lead to misuse, such as gaming
the system [[13]].

D. Ineffective Learning

Learning is ineffective when the learning goal is inappro-
priate. In contrast to the distrust, disinterest, and frustration,
the problem here is not in missing motivation but in the
misdirected effort. Students might even experience positive
emotions but at the cost of actual learning.

1) Causes: An extreme case of ineffective learning is
delivering false information (e.g., factual errors in learning
materials or wrong “correct answers”’). More subtle is missing
feedback, which can also contribute to misconceptions and
overconfidence [33]]. A less severe case is not learning some-
thing important about the topic, either because it is missing
in the learning materials or possibly because mastery was
declared too early. Or the coverage is sufficient, but the depth
is not; for example, only simple recognition is practiced,
not any higher-level skills. Ineffective learning also includes
spending time on a topic that the student already knows well.
This can happen due to misdirected gamification. For example,
when the learning environment rewards students for solving
tasks even when they are trivial for them.

2) Consequences: Some forms of ineffective learning pro-
mote misconceptions. However, ineffective learning does not
always lead to outright false knowledge; knowledge that is
incomplete, shallow, or fragile is often the case. Ineffective



learning can also contribute to the illusion of knowledge, that
is, students thinking they are competent while they are not
(34].

Specific negative consequences are associated with shallow
gamification. Gamification typically increases engagement—at
least initially—but can lead to addiction, excessive competi-
tion, and off-task behavior [35]. Shallow gamification can even
harm intrinsic motivation, especially when the gamification
is perceived as controlling and when the topic was initially
perceived as interesting [36].

E. Inefficient Learning

Learning is inefficient when the pace of learning is much
lower than it could be. The difference between ineffective
and inefficient learning is analogous to the difference between
going in the wrong direction (ineffectivity) and going in the
right direction but extremely slowly (inefficiency).

1) Causes: Three major sources of inefficiency are in-
appropriate difficulty (or level of guidance), inappropriate
instructional method, and inappropriate feedback.

Cognitive load theory [37] explains how inappropriate diffi-
culty leads to inefficient learning. Cognitive load has three
components: (1) extraneous cognitive load, that is, effort
unrelated to the learned topic, typically caused by the way
the task is presented, (2) intrinsic cognitive load caused by
the inherent complexity of the task, and (3) germane cognitive
load, which is the effort caused by learning processes. Since
the working memory is limited [38]], [[39]], the extraneous and
intrinsic load together can deplete it, not leaving any capacity
for learning.

A crucial consequence is that minimally guided instruction
is less efficient than more guided instruction unless the learners
are sufficiently advanced to guide themself [31]. Without
sufficient guidance and with all the mental effort focused
on searching for a solution instead of learning, the students
develop incomplete, disorganized, and sometimes even false
knowledge.

That does not mean that we should strive for effortless
learning. Germane cognitive load cannot emerge in a vacuum;
it requires sufficient task complexity and associated intrinsic
cognitive load. If the activity is so easy that the student does
not need to exert effort, little learning will happen [40], [41]].
Constructive activities (e.g., problem-solving) lead to better
learning outcomes than passive engagement (e.g., watching a
lecture) [42].

Inefficient learning can also be caused by an instructional
method that is not suited for the given kind of knowledge.
According to the Knowledge-Learning-Instruction framework
[43], two key aspects are the complexity of the elicited
learning process, which can range from simple (memory
building) to complex (understanding), and the complexity of
the knowledge, which can also range from simple (facts) to
complex (principles). Instructional methods that elicit more
complex learning processes are inefficient to teach less com-
plex knowledge. For instance, self-explanation is an inefficient
way to learn basic facts.

The third common source of inefficiency is inappropriate
feedback [33]]. The issue is not just missing feedback; equally

unhelpful is feedback that is irrelevant, confusing, or not
understandable [44].

2) Consequences: In addition to the obvious immediate
consequences on students’ competence, inefficient learning
can also negatively impact motivation. If the students are aware
of the inefficiency and attribute it to the system, it can cause
distrust and possibly abandonment. If the students attribute the
inefficiency to themself, it can cause frustration (i.e., the belief
that they are not able to learn the topic).

F. Demotivation and Incompetence

The effects discussed so far are immediate mental processes
caused by system actions. These affective and cognitive pro-
cesses can lead to the two key negative, potentially long-
term states: demotivation and incompetence. These two states
are the basic reason why we care about undesirable system
behaviors.

Demotivation refers to decreased intention to engage in
a certain activity. Demotivation to use the system can be
caused directly by distrust in the system or indirectly through
demotivation to learn. Demotivation to learn is caused either
by disinterest or frustration. Disinterested students do not want
to learn the topic, while frustrated students do not believe that
they are able to learn it.

