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ABSTRACT

Additive Factors Model is a widely used student model, which
is primarily used for refining knowledge component models
(Q-matrices). We explore the robustness and generalizability
of the model. We explicitly formulate simplifying assumptions
that the model makes and we discuss methods for visualizing
learning curves based on the model. We also report on an
application of the model to data from a learning system
for introductory programming; these experiments illustrate
possibly misleading interpretation of model results due to
differences in item difficulty. Overall, our results show that
greater care has to be taken in the application of the model
and in the interpretation of results obtained with the model.
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1 INTRODUCTION

Student modeling is a key element of the development of
intelligent learning systems. Currently, there are two main
families of student models: hidden Markov models (including
the much-studied Bayesian Knowledge Tracing model) and
logistic models [26]. One widely used model from the logistic
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family is the Additive Factors Model (AFM). A key feature
of AFM is that it considers several knowledge components
(skills) for each item.

AFM is mostly used in a different way than other models. A
typical application of a student model is to provide estimates
of student skills and the probability that the next answer will
be correct [26]. These estimates are used to guide the online
behavior of an adaptive system, e.g., to choose questions of
suitable difficulty or to serve as a mastery criterion. AFM
is used for a different purpose—an offline analysis of data
with the goal to refine the domain model, specifically the
mapping of items to knowledge components, which is often
called Q-matrix. Table 1 provides a simple example of such
a Q-matrix. The example also illustrates typical questions
that we face when specifying a Q-matrix: Should + and
− be two separate knowledge components, or is it better
to merge them? Should we introduce additional knowledge
components, e.g., “priorities of operators” or “working with
negative numbers”? In a typical application of AFM, the
model is used for answering such questions by analysis of
data about student performance.

Table 1: An example of a Q-matrix.

− + × ()

10 + 3× 2 0 1 1 0
(7− 4)× 3 1 0 1 1
2 + (3 + 5) 0 1 0 1
8− (6 + 2) 1 1 0 1
5− 2× 6 1 0 1 0

AFM has been used in many studies, e.g., [1, 16, 17, 19–21,
23, 29] (we provide a more detailed discussion of these studies
below). Most of these studies do not pay much attention
to methodological details of parameter fitting and model
comparison, e.g., the specific division of data into training
and testing set, or the choice of metrics. Recent research,
however, shows that such details may be important [27]. AFM
also makes many simplifying assumptions about the learning
process. These assumptions are not taken into account or
even explicitly acknowledged in many AFM studies. It is
thus not clear, how robust are the results reported in existing
studies and whether the reported results generalize to other
settings.

The purpose of this paper is thus to explore the robustness
and generalizability of the Additive Factors Model. We aim
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to identify and clearly describe the limitations of the model
and potentially dangerous consequences of ignoring these
limitations (e.g., misleading interpretation of results). We
also focus on learning curves, which are often used to visualize
the results obtained using AFM, but their exact computation
is typically not specified. We discuss four types of learning
curves and their (dis)advantages.

To explore the model, we use data from a learning sys-
tem for introductory programming. This dataset has several
aspects that are quite common and were not much studied
in previous research with AFM, e.g., an important role of
response times or the presence of attrition bias in data. These
characteristics enable us to check the generalizability of the
model.

Our explorations show that the results obtained with the
AFM have to be interpreted carefully. Previous research
often takes several different Q-matrices, fits AFM parameters
for these Q-matrices, compares the predictive accuracy of
the fitted models, and concludes that the Q-matrix with
the best fit provides the best model of the studied domain.
This can be misleading when the underlying assumptions
of AFM are not satisfied. Specifically, the model ignores
differences in the difficulty of items that belong to the same
knowledge component. If the data contain such differences,
the model may use knowledge components in Q-matrix just to
compensate for the missing difficulty parameter. Our results
show that even the addition of a purely random knowledge
component can sometimes improve model predictions.

