
User Modeling and User-Adapted Interaction manuscript No.
(will be inserted by the editor)

Beyond Binary Correctness: Classification of Students’
Answers in Learning Systems
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Abstract Adaptive learning systems collect data on student performance and
use them to personalize system behavior. Most current personalization tech-
niques focus on the correctness of answers. Although the correctness of answers
is the most straightforward source of information about student state, research
suggests that additional data are also useful, e.g., response times, hints usage,
or specific values of incorrect answers. However, these sources of data are not
easy to utilize and are often used in an ad-hoc fashion. We propose to use an-
swer classification as an interface between raw data about student performance
and algorithms for adaptive behavior. Specifically, we propose a classification
of student answers into six categories: three classes of correct answers and
three classes of incorrect answers. The proposed classification is broadly ap-
plicable and makes the use of additional interaction data much more feasible.
We support the proposal by analysis of extensive data from adaptive learning
systems.

Keywords adaptive learning · student modeling · interface · classification ·
response time

1 Introduction

Adaptive learning systems collect data on student performance and use them
to personalize system behavior, e.g., to implement mastery learning, to provide
personalized recommendations or feedback to students. The primary source of
data that drives this personalization is student interaction with practice items
(questions, problems).

The data about student interaction are used by student modeling tech-
niques, which provide estimates of student’s knowledge state. This estimate
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is the basis for personalization algorithms. Research in student modeling fo-
cuses mainly on the intricacies of modeling temporal dynamics of learning
and complex relations among knowledge components (Desmarais and Baker,
2012; Pelánek, 2017). In most cases, student modeling techniques consider
only binary information about the correctness of answers. However, richer in-
formation about student behavior can be easily collected. Previous research
considered such sources of richer information and their usage, e.g., a partial
credit based on students’ use of hints (Wang and Heffernan, 2013; Van Inwegen
et al., 2015), high speed high stakes rule based on response times (Klinkenberg
et al., 2011), or classification of incorrect answers based on the frequency of er-
rors (Pelánek, 2018). However, such approaches are not utilized in the current
mainstream student modeling approaches (Pelánek, 2017). Another closely
related use of student interaction data is domain modeling, e.g., estimating
difficulty of items (Klinkenberg et al., 2011), measuring the similarity of items
(Pelánek, 2019), or creating and refining the mapping of items to knowledge
components (Barnes, 2005; Desmarais et al., 2014). These techniques are also
currently based primarily on the correctness data and could be improved by
using richer information about student interactions.

Moreover, summarising students’ performance in more detail than just the
simple binary correctness is useful not just for modeling purposes but also
for providing feedback to students and teachers. Providing students with feed-
back on their performance after each item supports their motivation and helps
them to build metacognitive skills (Bull and Kay, 2007). Providing teachers
with aggregated feedback on the performance of their students gives them in-
formation about what the whole class needs, as well as what the individual
students need (Molenaar and Knoop-van Campen, 2017).

Using only correctness of answers is one extreme. The other extreme is to
try to utilize all available information in an optimal way for a particular appli-
cation; such approach has been used by Baker et al. (2012) to model student
affective states and by Wang et al. (2017) to model knowledge states in pro-
gramming. Utilizing detailed information about students’ interaction with an
item is potentially powerful, but significantly complicates the practical devel-
opment of adaptive learning systems. Many different types of items are used in
adaptive learning systems, and each of them produces specific interaction data.
The approach based on the use of specific data requires for each application
complex research into suitable modeling of students’ performance.

We propose to use a compromise: answer classification, which can be seen
as an interface between observations about student performance and various
applications of these data in learning systems. Fig. 1 illustrates the main idea
of this approach. The concept of interface is used widely in computer science.
Its main advantage is that it facilitates the design and implementation of
systems by decoupling the processing of raw data and algorithms that use
the data. This is useful both from the development perspective (e.g., ease
of development, maintainability) and research perspective (e.g., reproduction
studies, evaluation of generalizability of results).
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Fig. 1 Answer classification as an interface between data from exercises and algorithms
determining system behavior. Only selected, illustrative examples of exercises and algorithms
are shown.

The general idea illustrated in Fig. 1 can be realized using a wide variety
of answer classification approaches. As a specific proposal, we put forward a
classification of answers into six categories: three categories of correct answers
(excellent, normal, weak) and three categories for incorrect answers (near miss,
normal, non-serious attempt). We argue that this should be enough to cap-
ture the main differences in students’ performance. The classification is widely
applicable—it can be used for very different types of exercises and types of
applications (e.g., modeling student knowledge or affect, providing feedback,
mastery criteria). We discuss specific methods for classifying answers for dif-
ferent types of exercises, ranging from simple multiple-choice questions to in-
teractive problem solving exercises. We support our proposal by analysis of
extensive data from real adaptive learning systems.

2 Related Work

We provide an overview of research utilizing additional data beyond the cor-
rectness of answers. We focus on data that can be easily collected and that are
relevant in many different learning systems, specifically response times, values
of incorrect answers, and hints usage. Many additional sources of data have
been used in previous work, particularly for modeling student affect (Woolf
et al., 2009). Examples are data collected using eye movement tracking, facial
expression camera, pressure sensitive chair, skin sensors, or mouse movements.
However, these data are not easily collected and often do not scale. Such data
are currently used mostly for lab studies where the goal is to develop sensor-
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free detectors that would be based on easily available data (Paquette et al.,
2014).

A common source of data about student performance that is simple to
collect in a computerized learning system is response time. The use of re-
sponse times has been explored for a long time in the context of adaptive
testing (Van Der Linden, 2009). In adaptive learning, they have been used
for various purposes: student modeling (Klinkenberg et al., 2011), engagement
tracking (Beck, 2005), scheduling the learning of declarative knowledge (Met-
tler et al., 2011), analysis of slip and guess behavior (Baker et al., 2008),
modeling off-task behavior (Baker, 2007), and distinguishing good and wrong
use of bottom-up hints (Shih et al., 2011). The signal present in response times
is, however, noisy and depends on a particular setting. In problem solving ac-
tivities, response time can be the primary measure of performance (Pelánek
and Jarušek, 2015). In other cases, the predictive power of response times
seems to be limited (Pelánek, 2018; Papoušek et al., 2015).