Research on demotivation in classrooms is abundant [[11],
[12], [21], [23], [30], [45]. The results vary greatly depending
on the specific context, but there are a few factors that are
frequently reported as demotivating. All of them can be linked
with the discussed negative affects: poorly organized materials,
unfairness, and condescending or indifferent attitude cause
distrust; monotonous learning activities, uninteresting mate-
rials, and irrelevant assignments cause disinterest; and unclear
instructions, excessive difficulty, and frustrating failures cause
frustration.

Incompetence—the other negative state—is a lack of
durable and flexible knowledge. We use “knowledge” in
a broad sense that includes memorized facts, nonverbaliz-
able skills, understanding principles, and even meta-cognitive
knowledge. Durability (long-term retention) is violated if the
knowledge is soon forgotten; flexibility (transfer) is violated if
the student is not able to apply the knowledge in new contexts.

Incompetence is the result of ineffective or inefficient
learning—or no learning at all. Many authors do not use the
term “competence” and instead specify the desired type of
learning that leads to the competence as we have defined it
(e.g., “long-term learning” [46]] or “robust learning” [43]]).

G. Nonuse, Misuse, and Poor Performance

Finally, the negative mental processes and states, which are
not directly observable, lead to student behaviors that we can
observe: nonuse, misuse, and poor performance.

When not being used, the learning environment does not
contribute to learning, no matter how adaptive and intelligent it
is. Nonuse does not have to be complete abandonment; partial
nonuse is frequently the case. Nonuse can be mediated through
other mental processes and states (e.g., distrust, demotivation),
but it can also be a direct consequence of system actions. For



example, a student might not use a particular learning content
because it does not render properly.

If the students are not motivated to use the learning envi-
ronment but are forced to do so, they will misuse it. Misuse
can take many forms, such as cheating [47], guessing [48]],
wheel spinning [49]], excessive help-seeking [50], and other
gaming-the-system behaviors [[13]]. Misuse is associated with
negative affect [[13] and worse learning [50].

Poor performance is an indicator of incompetence, but it can
be as misleading as it is helpful. Performance is fluctuating
and it is not a reliable way to assess competence during the
learning or soon after [46]. In their excellent review of coun-
terintuitive interactions between learning and performance,
Soderstrom and Bjork warn that: “Conditions that appear to
degrade acquisition performance are often the very conditions
that yield the most durable and flexible learning.” [46]

IV. TAXONOMY OF STUPIDITIES: THE UNDESIRABLE
BEHAVIORS OF LEARNING ENVIRONMENTS

Table [I] provides our proposal of the taxonomy of undesir-
able behaviors and a brief description of individual instances.
In the discussion below, we focus on aspects common to all
behaviors in each group.

A. Unusability

Usability is not specific to learning environments and thus
does not get much attention in adaptive learning research.
However, it is a key practical issue. As in other software
systems, poor usability leads to distrust and abandonment of
the learning environment. Several studies have highlighted
the importance of usability in learning environments; for
example, one of the recommendations for the development
of adaptive learning environments is “Do not underestimate
the importance of usability, flexibility, and scalability” [51]].
Woolf [52] argues that measuring usability should be a part
of the evaluation of learning environments.

Table [I] lists specific usability problems that can easily hap-
pen in a learning environment, such as response and navigation
issues [8] and ignoring common vision deficiencies. Usability
is best investigated through user studies, but specific, hidden
unusability problems can also be detected from data. They can
manifest as outliers in student activity; for example, if part of
the question does not render properly, the consequence may
be an unexpectedly low number of responses.

B. Presenting Deficient Content

Basic content errors, like grammatical mistakes and factual
errors, are again not specific to learning environments. As in
other settings, they lead to distrust in the system. In learning
environments, however, such mistakes are even more important
since they can also hamper learning by causing misconceptions
and the illusion of knowledge.

Basic techniques for detecting deficient content are not
specific to learning environments (spell-checkers, feedback
from users). Specific methods may be useful for detecting
missing content, for example, by finding discrepancies be-
tween instructional texts and interactive items, by comparison

with a textbook, or by detecting missing recombinations of
concepts.

A typical example of a hidden problem that can be easily
detected in data is the wrong answer. Having incorrectly
set which answer is correct often manifests as an outlier in
difficulty. A more subtle situation is when the system does
not accept valid alternatives in exercises with a constructed
response (e.g., alternative translation in language learning or
alternative way of writing a decimal number in mathematics).
This problem can happen particularly easily for hand-written
answers [8] or when the questions are created by students [51]].