2 THE BASIC ADDITIVE FACTORS
MODEL

The Additive Factors Model has been proposed by Cen et
al. [3] provides a discussion of the basic version of AFM and
proposes moreover “learning factors analysis” (LFA), which
combines AFM with an automated A* search to find the best
model. [2] provides an extended discussion of AFM and LFA.
A recent review [5] provides a good summary of the model
and description of details of model parameter fitting (which
are missing in most other papers using AFM). We follow the
notation used in this review (which is mostly the same as in
other AFM papers).

2.1 Model Formulation

Additive Factors Model predicts the probability that a stu-
dent 𝑖 will answer an item 𝑗 correctly. The model is multi-
dimensional—each item can be mapped to several knowl-
edge components (through a 𝑄-matrix), parameters of these
knowledge components influence the predicted probability of
success. The model is described by the following equation:

𝑃 (𝑌𝑖𝑗 |𝛼, 𝛽, 𝛾) = 𝜎

(︃
𝛼𝑖 +

𝐾∑︁
𝑘=1

𝛽𝑘𝑞𝑗𝑘 +

𝐾∑︁
𝑘=1

𝛾𝑘𝑞𝑗𝑘𝑡𝑖𝑘

)︃
where:

∙ 𝑖 is student index, 𝑗 is item index,
∙ 𝑌𝑖𝑗 is the binary response of a student 𝑖 on a item 𝑗,

∙ 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) is the standard logistic function,
∙ 𝐾 is the number of skills, 𝐽 is the number of items,
∙ 𝑄 is the 𝐽 × 𝐾 binary matrix – 𝑞𝑗𝑘 is the indicator
that item 𝑗 uses skill 𝑘,

∙ 𝛼𝑖 is the proficiency (prior skill) of a student 𝑖,
∙ 𝛽𝑘 is the easiness of skill 𝑘,
∙ 𝛾𝑘 is the learning rate for skill 𝑘,
∙ 𝑡𝑖𝑘 is the number of times student 𝑖 has practiced skill
𝑘 (opportunity count).

The model can be seen as an extension of basic Item re-
sponse theory models (specifically Rasch model) with learning
(for the discussion of relation to IRT see [5]).

2.2 Model Assumptions

AFM makes many simplifying assumptions, which are clearly
not satisfied in practical situations. This is not necessarily a
problem since all models are wrong and the use of simplifica-
tion in modeling learning is unavoidable. It is, however, useful
to explicitly formulate the used simplifying assumptions and
to be aware of them when using the model.

The main simplifying assumptions are the following:

∙ Students differ only in a unidimensional prior skill. The
differences in prior skill are not specific to individual
knowledge components. All students have the same
learning rates.

∙ All practice opportunities are considered equal. Student
performance is not taken into account.

∙ Learning is linear (on the logit scale).
∙ Observed outcomes are binary. Other aspects of stu-
dent performance, like “response time” or “near miss
answers”, are either not available or are ignored.

∙ The relation of items to skills is binary, i.e., we cannot
express the fact that some item is related to one skill
more significantly than to others.

∙ The model uses a compensatory model of skills, i.e.,
insufficient practice of one skill can be compensated by
the practice of another skill.

∙ The model ignores the difficulty of items, i.e., two
items with the same mapping to skills are considered
interchangeable.

∙ The model does not take into account any biases in
data, e.g., a mastery attrition bias (which occurs when
the number of items solved is correlated with prior
skill).

There exist extensions of the model which address some
of these limitations (see discussion in Section 3.2), but most
studies that applied the model use the basic version.

2.3 Parameter Fitting

To use the model, we need to estimate its parameters. Specif-
ically, we need to estimate the vectors 𝛼 (student skills), 𝛽
(easiness of skills) and 𝛾 (learning rate for skills) based on
the available data on student performance (𝑌𝑖𝑗 , 𝑡𝑖𝑗) and the
provided matrix 𝑄. The parameter estimation can be done
by maximizing the penalized likelihood (with a regularization
term on 𝛼), see [5] for detailed derivation.
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There are off-the-shelf tools for maximizing the penalized
likelihood, but care has to be taken to prepare the data for
the optimizer properly. For example, if practice opportunities
counts are disproportionately high (compared to the other
features in the model, which are just binary), it might be
crucial to normalize them to the 0–1 range, in order for the
optimizer to pay attention to all parameters. We discuss other
methodology choices in Section 5.3.