Another potentially valuable source of data about student state is a specific
value of an incorrect answer. Incorrect answers are known to have a highly
skewed distribution with a few common values (Pelánek and Řihák, 2016;
Stephens-Martinez et al., 2017). Such common incorrect answers have been
used to improve student knowledge modeling (Nam et al., 2017; Řihák and
Pelánek, 2016) or affect detection (Wang et al., 2015). Analysis of incorrect
answers has also been used for labeling of errors (McTavish and Larusson,
2014; Straatemeier, 2014), clustering learners (Merceron and Yacef, 2005), and
propagating feedback (Piech et al., 2015b). The analysis of incorrect answers
for constructed response items is also related to techniques for automatic short
answer grading (Burrows et al., 2015).

Learning systems often offer students hints. In such cases, data about hint
usage provide another potentially valuable source of information about stu-
dents. Hint usage data have been used for modeling help utility (Beck et al.,
2008; Inventado et al., 2018) and for students’ control and hint seeking be-
haviors (Goldin et al., 2013; Aleven and Koedinger, 2000; Aleven et al., 2003).
For student modeling, hints have been used to determine a ‘partial credit’ as
an extension of the basic binary evaluation of answers (Wang and Heffernan,
2013; Van Inwegen et al., 2015; Ostrow et al., 2015). Partial credit models
(also called polytomous models) are used in the item response theory, which
is applied mainly in the context of adaptive testing, e.g., a partial credit ex-
tension of the basic Rasch model (Masters, 1982). Such models can be useful,
for example, in the case of a multiple choice question with several distractors,
each with a different plausibility (Drasgow et al., 1995; Gierl et al., 2017).

The above-discussed approaches mostly focus on some feature of student
performance and provide a tailored model for that feature. Although many
approaches use machine learning techniques to learn specific values of model
parameters, the basic structure of a model is mostly determined by researchers.
An alternative approach is to use deep neural networks, which aim to learn a
student model from the raw data about student performance. This approach
has been proposed as ‘deep knowledge tracing’ (Piech et al., 2015a). Initially,
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the approach used only data about the correctness of answers, but it has been
quickly extended to various other types of data (Zhang et al., 2017; Wang
et al., 2017). The advantage of this approach is that it eliminates the need
to hand-craft specific student models. It has, however, several disadvantages.
The obtained models are not easily interpretable, and interpretability may be
important in many educational applications, e.g., for open learner modeling
or for ensuring predictable behavior of a learning system. The deep learning
methods also need large data to be useful; at the current stage of research, it
is not even clear how large the data need to be. Also, the prediction accuracy
of this approach is not clear since some of the claims of the improvement were
shown to be due to methodological issues in evaluation (Pelánek, 2018).

To summarise, there exists extensive research on the use of a specific aspect
of student performance data for specific purposes, which clearly illustrates the
utility of the data beyond correctness. However, the systematic use of such
data either in research or practice is lacking. Some authors have proposed the
combined use of several data sources, a specific example is Arroyo et al. (2014),
who use data about response times and hint usage in a practically deployed
instructional strategy. Such use of performance data, however, is not simple
and thus not very widespread. Our aim is to make the use of such data easier
by providing an “interface” between the raw data and different applications.

3 Answer Classification: Possibilities, Proposal, Uses

In this section, we discuss general approaches to processing student perfor-
mance data, outline our proposal for answer classification, and discuss its
applications. In the next section, we discuss specific methods for answer clas-
sification and support them by data analysis.

3.1 Overview of Possible Approaches

On a general level, we deal with the following data processing pipeline: the
learning system collects data about student interaction with an item; the data
are processed, and the processed data are used in applications (e.g., student
modeling, domain modeling, feedback). Fig. 1 provides an illustration of this
pipeline.

One extreme approach to this pipeline is to avoid any processing and use
the raw data directly for specific applications. This approach has the advantage
that we avoid the loss of any potentially useful information. However, this
approach makes the development of learning systems very difficult. Each type
of exercise produces different raw data. Any technique (e.g., student modeling,
mastery criteria) developed for such data would be specific for a particular
setting and not reusable.

Another extreme approach is to consider only the correctness of an an-
swer, i.e., to ignore any other interaction data. This is the currently dominant
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approach, e.g., most commonly used student modeling techniques use only
correctness data (Pelánek, 2017). This approach facilitates the development of
reusable techniques since any specifics of a particular exercise are abstracted
away. However, it also leads to a significant loss of potentially valuable infor-
mation.

Between these two extremes, there is a spectrum of other approaches. In-
stead of just the binary evaluation, we can use a continuous performance score,
e.g., value in the interval [0, 1]. Such a measure can be extended to be mul-
tidimensional to better capture different aspects of student performance. It
is possible to use two-dimensional interpretable representation (e.g., “quality
of final result” and “speed”), or multidimensional embedding that is auto-
matically computed by machine learning techniques (and thus not directly
interpretable) as done, for example, by Piech et al. (2015b).

Another approach is to use discrete classification, i.e., to classify student
interaction data into one of several classes (e.g., “great performance”, “correct,
but slow”, “incorrect, but reasonable”, “fast guessing”) and then use these
classes for specific applications. With this approach, we lose some nuances of
the data, but with a well-designed classification, we may be able to lose only
a little information and get significant simplification.

3.2 Proposed Classification Approach

We argue that a suitable approach for improving the current state-of-the-
art in adaptive learning systems is to utilize the classification approach. The
advantage of this approach is the simplicity of its use in applications as it
is only a slight extension of the basic correctness. At the same time, with a
suitable choice of classes, we can achieve a limited loss of information and
good interpretability of data processing, particularly compared to embeddings
computed by neural networks.

Before proceeding to a specific proposal for answer classification, we ex-
plicitly clarify the setting. An answer classification is a function that takes
as an input a log data on a student’s interaction with a particular item and
outputs a classification. An answer classification can be seen as a model of a
student’s performance on an item. Note that there is a crucial difference with
respect to “student modeling” as commonly used (e.g., in models like Bayesian
knowledge tracing or Additive factors model)—student modeling techniques
use data on a sequence of items and take into account temporal dynamics
(learning) along the sequence, whereas in answer classification we consider
student performance on a single item.

For the progress of the adaptive learning field (both the development and
research), it would be advantageous to have answer classification as univer-
sal as possible since this would enable easy reuse of techniques like student
modeling or mastery criteria. There is, of course, a trade-off: a more general
classification leads to a higher loss of information and worse interpretability.
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Table 1 Proposed classification: answer classes and their potential interpretations.