C. Insufficient Difficulty

Now, we get to undesirable behaviors that are specific to
learning environments. The first one is an insufficient diffi-
culty. Insufficient difficulty leads to boredom and disinterest
but also to inefficient learning, as discussed in Section
The issue of the proper choice of difficulty is complex. There
is no clear boundary between “too easy” and “appropriate”
difficulty, and there may be interactions with other elements
like choice, novelty, and suspense [53].

As an undesirable behavior, we consider cases where it is
evident that the task is too easy for the student and leads to
boredom, disinterest, or learning inefficiency. Some items can
be too easy for most students, for example, due to excessive
scaffolding [54]]. More frequently, an item would be too
easy only for some students; the undesirability stems from
ignoring evidence of prior knowledge (e.g., recommending
basic addition to a student who has already solved exercise
on logarithms). Another common problem is repetitiveness—
due to a low number of available items, the system presents
students repeatedly with the same items, which makes them
too easy and boring. A specific type of repetitiveness is caused
by the failure of the system to recognize student mastery—
for example, because of a wrong parametrization of a mastery
criterion [55]—which leads to overpractice.

Insufficient difficulty can be detected, for example, by
difficulty analysis (too high success rate of items) and by
analysis of student activity (repeated answers for the same
item in a short time).

D. Undesirable Difficulty

An opposite problem to insufficient difficulty is undesirable
difficulty—cases where the difficulty of learning materials
is too high. Undesirable difficulty leads to frustration and
inefficient learning, as discussed in Section m

As already mentioned, the issue of appropriate difficulty
is complex. There are many desirable difficulties that lead to
better long-term learning [40]]. We again consider cases where
the difficulties are clearly undesirable, for example, when the
goal is unclear or when the task requires many tedious and
monotonous steps to complete. Table [[] gives other examples.

Whether a difficulty is appropriate is often connected to the
type of cognitive load [56] (intrinsic, extraneous, germane).
Extraneous complexity is quite a clear source of undesirable
difficulty, but excessive intrinsic cognitive load is more subtle.
It interacts with limits of working memory, and these are



TABLE I

TAXONOMY OF STUPIDITIES: THE UNDESIRABLE BEHAVIORS OF LEARNING ENVIRONMENTS

Unusability

no response
slow response

confusing interface

superfluous actions

exclusion

poor organization

Not responding to a student’s request (e.g., a chosen task does not display due to a technical bug).
Responding too slowly to student’s actions.

Providing a user interface that is confusing, so that it is not clear how to perform actions towards a goal, or the actions
are nonintuitive.

Requiring redundant or repetitive actions in order to learn (e.g., an additional click after each item to display feedback).

Assigning a task that the student cannot solve due to a disability (e.g., vision deficiency) or a technical limitation (e.g.,
working on a tablet without a mouse).

Presenting incoherent organization of learning materials so that some topics are difficult to find.

Presenting deficient content

text mistake
factual error
wrong answer
content mismatch
missing content
inferior texts

inferior media

Displaying content with grammatical mistakes and misspelled words.

Displaying wrong information in learning materials.

Showing a wrong answer as correct or not accepting a valid correct answer (e.g., an alternative formulation).
Showing a wrong learning resource (e.g., an explanation for another item).

Omitting critical parts of some topic.

Displaying poorly written learning materials or questions (e.g., vague, unclear, incoherent, or dull).

Presenting poor-quality or highly inconsistent images, audio, video, or simulations.

Insufficient difficulty

insufficient complexity
ignoring knowledge
repetitiveness

unrecognized mastery

Assigning a task that is too easy due to its internal structure or excessive scaffolding.
Assigning a task that is too easy due to prior knowledge (e.g., recommending basic addition to an adult).
Repeatedly presenting the same or very similar items (e.g., because there are few items in a problem set).

Forcing the student to solve too many items on the same topic (overpractice).

Undesirable difficulty

extraneous complexity
excessive complexity
ignoring prerequisites
excessive laboriousness
steep curve

unclear goal

harsh assessment

Presenting a task in such a way that it generates unnecessary extraneous cognitive load.

Assigning a task that is too difficult due to its internal structure.

Assigning a task that the student cannot solve due to missing prerequisites or insufficient fluency in prerequisites.
Assigning a tedious task that requires many trivial and monotonous steps to complete.

Presenting items in a sequence where the difficulty is increasing too quickly.

Presenting tasks in such a way that the goal not clear, so the student does not know how to proceed.

Using too harsh evaluation criteria (e.g., no credit for multi-step item with just one mistake), which leads students to
perceive their performance as insufficient even when the given task was of suitable difficulty.

Ineffective teaching strategy

misdirected gamification

premature mastery declara-

tion

shallow teaching
massed instruction
inappropriate
recommendations

noninteractivity

Rewarding irrelevant activities (e.g., solving too easy tasks) or encouraging excessive off-task behavior (e.g., tuning
avatar appearance).