The basic applications of AFM are to fit a model and then
explore the obtained learning curves (based on 𝛽, 𝛾 values)
and to compare models based on different 𝑄 matrices to see
which one is better, i.e., which 𝑄 matrix better describes the
learning domain.

2.4 Model Comparison

To compare models, we need to quantify their predictive
ability. Previous research used two approaches for such com-
parison. The first approach is to use metrics like the Akaike
information criterion (AIC) and Bayesian information cri-
terion (BIC), which combine the likelihood of observations
with a penalty for the number of parameters. The second ap-
proach is to use cross-validation, where the model is trained
on a subset of the data and evaluated on a separate test set.
The cross-validation approach is a better estimation of the
ability of the model to generalize but is more computationally
demanding, which may be a problem in some applications
of AFM (specifically the Learning Factors Analysis, which
performs a search over Q-matrices).

The cross-validation approach involves several decisions,
which are often not reported in previous studies using AFM.
We have to divide data into a training set and testing set.
This can be done in several ways [27]. In the case of AFM
applications, a natural approach is to use student-level divi-
sion, i.e., all observations for a single student are included
either in a training set, or a test set. With this kind of data
division, it is not clear how to treat the 𝛼 parameters. Since
the training and testing set do not share student, the trained
𝛼 parameters are not directly useful for predictions on the
testing set (their role is to enable us to get better estimates
of 𝛽 and 𝛾 parameters). For students in the testing set, we do
not have any 𝛼 estimates. Assuming that 𝛼 parameters are
regularized in parameter fitting, we can use 0 as a reasonable
default value for 𝛼 for students in the testing set. It would
be possible to update the 𝛼 estimate after each observation
in the testing set by finding a maximum likelihood estimate.
Such update, however, is not trivial and it does not seem that
any previous work using AFM uses this approach. Another
decision concerns the choice of a performance metric; a typi-
cal choice is the Root Mean Square Error (RMSE) metric,
although other choices are possible [25].

2.5 Methodological Issues

Most AFM applications rely on parameter fitting support in
DataShop [15] and do not consider methodological issues in
great detail. However, few recent works have explored the

potential impact of biases in data on parameter fitting of
AFM.

Käser et al. [14] studied the impact of biases, specifically
of the mastery attrition bias. They analyzed the impact of
the bias on model fit for AFM and several of its variants.
An interesting aspect of this work is that they consider not
only the common cross-validation evaluation but also the
prediction of student re-test results. Goutte et al. [13] used
simulated data to analyze the impact of attrition bias on
learning curves produced using AFM; they also propose an
alternative way to compute learning curves and test it using
both simulated and real data. Durand et al. [6] focus on
the issue of parameter fitting in AFM, estimating not just
the parameter values, but also standard errors of model
parameters.

3 USE OF AFM IN PREVIOUS WORK

After the overview of the basic Additive Factors Model, we
now provide the discussion of its applications. We also men-
tion several of its extensions and variations.

3.1 Applications of the Model

The model has been applied quite widely in recent years,
mostly in its basic form. Aleven and Koedinger [1] and Liu and
Koedinger [19] provide a high-level discussion of knowledge
component modeling, including the use of AFM.

Examples of specific analysis are provided by [16], who
describe analyzes of 11 datasets which leads to finding better
models (with respect to predictive accuracy). To really show
that the newly found models are “better”, it is necessary to
apply them in a learning system and show an improvement
in learning gains of students. This type of analysis has been
called “closing the loop”. One typical early example is by
Koedinger et al. [17], who used AFM to identify poorly fitting
knowledge components and to propose possible improvement.
Based on the model results, the tutoring system was redesign,
and the intervention was tested using an experiment; the
results showed better learning (as measured by a post-test).