Class Comments, interpretation

C+ correct, excellent very smooth performance; a student knows the topic
very well; cheating, lucky guess

C0 correct, normal expected performance; an adequate item for the student

C− correct, weak a struggling student; an item was probably hard for a
student

I+ incorrect, near miss a reasonable attempt; a student seriously tried to an-
swer the question, but made some partial mistake

I0 incorrect, normal a student tried to solve an item, but was not successfull;
the attempt gives evidence of knowledge gaps

I− incorrect, non-serious student did not seriously try to answer; disengaged be-
haviour; “just looking”; a misclick; gaming the system;
pure guessing

Our aim in this work is to find a suitable compromise: a classification that
provides reasonable specificity for a wide range of student interaction data.

To this end, we propose a classification outlined in Table 1. The classifica-
tion distinguishes three classes of correct answers and three classes of incorrect
answers. The choice of the number of classes is based on the analysis of data
from a wide range of exercises; this analysis is discussed in the next section.
Particularly for incorrect answers, the three proposed classes are naturally
supported by the data. More classes could be beneficial in some use cases, but
they bring additional costs (e.g., parameters that need to be estimated) and
in general, we do not have strong support for them.

3.3 Contextual Data

In this work, we focus on the classification of a single answer. Taking into
account contextual data (data about preceding answers) can potentially im-
prove the classification, particularly by clarifying the cases which currently
have multiple interpretations, e.g., I− could mean both “disengaged behav-
ior” and “misclick”. These cases are almost impossible to distinguish by con-
sidering data about a single answer. However, when we take into account the
context, their distinction may be quite clear.

The contextual data can be definitely useful. The question is, how to use
them. One approach would be to consider them as an input to the answer
classification. Another approach, which we prefer, is to perform the classifica-
tion without contextual data, and then potentially in a second step use the
contextual data (already classified) to perform an appropriate refinement or
clarification. This is an advantageous decomposition: the use of contextual
data is to a large degree independent of specifics of a particular type of exer-
cise, and thus it can be done in an exercise independent way on the level of
classes.
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Moreover, the use of contextual data leads to more fine-grained classes
and these are hard to specify in a universal way. An appropriate choice of
more fine-grained classes depends on a particular application (e.g., cognitive
modeling, affective modeling, feedback to students).

For illustration, we just mention examples of several rules illustrating how
the use of contextual data can lead to a more detailed classification of answers:

– Answer I− in the middle of a sequence of C+ and C0 answers: probably a
misclick, i.e., an unintended submit of an incomplete answer.

– A sequence of mostly I− with few C+: probably a guessing behavior.
– Answer I+ in a sequence of C0 and C− answers: probably a productive

struggle (encouraging feedback may be appropriate).
– Answer I+ in a sequence of I−: the student is probably just guessing and

one of the guesses was slightly more lucky than others (encouraging feed-
back is not appropriate).

– A sequence of mostly I0, I+: “wheel spinning” (Beck and Gong, 2013)—the
student is struggling, but probably unproductively and would benefit from
the practice of prerequisites.

3.4 Applications of the Classification

The aim of the classification is to serve as an interface between raw data
observation and different applications of data (as depicted in Fig. 1). In the
rest of the work, we focus on the computation of answer classes. Here, we
briefly outline their applications.

3.4.1 Student Modeling

Student modeling techniques use data on student interactions to provide an
estimate of a student’s state, which is subsequently used to guide the adaptive
behaviors of a learning system. Student modeling can estimate different types
of states: cognitive, meta-cognitive, affective.

The most commonly used type of student modeling is for the estimation of
cognitive state, i.e., modeling students’ knowledge of the domain. Most cur-
rently used models consider only binary information about the correctness
of answers. These models can be extended to use a more detailed classifica-
tion. We discuss the two most commonly used families of student modeling
techniques (Pelánek, 2017).

For Bayesian knowledge tracing and other Hidden Markov models, the
extension means that we need to have “emission probabilities” for the six
classes instead of just the two classes that are used in the basic version of
the model. For the Bayesian knowledge tracing model, it may be particularly
useful to distinguish the “slip parameter” (probability of making a mistake
when the student is in the “known state”) for the classes I+, I0, I−.

Logistic models are based on a mapping of a continuous skill to the proba-
bility of correct answer, which is modeled by a logistic function. We can extend
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Fig. 2 Simple extension of a logistic student model with answer classification.

the model to consider several logistic functions, each of them specifying the
probability of observing an answer of a specific type or better, see Fig. 2.

The classification can also be useful for modeling an affective state of stu-
dents. For example, the I− answers (particularly in a long uninterrupted se-
quence) are often evidence of an affective state than of a knowledge state.

3.4.2 Mastery Criteria

One common personalization approach in adaptive learning systems is mastery
learning: students solve a sequence of items until they sufficiently master the
practiced topic. To realize this approach, we need a mastery criterion—a pro-
cedure for deciding when to stop the practice. Previous research (Pelánek and
Řihák, 2018) shows that for the purpose of determining mastery, the choice
of input data is more important than the use of student modeling techniques.
Even simple approaches like exponential moving average are sufficient when
provided with suitable input data.

The proposed answer classification facilitates the application of mastery
criteria in learning systems. The classification provides a sufficient summary
of observed data and enables us to easily scale the implementation since we
can use the same mastery criteria approach and formulas for many different
types of exercises and topics.

3.4.3 Recommendations

Another personalization approach is recommending specific items, topics, or
problems sets. This is often done based on the skill estimates provided by
student modeling. In some cases, however, it may be useful to utilize answer
classification for this purpose directly.

Consider an interactive problem solving exercise (e.g., a programming or
multi-step mathematics problem) and suppose that a student started solving
the problem but did not finish it. When the student returns to the system
the next day, should the system recommend this unfinished problem or rather
another one? In the case of the I+ answer, it is probable that the student tried
hard to solve the problem and was not able to do so. Therefore, rather than
recommending the same problem again, it is better to recommend another
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one (preferably simpler). In the case of the I− answer, the student did not
seriously try to solve the problem (e.g., just glanced at the problem at the
end of a session). Therefore, it is meaningful to recommend the problem for a
repeated attempt.