Declaring mastery too early and proposing students to solve more complex topics (underpractice).
Teaching only recall and recognition, not integration and higher-level skills.
Promoting cramming and not supporting spaced repetition and interleaving of topics.

Recommending activities that are clearly inappropriate for a particular student.

Presenting students information without giving them an opportunity to practice.

Inappropriate feedback

misleading feedback

missing feedback
unhelpful feedback

Giving feedback that reinforces misconceptions (e.g., rewarding students for a low-quality solution or “correct answer
for the wrong reason”).

Not giving feedback on performance.

Giving feedback that is inappropriate for the target audience or performed mistake.




related to fluency in prerequisite knowledge. So the presented
types of undesirable difficulties can overlap.

The main tool to detect these undesirable behaviors is the
analysis of item difficulty (e.g., visualization of difficulty
distribution and detection of outliers).

E. Ineffective Teaching Strategy

By teaching strategy (also called instructional method), we
denote the approach that the learning environment uses to
select topics and tasks that are presented to students and the
specific form of their presentation. Some teaching strategies
are ineffective (i.e., they cause students to spend time on in-
appropriate activities). As opposed to previous cases, students
may feel good and have a positive impression about their
learning, but their knowledge is incomplete, shallow, or fragile,
and the students develop an illusion of knowledge.

One source of this illusion can be gamification, which can
lead to unforeseen and undesirable effects. For example, it can
motivate students to maximize some type of activity—such
as collecting coins by solving easy exercises—which is not
in the interest of their learning. Possible undesirable effects
of gamification include addiction, excessive competition, and
off-task behavior [35]].

Underpractice is a problem when a system declares mastery
too early [55] and students move to more advanced topics
before they have sufficiently mastered the current one. Under-
practice can often manifest itself later as undesirable difficulty,
but we want to address the root cause, which is the premature
mastery declaration.

Shallow teaching, massed instruction, and noninteractivity
involve ignoring desirable difficulties [40] that are known to
improve learning in the long term, such as spaced repetition
and interleaving. They differ from the other undesirable be-
haviors in the insufficient difficulty category in the way they
are perceived by students—the ineffective teaching strategies
typically do not cause negative affect and they do lead to
the illusion of knowledge. Employing more effective teaching
strategies involves nontrivial trade-offs—materials that support
deeper and more active learning may be costly to develop. As
an undesirable behavior, we consider cases where the learning
environment already uses the effective strategies for some
topics, yet there is a topic that is taught ineffectively, and
it would be relatively easy to change (e.g., to create items to
practice the topic).

This type of undesirable behavior can be detected mostly
from student activity data—particularly analyzing the portion
of time spent in different types of activities.

F. Inappropriate Feedback

Feedback is a key aspect of learning and poor feedback
degrades the efficiency of learning [44].

The basic form of feedback is the information about the
correctness of answers. Even when this feedback is factually
correct, it can be misleading. If a student gives a correct
answer for a wrong reason and the system provides only a
confirmation of correctness, the student may fixate a miscon-
ception. As a specific case, consider a real situation from our

experience: a comparison of fractions. Suppose that we create
a set of easy examples as a warm-up exercise and we create
this set mechanically by choosing top N examples with the
highest success rate. We may end up with examples where
the ordering of the two fractions is the same as the ordering
of their nominators—which is a common but wrong belief.
Letting students practice on such a set would just strengthen
this wrong misconception. Such cases are tricky to detect
automatically; they call for a more complex analysis with the
use of student modeling techniques.

Another common type of feedback is the use of explanations
after answers. In this case, the basic type of undesirable behav-
ior is simply “missing feedback™ (i.e., a missed opportunity).
Using data on student activity, it is easy to detect cases where
students often answer incorrectly and feedback is missing.
These cases are natural candidates for the extension of content.

More complicated to detect is “unhelpful feedback”—cases
where feedback message is available but inappropriate; for
example, it is too complex for the target audience, does not
clearly explain the reasoning behind the correct answer, or
does not address the reason for typical mistakes. Detection
of this type of problem requires a more detailed analysis of
answers and feedback content.

V. DETECTING DEFECTS AND UNDESIRABLE BEHAVIORS

Our focus is on hidden defects that can be detected using
data-driven techniques. In this section, we provide an overview
of such techniques. We discuss mainly the general ideas behind
them: what input they take, what do they try to achieve, what
output they provide.

We sort techniques based on common concepts they utilize
(complexity, similarity, difficulty, student modeling). Fig.
provides an overview of used data, discussed techniques, and
their relations. These techniques were typically developed for
other purposes but often can be naturally employed for the
detection of defects.

individual items
and explanations

complexity measures

domain model,

similarity measures
meta-data

answer correctness difficulty analysis
specific answer
response time
timestamp student modeling
specific sensors

activity (click, activity analysis
open, watch)

Fig. 2. Overview of data sources used by different types of techniques.