In a similar manner, AFM has been used in other studies,
mostly for analysis of data from learning systems for math-
ematics. Liu et al. [20] used Learning Factors Analysis to
find model improvements in the domain of geometry. Long
et al. [21] compared several manually specified Q-matrices in
the domain of algebra (solving equations); their conclusion
was that more fine-grained models are better. Nguyen et
al. [23] presented a similar type of analysis for the topic of
fractions and decimals. Rivers et al. [29] used AFM to fit data
from programming; focusing on analyzing learning curves for
different concepts, trying to find out “what students strug-
gle with”. All these works are based on support for AFM
available in DataShop [15].
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3.2 Extensions and Variants

The basic model is based on many simplifying assumptions.
The model can be extended to remove some of these sim-
plifications. Several such extensions have been explored in
previous work.

AFM takes into account only the number of student’s
attempts on a knowledge component. Performance Factor
Analysis [24] is an extension of the basic model that takes
the student performance into account—distinguishing cor-
rect and incorrect answers. This approach has been further
extended to take recency of attempts into account [11]. From
a modeling point of view, PFA is only a slight extension of
AFM. Considering the practical usage, the two models are
quite different. AFM is used mainly for refinement of domain
models (where the predictions for individual students are
not of primary interest), whereas PFA is used more in the
context of estimation of student skills; in previous research, it
has been often compared to Bayesian knowledge tracing [12].

Another slight extension of the model, this time more
in the domain modeling directions, is the extension with in-
structional steps. Instructional Factor Analysis [4] adds a new
element to the model—the number of “tell steps”, i.e., occa-
sions where the student was provided with some information
from the system without actively giving an answer.

Another extension addresses one of the simplifying assump-
tions of the model: “all students learn at the same rate”. Liu
and Koedinger [18] studied an extension of AFM with individ-
ualized student learning rates. The extended model, however,
did not lead to improved results; the extension introduces a
large number of new parameters which are hard to fit. They
also tried clustering of students into groups and introducing
group learning rates; this variant led to an improvement.

4 LEARNING CURVES

Once fitted, AFM is often visualized and interpreted using
learning curves, which display how the failure probability
for individual concepts depends on the practice opportunity
count (e.g., [16, 21, 23, 29]). There are several reasonable
ways to compute learning curves, each having some consider-
ations and disadvantages. In previous research, a description
of the computation is often not reported, although, as we
show in this section, different computations can lead to sig-
nificantly different learning curves. The different types of
learning curves also require different interpretation, so stat-
ing the type of the learning curve is important to avoid wrong
conclusions.

Four basic types of learning curves are summarized in Ta-
ble 2. All these curves estimate the probability of failure for a
given concept 𝑘 and practice opportunity count 𝑡; the differ-
ence is in the data used for the estimation. The definitions of
these learning curves in the following text are adapted from
[13], but are made more explicit to avoid possible ambiguity.
Attempt refers to the information about the item and student
history needed by a fitted AFM for prediction: index of the
student (𝑠𝑎), which concepts are contained in the item (�⃗�𝑎),
and how many times the student practiced each of them

Table 2: The types of learning curves according to
which data for its computation are observed, simu-
lated, or predicted by the model. Column Opportu-
nity denotes the number of practice opportunities
for the considered concept.

Type Attempt Opportunity Success

empirical observed observed observed
marginal observed observed predicted
completed observed simulated predicted
idealized simulated simulated predicted

before (⃗𝑡𝑎). Opportunity 𝑡 denotes specifically the number
of previous practice opportunities on items containing the
considered concept 𝑘. This information is already a part of
the attempt but is sometimes treated differently from the
rest.