3.4.4 Feedback to Students, Teachers, and Parents

Answer classification is also useful for providing feedback to students, teachers,
and parents. Feedback is a crucial element in learning systems, and richer
feedback has higher potential (Hattie and Gan, 2011). As a simple example,
consider the case of incorrect answers. Acknowledging that the answer was I+

rather than I0 may have a positive psychological impact on students.
For teachers and parents, it is useful to have information about students

progress. This information can be provided by the use of open learner models
(Bull and Kay, 2007). These models provide a concise summary of student
performance in the form of student skill estimates. However, for non-experts,
it may be hard to understand precisely what is the meaning of these estimates
and how are they computed. Presenting just a simple visualization of the
answer classification data may be more understandable since the classes are
interpretable and easy to understand.

3.4.5 Feedback to Developers and Content Authors

Answer classification can also be useful for providing feedback to developers
and authors of the content. Development of practically used systems is often
in line with what Baker (2016) calls “stupid tutoring systems, intelligent hu-
mans” and Aleven et al. (2016) call “adaptive design”, i.e., a designer adapts a
relatively simple design of the learning system based on a potentially nontrivial
offline analysis of data.

Classification of answers is useful for many aspects of such offline educa-
tional data analysis. As a specific example, consider the estimation of item
difficulty. For these estimates, it may be useful to filter out I− answers, since
these often correspond to users who are “just looking around” and do not
reflect the real difficulty of items. Such answers can be distributed highly non-
uniformly among items, and thus bias difficulty estimates for some items.

Another useful analysis is the ratio of I+ answers. A high ratio of I+ an-
swers for some item is often an indication of a problematic item. It may be
a poorly formulated item, e.g., an item permitting multiple valid responses
which the author of the item did not consider, or an item assigned to a wrong
knowledge component. Even if the item is valid, it may require specific atten-
tion concerning the preparation of explanations or hints.

4 Classification of Answers for Specific Types of Exercises

So far, we have provided a general discussion of the classification. Now we dis-
cuss specific types of exercises. We analyze a wide range of data to see whether
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they provide natural support for the classification. Based on the analysis, we
outline specific criteria for the classification of answers. We divide the discus-
sion into three basic types of exercises that are commonly used in learning
systems:

– Selected response. Students answer by selecting an answer from a provided
choice.

– Constructed response. Students construct answers, typically by writing a
number or a short text.

– Interactive problem solving. Students solve a problem in an interactive man-
ner; the solution consists of a sequence of steps.

We focus on the basic analysis of individual aspects of student performance.
The classification should support a variety of use cases, so it is important to
consider and balance requirements imposed by many of them, and not to train
an answer classifier optimized for a single usage, such as predictive power
of a specific student model. Using the answer classification as feedback to
students requires that not only the classes themselves but also the criteria for
the classification are understandable. As a consequence, our aim is to define
classes by simple criteria, rather than using machine learning techniques with
many features.

4.1 Data and Methods

For the analysis, we use data from RoboMission (robomise.cz), an adaptive
system for learning introductory programming, and from the Umı́me learning
system (umimeto.org, the adaptive practice of mathematics, English, Czech,
and other educational domains for Czech students). The Umı́me system con-
tains many different types of exercises and offers the practice of fine-grained
knowledge component. The adaptivity of the system consists of mastery learn-
ing (Pelánek and Řihák, 2018) and personalized recommendations. Within a
specific exercise and knowledge component, specific items are presented to stu-
dents in random order. The RoboMission system uses block-based program-
ming in a microworld; the system uses adaptive recommendations of items to
solve (Effenberger and Pelánek, 2018).

In order to make our analysis independent of the specific usage, we focus
on the primary analysis of observed data. Specifically, we analyze relations
between observed data for a single attempt (e.g., response time and the cor-
rectness of answers), and on the relation of the current performance to the
future performance (e.g., the correctness or response time of the next attempt
in a sequence).

For the analysis, we used normalized response times because untransformed
response times are highly skewed and dependent on the specific presentation of
a particular item (e.g., the length of a text). As a normalization, we transform
raw response times into the “response time percentile”, i.e., the percentage of
other users that have a faster response time on the item.
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4.2 Selected Response

In a selected response exercise, students select their response (answer) from
a provided list of choices. A typical example is a multiple choice question,
which uses just a few choices. This is one of the most widely used types of
exercises for both assessment and learning. There are, however, other variants
of selected response exercises, which provide students with a broader set of
choices, e.g., categorization exercise, where the goal is to classify words into
categories, pairing of matching words or expressions, or filling interpunction
into a sentence.

4.2.1 Answer Properties

In the basic multiple choice questions where the answer is just a single choice,
the answer cannot be analyzed in much detail. For incorrect answers, we may
gain some information by taking into account a chosen distractor (Gierl et al.,
2017), but for well-written questions this provides rather limited information.
After an incorrect answer, a learning system may give students feedback that
the answer was incorrect and provide them another opportunity to answer
(Butler et al., 2007). In such a case, we may use the number of attempts
necessary for finding the correct answer for the classification.

For more complex selected response exercises, an answer consists of several
choices, e.g., tagging all nouns within a sentence. In these cases it may be useful
to differentiate incorrect answers with respect to the number of mistakes within
the item (e.g., the number of words tagged incorrectly within a sentence). A
natural candidate for the I+ answer category (near miss) is the case of a
single mistake. Analysis of our data suggests that this simple classification is
surprisingly useful: it provides a balanced division of incorrect answers and it
has good predictive ability.

Fig. 3 provides specific results for two exercises: a tagging exercise, where
the goal is to tag words in a sentence (e.g., part of speech) or letters in a word,
and a categorization exercise, where the goal is to sort words into correct
categories (e.g., types of pronouns). The figure shows the predictive ability of
different answers for next problem correctness—the results for “one mistake”
class are robustly between the “correct” and “other incorrect” classes. In all
these cases “one mistake” comprises between 40% and 70% of all incorrect
answers, i.e., in all cases, it provides a reasonably balanced division of incorrect
answers.

4.2.2 Response Times

To explore the usefulness of response times, we analyze its relation to correct-
ness of answers. Fig. 4 shows results for the simplest multiple choice exercises
with a choice from 2 options. The top row shows the relation to the current
answer for the selection of several knowledge components. The bottom row
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Fig. 3 Analysis of predictive power of answers (depending on the number of mistakes) for
selected response exercises. Error bars show 95% confidence intervals.
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Fig. 4 Analysis of the relation between the normalized response time and the correctness
of answers for multiple choice questions with one distractor (i.e., 50% guessing chance). Top
row: the relation to the current answer for several knowledge components. Bottom row: the
relation to the next answer separated according to the correctness of the current answer.