Fig. B]illustrates several possible visualizations of the results
of data analysis techniques. The graphs are based on real
experiences with the development of an adaptive learning
environment Umime (umimeto.org), which is used by
10 % Czech schools and contains a thousand knowledge



components and a hundred thousand items. The graphs do not,
however, depict real data. For presentation clarity, the data and
presentation are simplified to illustrate multiple techniques and
issues in a compact space. In the discussion below, we provide
more details on specific examples from our experience and
also references to literature.

A. Complexity Measures

Complexity is an intrinsic item characteristic, which aggre-
gates item aspects that influence how students solve the item;
complexity measure is specific quantification of complexity
[57]. Complexity measures are computed based only on con-
tent data; they do not use data on student performance.

Typical examples of complexity measures are readability
measures for text [[58|], which are relevant for many educational
domains. For detecting defects in educational items, it may be
useful to use age-of-acquisition ratings of words [59] to detect
the usage of vocabulary inappropriate for a target audience.
More specialized examples of complexity measures are the
number of distinct operators used in math word problems, the
cyclomatic complexity of a sample solution for a programming
exercise, and the properties of state space of a logic puzzle
[57]I.

1) Undesirable Difficulty: Complexity measures are rele-
vant mostly for detecting undesirable difficulty, particularly
the excessive and extraneous complexity issues. The basic
approach is to use outlier detection with respect to complexity
measures. A typical example is the detection of items with
significantly more complex text (as measured by readability
formulas) than the rest of a problem set. For this analysis, a
variation of Fig.[3] A is useful. When the boxplots show values
of a readability measure for sets of texts, we can visually detect
texts which are too complex.

We can measure complexity not just for individual items
but also for whole sets of items and use this measurement to
find mistakes in the domain model; for example, complexity
measures are expected to be correlated with assigned grades
(for how old children the topic is intended), so outliers in such
a correlation are worth verification.

2) Insufficient Difficulty: The detection of outliers is also
relevant for the detection of insufficient difficulty. In addition
to the use of generic complexity measures, it is useful to
develop specific detectors of unintended low complexity—
aspects of learning materials that allow students to answer
correctly even without a proper understanding of the topic.
For example, in multiple-choice questions, it can happen
that a simple heuristic (“select the option with the longest
text” or “select the last option”) has a high success rate;
that is, students can successfully answer items without real
understanding, which is inappropriate.

B. Similarity Measures and Projections

Item similarity is a property of a pair of items. A similarity
measure quantifies the similarity of two items [60]. A simple
similarity measure for text items is Levenshtein edit distance
or Jaccard similarity over bag-of-words representation; more
complex measures take the structure of items into account. It

is also possible to use embeddings (like word2vec) [61]. Item
similarity can also be computed based on student performance
(e.g., as a correlation of student answers on two items [[60]]).

To detect defects, we can use similarity measures together
with outlier detection techniques or use them to create projec-
tions (e.g., PCA, tSNE) and check them visually.

1) Deficient Content: Fig.|3| C provides an example of the
potential use of similarity measures. The example corresponds
to the case where we have alternate choice items (e.g.,
the choice of correct determiner in the practice of English
grammar), items with the same answer have the same color.
The visualization shows several outliers, which are potential
mistakes or unsuitable items. It also shows a gap between
two groups of items; this may indicate missing content and
provide inspiration of content authors (together with inspection
of specific items).

Similarity measures can also be used for the detection of
content mismatch. Similarity can be quantified using different
data, and we expect that different ways to quantify similarity
are in approximate agreement. For example, we have used
this approach to detect cases of wrongly specified feedback
messages (e.g., two items had swapped messages).

2) Insufficient and Undesirable Difficulty: Problems with
insufficient and undesirable difficulty are straightforwardly
detected using difficulty analysis. Similarity measures can, in
some cases, provide more specific insight into these problems
and suggest potential solutions. For example, one source of
insufficient difficulty is repetitiveness caused by items that are
too similar or even complete duplicates. Such a situation can
happen easily when the content for some topic is prepared by
multiple authors. Similarity measures can detect these cases.

The inverse problem is too large heterogeneity, which often
leads to undesirable difficulty (particularly steep curve). In the
similarity analysis, this problem manifests itself by significant
gaps in the projection based on similarity measures.

C. Difficulty Analysis

Item difficulty, as opposed to the above-discussed complex-
ity, is based on the observed performance of students [57].
Basic difficulty measures are the failure rate (the ratio of
students who answer incorrectly) and median response time.
These basic measures have disadvantages, particularly suscep-
tibility to biases in data (e.g., attrition bias and self-selection
bias [62]])). These disadvantages can be (partially) mitigated
by using difficulty measures derived from student modeling
techniques (discussed below). However, for the purposes of
detection of undesirable behaviors, even the basic measures
are often sufficient.

1) Undesirable and Insufficient Difficulty: One way to
detect undesirable and insufficient difficulty is to combine
difficulty and complexity measures, as illustrated in Fig. [3| B.
We can also use a similar type of analysis with two dif-
ficulty measures (e.g., success rate and median time). The
outliers can be either detected visually in such scatter plots
or by using standard outlier detection techniques [63]. To
provide a specific example, consider a knowledge component
“transforming fractions to percents.” The analysis of outliers
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Fig. 3. Examples of data analysis visualizations and undesirable behaviors that they can help to uncover.

detected items 2%, 8

S50 g in a set where typical items are like
%, %. Such situations can be solved in different ways. The
basic solution is to remove the outlying items. But we can also
add more items of a similar type and create a new problem set
which can be preceded by practice of fluency on simplifying
fractions.

Fig.[3| A provides another type of visualization of difficulty,
which can be used to detect steep difficulty curves and poor
ordering of items. Boxplots show the distribution of response
times; the color corresponds to the success rate. The items are
visualized in the ordering used in the learning environment.
The graph shows that that the difficulty increases mostly
gradually, but there is one poorly ranked item (O), and the
last item (R) is too difficult.

2) Deficient Content: Difficulty analysis can also be used
for the detection of deficient content, particularly wrong an-
swers. One simple approach is the heuristic “the success rate
is zero,” which can detect clear typos and major technical
bugs in item representation. A slightly more nuanced approach
uses not just the correctness of answers but also their specific
values. A simple, natural heuristic is “the most common
unaccepted answer is more common than the denoted correct
answer.” Of course, not all cases that these heuristics returns
are wrong answers. It may also be a case of undesirable diffi-
culty or even desirable difficulty question, which contains an
explanation that forces students to correct their misconception.
Even in these other cases, however, it is worthwhile to pay
attention to a given item and reconsider its formulation.

3) Ineffective Teaching Strategy: We can compute difficulty
measures not just for individual items but also for whole item
sets (the practice of a specific skill), for example, using metrics
like the ratio of students who reach mastery or median time
to reach mastery. Too low or high values are often indicative
of a problem. There can be multiple reasons for these values,
and additional analysis is typically necessary to determine the
specific reason. Too low difficulty of achieving mastery can be
caused by premature mastery declaration (poorly set mastery
criterion), misdirected gamification (students are practicing

simple skills just to get badges), or massed instruction. Too
high difficulty is often caused simply by the undesirable diffi-
culty of individual items. It can, however, also be an indirect
result of premature mastery in the practice of prerequisite
skills.

4) Inappropriate Feedback: To detect misleading or un-
helpful feedback, we may perform a differential analysis of
difficulty—computing the difference in the success rate of
different groups of students, depending on whether they have
already seen a specific feedback message. If there is no change
in success rate after seeing feedback, the used feedback is
probably not effective. This type of analysis, however, is
nontrivial due to attrition and selection biases. To perform
this analysis properly, it is useful to employ student modeling
techniques, which we cover next.

D. Student Modeling

The main purpose of student modeling [|64]] is typically to
obtain an estimate of a student state, which is used to guide
personalized behavior or to provide feedback to students. Stu-
dent modeling mostly focuses on the estimation of cognitive
state, but there are also techniques for estimating affective or
meta-cognitive state (e.g., engagement, boredom, confusion,
or frustration [65]). These techniques may be useful for the
detection of unusability. Student modeling can also be used
to detect undesirable student behavior like gaming-the-system
[13]], guessing [48]], excessive help-seeking [8]], or cheating
[47], [66]. These student behaviors are sometimes caused by
undesirable behaviors of a learning environment.

In the following, we focus on modeling of cognitive state.
The primary purpose of student models is to model students’
states, not to detect undesirable behaviors of learning environ-
ments. Nevertheless, they can be useful in a variety of ways.
We outline several directions; we believe that there is further
potential in this direction.

1) Deficient Content: Detection of wrong answers can
utilize the concept of item discrimination parameter, which



is used, for example, in item response theory [67]. Item dis-
crimination specifies how well an item discriminates between
students with different skills. If the item discrimination is
negative, it means that students with high skills have a lower
chance of answering correctly. This is not expected; such a
result is often indicative of a wrongly specified item.