The basic results show are quite consistent across a variety of domains and
knowledge components; similar results were also reported in previous work
(Beck, 2005). The information present in response times is noisy and quite
limited, with the exception of (very) fast responses. Under a specific thresh-
old, we see a decreased proportion of correct answers for both the current
and next answers: this probably corresponds to guessing behavior. Over this
threshold, the curves are quite flat with only a minor trend. If the student
answers correctly, then with higher response times, the proportion of corrent
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Table 2 Proposed classification of answers for selected response exercises.

C+ very low response time (under 5th percentile)
C0 default correct
C− use of hints (if present)
I+ one mistake (in case of multiple selections), second attempt correct
I0 default incorrect
I− many mistakes, or very low response time (under 5th percentile)

answers in the next step very slightly decreases. On the other hand, if the stu-
dent answers incorrectly, then with higher response times, the proportion of
correct answers in the next step slightly increases. These trends are, however,
small and probably of limited practical use.

The value of the threshold on very fast answers (guessing) is generally
between the 5th and 10th percentile of response times. The exact value and
the strength of the effect of the very fast answers depend on a specific exercise
and knowledge components.

4.2.3 Proposed Classification for Selected Response Exercises

Based on the presented analysis and discussion, we propose a basic approach
to the classification of answers for selected response exercises in Table 2.

For the class C+ we do not see any support for the classification with
the interpretation “excellent”. We see support for the classification based on
fast response times with the interpretation “suspiciously good performance”
(potentially obtained by guessing; in some cases, this may also be some form
of cheating).

The class C− can be naturally used in exercises with hints (a correct answer
after taking a hint). Another intuitive candidate for this class is “high response
time”. However, we do not see any specific support for such classification in
our data and we thus do not recommend the use of high response times for
answer classification, unless supported by analysis for a particular application.

The class I+ can be naturally used for exercises with compound choice or
repeated answers after mistakes. In this case, we see strong and robust support
for a simple heuristic “exactly one mistake”.

The class I− can be classified by very low response times (pure guessing).
A reasonable default for the choice of threshold is 5th percentile of response
times. Another natural heuristic for this class is “many mistakes”, but here
the choice of the threshold depends on the type of exercise.

4.3 Constructed Response

With the constructed response format, students have to construct a response
on their own, typically by writing. This leads to more opportunities for clas-
sification since we observe richer data. Specifically, there is now much wider



Classification of Students’ Answers in Learning Systems 15

0 5 10 15 20 25 30 35 40
Common wrong answer bound (%)

0

20

40

60

80

100

C
ov

er
ag

e 
of

 a
ll 

an
sw

er
s 

(%
) math: expressions (free answer)

math: word problems
English: vocabulary
Czech: grammar

Fig. 5 Coverage of incorrect answers for different values of the bound that specifies which
incorrect answers are considered “common”.

freedom in “how to be incorrect”. The interaction is also slower than for se-
lected response and thus response times more varied.

4.3.1 Incorrect Answers

Previous research has repeatedly shown that the distribution of incorrect an-
swers is highly skewed, i.e., for most items, few typical incorrect answers are
covering most student mistakes (Pelánek and Řihák, 2016; Wang et al., 2015).
Our data confirm this pattern. Typically the most common incorrect answer
comprises 15–20% of all incorrect answers for a particular item. In some cases,
the ratio can be even over 70% (examples from mathematics: an item 12−6+4
and an answer 2, an item 42 and an answer 8). Using only the most common
answer for classification could, however, be too limiting. On the other hand,
a detailed analysis of many incorrect answers would lead to methods that are
complex and hard to generalize. As a compromise, we explore a simple division
of incorrect answers between “common” and “uncommon”.

The simplest way to classify incorrect answers into common and uncom-
mon is to consider as a common incorrect answer any answer which comprises
at least B% of all incorrect answers. The question is how to choose the thresh-
old B. To explore this question, we analyzed coverage of common incorrect
answers for different settings of this bound. Fig. 5 shows the results for four
types of exercises. For the analysis, we consider only items that have at least
50 incorrect answers. Based on this analysis, we suggest a bound 10% for the
classification of an answer as a common incorrect answer. With this bound,
common incorrect answers comprise between one third and one half of all
answers.

Fig. 6 shows the analysis of the predictive power of answer types for sev-
eral knowledge components in mathematics. We see that there is a consistent
difference between common and uncommon incorrect answers—students who
give a common incorrect answer are more likely to answer the next question
correctly. Although the exact difference between the answer types depends on
a particular knowledge component, the results are to a large degree consistent
across a wide range of knowledge components. In most cases, the common
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Fig. 6 Analysis of predictive power of answers (depending on the type of answer) for
constructed response exercises. Error bars show 95% confidence intervals.

incorrect answers are close to the middle of the difference between correct
answers and uncommon incorrect answers.

4.3.2 Response Times

With respect to response times, Fig. 7 presents analysis analogical to the anal-
ysis for selected response exercises (Fig. 4). The main difference is that in the
case of constructed response items, it is very unlikely to obtain a correct answer
by pure guessing. Consequently, the graphs for correct answers do not contain
the slump for very fast responses. In fact, for correct answers the relation of
response times to future performance is nearly linear with a very small nega-
tive slope, i.e., slower response means worse future performance. This effect is,
however, minimal and probably not very useful for student modeling. For in-
correct answers, the relation is again inverse, i.e., slower response times signals
higher performance. For word problems, this effect is nontrivial. Nevertheless,
the difference between different types of answers (common vs. uncommon) is
more important.

We have also analyzed the relation between response time and future re-
sponse time. In this case, the result shows positive, linear relation, i.e., nor-
malized response times are relatively stable (slow students will remain slow).

4.3.3 Proposed Classification for Constructed Response Exercises

Based on the presented analysis, we propose a basic approach to the classifi-
cation of answers for constructed response exercises in Table 3.

For correct answers, the analysis of our data does not show support for
any simple general methods for distinguishing classes C+, C0, C−. The class
C− can be naturally used for exercises with hints and potentially can be
specified using specific exercise data, particularly when high granularity data
are available, e.g., when we collect data on the typing of individual letters,
we may detect that a student is unsure since he wrote an incorrect answer
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Fig. 7 Analysis of the relation between the normalized response time and the correctness
of answers for constructed response exercises in mathematics. Top row: the relation to the
current answer for several knowledge components. Bottom row: the relation to the next
answer separated according to the correctness of the current answer.

Table 3 Proposed classification of answers for constructed response exercises.

C+ potentially low response time or application dependent data (fluency of
answer)

C0 default correct
C− use of hints, specific data
I+ common incorrect answer, small edit distance, second attempt correct
I0 default incorrect
I− empty answer, wrong data type, very low response time

and then deleted it. In learning applications which aim at fluency, it may be
sensible to distinguish C+ answers based on response times. However, our
analysis does not support any simple choice of a threshold for classifying C+

answers.

For incorrect answers, the situation is different. For the class I+, we see
strong support for the use of methods based on common incorrect answers.
Such an approach is natural and widely applicable. Additional methods that
are more exercise specific may also be useful, e.g., “small edit distance” (be-
tween the provided answer and the correct answer) or “second attempt cor-
rect”.

For the class I−, we again see support for the criterion based on low re-
sponse times, with the threshold between 5th and 10th percentile of response
times for a particular item. In many cases, additional natural criteria can be
used, particularly, “empty answer” and “wrong data type” (e.g., a student’s
answer is textual when a number was expected).
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Two Hexagons C+  25 sec, 1 execution

for i in range(6):
    forward(100)
    right(60)
for i in range(6):
    forward(100)
    left(60)

C0  81 sec, 3 executions

for i in range(6):
    forward(100)
    right(60)
for i in range(6):
    forward(100)
    left(60)

C−  619 sec, 35 executions

forward(100)
right(60)
forward(100)
right(60)
forward(100)
...

I+  164 sec, 9 executions

for i in range(6):
    forward(100)
    right(60)
left(120)
for x in range(6)
    forward(100)
    right(60)

I0  342 sec, 80 executions

for i in range(3):
    forward(100)
    right(60)
    forward(100)
    right(60)    
    forward(100)
    left(60)
    forward(100)
    left(60)

I−  10 sec, 1 execution

for i in range(6):
    forward(100)
    right(50)

initial code:

for i in range(6):
    forward(100)
    right(50)

Fig. 8 Example of an item and answers in Turtle Python programming exercise. For each
answer we provide summary statistics and the final submitted code.

4.4 Problem Solving

Problem solving encompasses a wide range of activities. We restrict our at-
tention to well-structured problems for which automated support for students
can be provided. Specifically, we consider interactive environments for answer
construction with automated checking of correctness. Examples of such prob-
lem solving activities include logic puzzles, programming tasks, and geometry
construction problems.

Interaction with the environment consists of a sequence of actions. For
example, in programming exercises, the actions could be code edits, executions,
and submits. To be consistent with the rest of the paper, we use the term
answer to denote the whole time series of actions (not just a single action or
just the final constructed product). Correspondingly, the term correct answer
means that the student eventually solved the problem.

The structure of the answer is more complex than of the selected or con-
structed responses, and it varies wildly across problem solving exercises. We
provide analysis and discussion specifically for introductory programming ex-
ercises. We analyzed data from four types of exercises: Python (program-
ming with a textual output), Turtle Python (turtle graphics in Python), Tur-
tle Blockly (turtle graphics in Blockly), and RoboMission (Effenberger and
Pelánek, 2018). Fig. 8 provides an example of a Python Turtle item together
with manually selected and classified examples of different answers.

4.4.1 Response Time and Performed Actions

To abstract from the details of a specific exercise, the time series of actions
can be aggregated into a single number related to the performance, such as the
total response time, or the number of performed actions. These two measures
are nearly always available, so they are natural candidates for the classification.

The response time and the number of actions are related, but not perfectly.
In four programming exercises we analyzed, the correlation was moderate and
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Fig. 9 The relationship between the response time and the proportion of successes for the
next item in three programming exercises. The shaded areas show 95% confidence intervals.

dependant on the granularity of actions: the higher the granularity, the higher
the correlation. In the exercises where either all code edits or all executions
are logged, the correlation between time and actions was moderate for correct
answers (Spearman’s r ≥ 0.5 for most items) and high for incorrect answers
(r ≥ 0.7 for most items). In the exercise where only submits are recorded, the
correlation was low (r ≤ 0.4 for all items).

Fig. 9 shows the relationship between the response time and the perfor-
mance on the next item. For the correct answers, the higher response time
is associated with a lower probability of solving the next item. This trend is
consistent across exercises and individual problem sets. However, the effect
size is rather small, especially in RoboMission, where the response time is
used for a personalized recommendation, leading to a more difficult next item
for students with a lower response time. Furthermore, the relationship is lin-
ear, without any natural thresholds for partitioning the answers into discrete
classes. A similar relationship is between the number of performed actions and
the probability of solving the next item.

Although an inspection of incorrect answers revealed some clearly non-
serious answers with very low response time and just a few performed actions
(as illustrated in Fig. 8), the overall relationship between the response time
and the future performance is not robust (Fig. 9). This result suggests that
the response time alone might not be enough to separate serious answers from
non-serious, or that the number of non-serious answers is low for most of the
items.

4.4.2 Interaction Network Path

The response time and the number of performed actions are not the only
measures that can be derived from the series of the student’s actions. The
answer classification can utilize the whole interaction network, i.e., all actions
of all students (Eagle et al., 2015). For example, the student’s answer (a path
in the interaction network) can be classified as either typical or atypical; a
“divergent” incorrect path that is not similar to previously observed paths is
probably an off-topic behavior (a non-serious answer).
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Fig. 10 The relationship between the minimum edit distance from a correct solution and
the proportion of successes for the next item in three programming exercises (incorrect
answers). The shaded areas show 95% confidence intervals.

On the other hand, if the student was close to a correct solution at one
point (not necessarily as the last step), the answer could be considered as a
“near miss” (I+). Fig. 10 shows the relationship between the minimum edit
distance from any code constructed during the problem solving to a correct
solution to the problem. The lower the edit distance, the higher the probability
of solving the next item, which supports the hypothesis that students who were
close to a correct solution have higher skills.

4.4.3 Quality of Solution

In addition to the qualities of the solving process, the answer classification can
also consider the qualities of the final product. What are the important aspects
of the product depends on the domain, e.g., in introductory programming, it
can be functionality and style of the submitted program.