2) Unusability: Some student modeling approaches utilize
clustering of students; these models may, as a side effect,
detect exclusion problems. A specific example is provided
by the mixture modeling of skill performed in the context of
DuoLingo [[68]]. Using this approach, the authors identified a
set of students who systematically skipped items with sound.
Based on this, they conjectured that these students are either
hearing-impaired or do not have working speakers (i.e., that
the learning environment exhibits some kind of exclusion).

3) Undesirable and Insufficient Difficulty: A student model
may be able to estimate skill and thus detect situations where
a student is practicing something that he already knows
(insufficient difficulty; ignoring knowledge). Student modeling
is intertwined with domain modeling and can be used to
detect cases of undesirable difficulty due to a poor domain
model, for example, failure to distinguish different knowledge
components or absence of important prerequisite relations.
The mapping of items to knowledge components is typically
denoted Q-matrix [69]] and used in models like the additive
factors model [[70]. A general approach to spot problems in
the Q-matrix is the use of learning curves [71]—searching for
knowledge components with flat or increasing error curves.
There are also specific techniques for Q-matrix refinement
[72], and some works have a specific focus on prerequisite
analysis and discovery [73]], [[74].

4) Ineffective Teaching Strategy: Student models may also
be used to detect problems with mastery criteria. In the case of
premature mastery declaration, students may have difficulties
with solving follow-up topics. In the case of unrecognized
mastery, students are forced to answer items that are easy
for them. Note that student models are often used as a
basis for mastery criteria, and thus a poorly chosen or fitted
student model may be the source of a problem. At the same
time, another student model may be useful for detecting the
problem.

5) Inappropriate Feedback: Whenever a learning environ-
ment uses a student model to guide its behavior, a poor model
fit is indicative of a potential problem. A specific example
is described by Brinkhuis er al. [75]. They detected a case
where estimates of student skill underwent sudden jumps,
which was unexpected for the used modeling approach (Elo
rating system). This led to the identification of misleading
feedback. For a specific knowledge component, the used
algorithm (based on dynamic estimation of students’ skills
and items’ difficulties) led to reinforcing misconceptions—
erroneous local strategies that appeared to work well for many
successive items. The solution was to make the algorithm less
adaptive (for a particular problem set).

Learning curves [71]] are a tool that is used to evaluate
student modeling techniques. In its basic form, it shows
the student error rate depending on the number of practice
opportunities. Fig. [3|E shows an illustrative example. The blue

curve shows a desirable shape of the curve. If the curve is flat
(as the violet one), it suggests that students are not learning,
which may be, for example, due to inappropriate feedback.
However, this type of analysis is nontrivial due to student
attrition and ordering biases [76].

E. Activity Analysis

Finally, we discuss techniques that focus on the distribution
of student activity within the learning environment and on
interaction patterns between students and items.

1) Unusability: Unusability problems, for example, no re-
sponse, slow response, exclusion, or poor organization, can
be often detected using just counts of visits (e.g., how many
times in a day was an item answered) and their monitoring
using simple heuristics (e.g., listing of items with zero counts)
and outlier detection techniques (e.g., outliers within a set,
temporal outliers).

2) Deficient Content: Simple popularity statistics can also
be useful for detecting missed opportunities—missing content
that is easy to add and is useful. Such opportunities can be
detected by listing popular topics, for which there are fewer
practice opportunities than for other, less popular ones.

Other deficient content can be detected using analysis
of timing information—inferior text or media may manifest
themselves as outliers with respect to response times.

3) Insufficient and Undesirable Difficulty: Another appli-
cation of visit counts is the detection of item repetitiveness,
which is caused by an insufficient number of practice items for
a particular topic. This undesirable behavior can be detected
by analysis of activity, for example, by computing “how many
students solve all items in a knowledge component without
reaching mastery” or “how many students repeatedly solve
some item within a single session.” In our experience, the
simple total number of students who encounter repetitiveness
is a very useful tool for prioritization for content creators:
knowledge components with higher numbers deserve a higher
priority.

The undesirable difficulty often manifests itself in survival
curves, which show the proportion of students that reach
(“survive until”) a given item. [77]], [78]]. Fig. E] D shows an
illustrative example—the orange line is a typical curve for a
sequence of items with a fixed progression. The blue curve
shows a large drop after the 4th item, which suggests that this
item is problematic. The violet line shows a significant drop
after the first item, which may mean high difficulty, but more
probably some more fundamental usability problem.

4) Poor Teaching Strategy: The activity analysis can be
connected with data about students to make it more infor-
mative. For example, consider the information about student
grade (year). Using this information, for each knowledge
component, we can decompose student activity by grades,
visualize it as a histogram, and compare it to the mapping to
grade in the used domain model. A mismatch between the real
student activity and a supposed student activity (as specified
in the domain model) is typically indicative of problems
with teaching strategy, which can manifest as inappropriate
recommendations. Fig. [3| F illustrates an example of this type



of analysis: for a specific topic, it shows a histogram of student
activity by grades, together with the grade assigned to the topic
in the domain model. The student activity data suggest that the
assigned grade should be larger.