A natural measure of functionality of incorrect programs is the proportion
of predefined test cases that have passed. This is, however, inapplicable in
many introductory programming exercises, in which the students are asked
to create a program without any input, e.g., to draw a specific shape in the
turtle graphics. Instead, measures based on the edit distance from a correct
solution (as in Section 4.4.2) might be used, which also have the advantage of
not limiting themselves to syntactically correct programs.

For correct programs, the quality of the programming style can be evalu-
ated. For example, an unapplied iteration or function abstraction indicate a
gap in the student’s knowledge. In introductory programming exercises, the
information in source code is limited due to short programs and a limited
number of available programming constructs. In this case, a sufficient heuris-
tic for the style might be the length of the code, which is higher if the student’s
solution contains some repeated or redundant code.

We analyzed the power of the number of lines of the correct programs.
The probability of solving the next item slightly decreases with the increasing
length of the solution, but the overall trend is weak, especially in the easi-
est programming problems with extremely low variability of solutions. Nev-
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Fig. 11 Predictive power of the length of correct answers in programming exercises. The
solutions are considered short if they have at most 20% more lines than the most common
solution to the problem. Error bars show 95% confidence intervals.

ertheless, the relationship between the code length and future performance is
stronger in more advanced problem sets, as shown in Fig. 11.

4.4.4 Proposed Classification for Problem Solving Exercises

Based on the analysis, we summarise our proposal to the classification of an-
swers in problem solving exercises in Table 4. As we have only analyzed data
from introductory programming exercises, it may be useful to perform a de-
tailed analysis of the particular exercise considered.

As a general guideline, we propose to use the response time for the classifi-
cation of correct answers. In problem solving, the response time is arguably an
important aspect of the performance, it is readily available and it is the most
universal. However, while the extreme answers are easy to classify (see Fig. 8),
it is not clear how to set the thresholds. One approach, which we elaborate
in Effenberger and Pelánek (2019), is to impose a constraint on the threshold
variation between nearby problem sets, and iteratively improve the thresholds
using a few manually labeled answers around the thresholds.

In some cases, there might be other natural candidates for the class C− in
addition to the response time. For example, if the exercise provides hints, or if
the quality of the solution might be reasonably estimated using code length.

The class I+ can be used for incorrect answers that are close to a correct so-
lution. In introductory programming exercises, the closeness can be measured
by edit distance from a correct solution, and in more advanced programming
exercises by the proportion of passed unit tests.

The class I− might be detected by very low response time or very few per-
formed actions, but our data do not provide support for any obvious choice of
a threshold. Edit distance from a correct solution or a combination of multiple
aspects might be useful.
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Table 4 Proposed classification of answers for problem solving exercises.

C+ low response time, few unnecessary actions
C0 default correct
C− high response time, many unnecessary actions, use of hints, long solution
I+ close to a solution (most tests passed, low edit distance from a solution)
I0 default incorrect
I− very low response time, few actions, large distance from a solution

5 Discussion

We propose a classification framework that distinguishes six classes of answers
in learning systems—three types of correct answers and three types of incorrect
answers). We argue that this approach provides a suitable interface between
raw performance data and diverse applications of such data (e.g., student
modeling, recommendations, feedback). This proposed classification approach
is not meant to be a universally optimal way to process answers; instead, it is
a pragmatic compromise that should facilitate scalable development of adap-
tive learning systems. To conclude, we summarise our proposal, describe an
example of an application, and outline directions that require further research.

5.1 Classification into Six Classes

The proposed approach uses six classes of answers. We have discussed specific
classification criteria for commonly used types of exercises. The degree of sup-
port and usefulness of individual classes of answers depends on the type of
exercise.

For exercises with simple interaction (i.e., selected and constructed re-
sponse), differentiation of correct answers does not seem very natural and
particularly useful, unless the exercise contains hints. It is possible to use re-
sponse times for differentiating correct answers, but we do not see any strong
support for this in data. Moreover, the response time has a strong implicit
effect in the learning—students who answer quickly and correctly simply solve
more items (within a given time) and thus achieve better performance. Using
response time for the classification is therefore probably useful only if building
fluency is an explicit goal of the exercise.

Classification of incorrect answers, on the other hand, can be often done
in a natural way. Near miss answers (class I+) can be determined based on
the structure of answer (compound answer with one partial mistake; edit dis-
tance to correct solution) or based on analysis of common incorrect answers.
Note that when both of these approaches are applicable, they often strongly
correlate—common incorrect answers are often those with exactly one mis-
take. For this classification approach, we have very robust support in our data
analysis results. Non-serious answer (class I−) can be determined based on
fast response times, with a suitable default threshold being the 5th percentile
of response times.
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For problem solving exercises, the full categorization is usable and more
practically important. Consider a case of a simple programming exercise and
two students who solved the exercise correctly: one after 20 seconds, another
after 5 minutes. For each of them, a different recommendation of a follow-up
activity is clearly warranted, i.e., an adaptation based only on the correctness
of answer would be insufficient. The spectrum of performance is, however, in
the case of problems solving rather continuous. It is not clear what aspects of
performance and what thresholds to use for the classification. Problem solving
exercises are also more varied compared to selected and constructed response
exercises. The classification criteria are thus more dependent on the specific
case. We have illustrated the analysis of data for the case of programming
exercises; a similar approach can be used for other types of data.

5.2 Example of Application

To provide a specific illustration of the usage of the classification and of its ad-
vantages, we describe its application in the commercial learning system Umı́me
(umimeto.org). This system contains a wide variety of exercise types and fo-
cuses on the practice of individual knowledge components using principles of
mastery learning. The original version of the used mastery criterion used bi-
nary information about answer correctness processed by an exponential mov-
ing average; see Pelánek and Řihák (2018) for details. One aspect of the used
approach is that a small mistake just before reaching mastery leads to a signif-
icant drop in the progress bar—this behavior is quite frustrating for students.

We have extended the used mastery criterion to take into account the an-
swer classification approach proposed in this paper. Specifically, the new ver-
sion differentiates between different types of wrong answers, e.g., the progress
towards mastery is penalized significantly more for “guess” than for “near
miss”. This differentiation leads to the introduction of new parameters into
the mastery criterion (e.g., how large should be the difference between the
penalization for “guess” and “near miss”?). The usage of the classification sig-
nificantly simplified the design of the extended mastery criterion and setting of
the parameters. It also leads to a modular and maintainable implementation.

5.3 Classification Usage

The proposed categories can be interpreted and used in different ways. In
some applications (like feedback to students) it may be sufficient to consider
only ordinal relations among classes. For many student modeling approaches,
however, we need to assign classes some numerical values. Do we assign them
values uniformly distributed between 0 and 1? The difference between I+ and
C− should be probably larger than the difference between C− and C0, i.e.,
we may want to assign classes specific values between 0 and 1. Is there any
reasonably universal assignment of such values, or do we need to set them
specifically for each application? These questions need further research.
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One of the main applications of performance data is the modeling of stu-
dent knowledge. As we have argued, current student modeling techniques focus
on the use of binary correctness data, but they can be quite directly extended
to use a discrete answer classification. In this work, we evaluated the proposed
classes using it as a trivial student model predicting next problem correctness.
Incorporation of the classification into student modeling techniques can in-
crease or decrease the usefulness of individual classes. These interactions also
require more research.

5.4 Limitations and Extensions

One aspect of learning systems that we covered only briefly and that can
significantly influence the classification is the presence and use of hints. The
availability of hints should clearly be taken into account in the design and
interpretation of a classification for a specific exercise. It is, however, difficult
to discuss hints in more detail on a general level as hints differ widely in their
content (from a weak hint that guides students to the right direction to a
strong hint that describes all details of a solution) and their availability (e.g.,
on demand, automatic after an incorrect answer, or dynamically based on a
student model).

In this work, we consider classification based on data about a single answer.
Contextual data (data about a whole sequence of answers) can be useful for
distinguishing random guessing from misclicks or fluent, correct answers from
lucky guesses (as outlined in Section 3.3). Such use of contextual data can be
done as a second step, using a sequence of answers classified into the proposed
six classes. Such a two-step approach leads to some loss of information, but it
is simpler and more easily generalizable. The use of contextual data for answer
classification, however, needs more research.

Instead of classifying just single answers, it would be possible to classify
student’s performance over a whole sequence of answers, i.e., performance on
a knowledge component. The basic approach to such classification is again
binary—in this case into “mastered” and “not mastered”. A more nuanced
classification would be useful for sequencing and recommendation of knowl-
edge components, specifically for spaced repetition of practice: if a student
mastered a knowledge component with a struggle, it makes sense to propose
an early repetition of practice; if a student mastered a knowledge component
without any problems, repetition of practice is probably not necessary. Such
classification could be done in a similar way to the classification presented in
this work.
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Effenberger, T. and Pelánek, R. (2019). Measuring students performance on
programming tasks. In Proceedings of Learning at Scale. ACM.

Gierl, M. J., Bulut, O., Guo, Q., and Zhang, X. (2017). Developing, analyzing,
and using distractors for multiple-choice tests in education: A comprehensive
review. Review of Educational Research, 87(6):1082–1116.

Goldin, I., Koedinger, K., and Aleven, V. (2013). Hints: You can’t have just
one. In Proceedings of Educational Data Mining.

Hattie, J. and Gan, M. (2011). Instruction based on feedback. Handbook of
research on learning and instruction, pages 249–271.

Inventado, P. S., Scupelli, P., Ostrow, K., Heffernan, N., Ocumpaugh, J.,
Almeda, V., and Slater, S. (2018). Contextual factors affecting hint util-
ity. International Journal of STEM Education, 5(1):13.

Klinkenberg, S., Straatemeier, M., and Van der Maas, H. (2011). Computer
adaptive practice of maths ability using a new item response model for on the
fly ability and difficulty estimation. Computers & Education, 57(2):1813–
1824.

Masters, G. N. (1982). A rasch model for partial credit scoring. Psychometrika,
47(2):149–174.

McTavish, T. S. and Larusson, J. A. (2014). Labeling mathematical errors
to reveal cognitive states. In Open Learning and Teaching in Educational
Communities, pages 446–451. Springer.

Merceron, A. and Yacef, K. (2005). Clustering students to help evaluate learn-
ing. In Technology Enhanced Learning, pages 31–42. Springer.

Mettler, E., Massey, C. M., and Kellman, P. J. (2011). Improving adaptive
learning technology through the use of response times. In Proceedings of
Conference of the Cognitive Science Society, pages 2532–2537.

Molenaar, I. and Knoop-van Campen, C. (2017). Teacher dashboards in prac-
tice: Usage and impact. In Proceedings of European Conference on Technol-
ogy Enhanced Learning, pages 125–138. Springer.

Nam, S., Frishkoff, G. A., and Collins-Thompson, K. (2017). Predicting short-
and long-term vocabulary learning via semantic features of partial word
knowledge. In Proceedings of Educational Data Mining.



Classification of Students’ Answers in Learning Systems 27

Ostrow, K., Donnelly, C., Adjei, S., and Heffernan, N. (2015). Improving stu-
dent modeling through partial credit and problem difficulty. In Proceedings
of Learning at Scale, pages 11–20. ACM.
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Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and be-
yond: an overview of learner modeling techniques. User Modeling and User-
Adapted Interaction, 27(3):313–350.
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Pelánek, R. and Řihák, J. (2016). Properties and applications of wrong answers
in online educational systems. In Proceedings of Educational Data Mining,
pages 466–471.

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., and
Sohl-Dickstein, J. (2015a). Deep knowledge tracing. In Proceedings of Ad-
vances in neural information processing systems, pages 505–513.

Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., and
Guibas, L. (2015b). Learning program embeddings to propagate feedback
on student code. In Proceedings of International Conference on Machine
Learning, volume 37 of ICML’15, pages 1093–1102.

Shih, B., Koedinger, K. R., and Scheines, R. (2011). A response time model
for bottom-out hints as worked examples. Handbook of educational data
mining, pages 201–212.

Stephens-Martinez, K., Ju, A., Parashar, K., Ongowarsito, R., Jain, N.,
Venkat, S., and Fox, A. (2017). Taking advantage of scale by analyzing
frequent constructed-response, code tracing wrong answers. In Proceedings
of International Computing Education Research, pages 56–64. ACM.

Straatemeier, M. (2014). Math Garden: A new educational and scientific in-
strument. PhD thesis, Universiteit van Amsterdam, Faculty of Social and
Behavioural Sciences.
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