5) Inappropriate Feedback: Analysis of timing information
can detect problems with feedback messages—to do so, we
need to measure the time between the display of the feedback
message and the following student action (e.g., continuing to
next item). If this time is very low, it means that the message
was not read by a student. A high proportion of such cases
means that feedback messages are not working as intended.

VI. CONCLUSION

Finally, we provide a summary of our perspective, the
proposed taxonomy of undesirable behaviors and its relation
to data-driven techniques for finding them and highlight the
main implications for practice and research.

A. Avoiding Stupidity Perspective

We advocate a shift of focus in the development of adaptive
learning environments. Currently, research and development
often aim at “optimization” of the learning process. However,
learning is complex. It is not very useful to optimize one aspect
of the process (e.g., the optimal gap for spaced repetition)
when other aspects are realized poorly (e.g., feedback is mis-
leading). Moreover, learning involves trade-offs and complex
interactions between desirables. Optimization of any single
aspect can be potentially dangerous, especially for aspects that
are realistic to measure. Optimizing engagement (measured
by spent time) can lead to shallow gamification, “fun without
learning,” and addiction. Optimizing performance at the end
of the session can lead to massed practice. Optimizing per-
formance after delay (within the learning environment) can
indirectly cause the algorithm to avoid difficult content (e.g.,
higher-level skills). Similarly, unintended consequences can
follow from the optimization of student autonomy or social
interactions.

We believe that instead of aiming at optimality, we should
focus on avoiding stupidity. A learning environment can be
wrong in many ways. Once we manage to avoid being wrong,
we should end up with a rather good, efficient learning
environment.

B. Applying the Perspective

To make the avoiding stupidity perspective actionable, we
propose a taxonomy of specific undesirable behaviors and
an overview of detectors that are immediately applicable in
the development of learning environments. Fig. ] provides a
coarse mapping of undesirable behaviors and techniques. The
figure gives a simplified, high-level summary of the discussion
of applications provided in Section [V] that is, it corresponds to
techniques that we are aware of and that we have mentioned.
It certainly could (and should) be subject to revisions in future
work.

The figure illustrates that the described techniques are, to
a large degree, complementary—each of them is suitable for

detecting different types of undesirable behaviors. Even in
cases where multiple techniques can be used to detect the same
type of problem, there is often a complementarity aspect—
different techniques may detect different specific occurrences.
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Fig. 4. Mapping of undesirable behaviors and techniques to uncover them;
darker color means that a given technique is more relevant to the detection
of a given type.

Our experience is that once we explicitly describe specific
undesirable behavior, it is often possible within a few hours
to build a detector, find a nontrivial list of its occurrences,
uncover and correct specific defects, and thus improve the
learning environment. The avoiding stupidity perspective be-
comes even more powerful once it is incorporated into the
design process; that is, when the design of the environment
is done in such a way that detection of undesirable behaviors
and iterative improvement are facilitated (e.g., by collecting
suitable data and implementing support for easy revision of
existing items).

C. Researching the Perspective

To further develop the perspective of avoiding stupidity,
more research is needed. It would be beneficial to study in
more detail the nuances of relations between system actions
and student reactions depicted in Fig. [I] For further devel-
opment of defect detectors, it would be useful to perform a
quantitative evaluation of their performance. This is not easy.
Typically, once a defect is detected, it is immediately removed
(that is, after all, the point of detecting it). In order to build a
dataset suitable for the evaluation of defect detectors, it would
be necessary to systematically collect their occurrences. Note
that such benchmark sets of “bugs” are commonly used in
software engineering in the development of automatic testing
and verification techniques [79], [80]. Another possibility is to
take a high-quality data set, create artificial defects (e.g., by
modifying some items and their answers) and then evaluate
the ability of techniques to find them.

A related issue is prioritization. On which undesirable
behaviors should we focus? Which are the most important
(severe, frequent)? This issue will often depend on the specific
circumstances of a particular learning environment. Neverthe-
less, it may be a worthwhile research direction to provide some



general techniques for prioritization; Mian et al. [§] provide a
step in this direction.

The perspective of avoiding stupidity also provides interest-
ing impulses for novel research directions. The most natural
one is the development of novel data-driven defect detectors

for

specific cases of problems. It may also be useful to

reinterpret or modify existing techniques for the purpose of
defect detection. We briefly mentioned several examples of
this type in the case of student modeling techniques. There

are,
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surely, many other opportunities.
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