We use 𝑃 (𝑠𝑎, 𝑞𝑎, �⃗�𝑎) to denote the predicted probability
of success for an attempt 𝑎 of a student 𝑠𝑎 to solve an item
containing concepts encoded by vector �⃗�𝑎 if the student had
had (at the given moment) the numbers of previous practice

opportunities according to the vector �⃗�𝑎:

𝑃 (𝑠𝑎, 𝑞𝑎, �⃗�𝑎) = 𝜎(𝛼𝑠𝑎 + 𝛽 · �⃗�𝑎 + �⃗� · (�⃗�𝑎 ⊙ �⃗�𝑎))

where 𝛼, 𝛽, 𝛾 are the fitted parameters of the examined AFM
and ⊙ is element-wise multiplication.

To illustrate the definitions of various learning curves and
their differences, we use a simulated experiment. In the first
step, we generate attempts by an AFM for 300 students and
15 items. The first 5 items contain a single concept 𝑘1 with
𝛽 = 2, 𝛾 = 0.1 (easy from the beginning, but only small
improvements after repeated exposures to the concept). The
next 10 items contain 𝑘1 and another, more difficult concept
𝑘2 with 𝛽 = −2, 𝛾 = 0.3. All students have the same prior
knowledge 𝛼𝑖 = 0. In the second step, we use the same AFM
as was used for data generation (i.e., the true model) to make
predictions about the failure of each attempt.

Figure 1 shows the four different learning curves for the
concept 𝑘1 in two scenarios (the first 10 practice opportu-
nities). In the first scenario (on the left), items are visited
in random order; in the second (on the right), the items are
visited in the fixed order, with 10% chance to skip each item.
We discuss the properties of individual learning curves in the
following subsections; for now, note how much differently can
different types of learning curve appear and how their shape
can be affected by data collection biases. Specifically, the
second scenario illustrates how the item ordering bias can
cause some learning curves to increase, even if the predictions
are made by the true model.

4.1 Empirical learning curve

Empirical learning curve uses only the observed performances
and computes their average for all attempts in which the
item contained the given concept and the student had had
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Figure 1: Learning curves for data generated by an
AFM and predictions made by the same model. The
right scenario illustrates effect of item ordering bias.

previously exactly the given number of opportunities to prac-
tice this concept. We denote this set of all attempts collected
for the given concept 𝑘 at practice opportunity count 𝑡 as
𝐴𝑘𝑡 and the observed binary success of attempt 𝑎 as 𝑜𝑎:

𝐿𝐶𝐸
𝑘 (𝑡) = avg(1− 𝑜𝑎 | 𝑎 ∈ 𝐴𝑘𝑡)

The empirical curve is a direct display of the collected data,
without the intermediate step of fitting a model. As such, it
has the most straightforward interpretation, but it is also the
most susceptible to biases and noise in the data.

4.2 Marginal learning curve

Marginal learning curve uses the predicted performances of
the fitted AFM; otherwise, the formula is the same as for the
empirical learning curve.

𝐿𝐶𝑀
𝑘 (𝑡) = avg(1− 𝑃 (𝑠𝑎, 𝑞𝑎, �⃗�𝑎) | 𝑎 ∈ 𝐴𝑘𝑡)

This is sometimes called a model curve in previous AFM
studies [13] and marginal plot or M-plot in other contexts
[22]. It is usually used to visually assess how well the model
fits the observed data. As it is basically just a smoothed
version of the empirical curve, it is similarly susceptible to all
data collection biases, even if the model itself is unbiased. For
example, even if the explored concept does not influence the
failure rate at all, the marginal learning curve would not be
constantly zero because of other concepts whose occurrence
correlates with this one. Figure 1 illustrates how a correlated
concept can inflate a visualized difficulty (left) and how the
item ordering bias can lead to an increasing marginal learning
curve (right).

4.3 Completed learning curve

Completed learning curve uses the collected attempts on the
concept 𝑘 (𝐴𝑘 =

⋃︀
𝑡 𝐴𝑘𝑡), but ignores the observed number

of previous opportunities, substituting 0, 1, 2, . . . , 𝑁 , where
𝑁 is the highest practice opportunity count to display in
the learning curve plot. This process can be viewed as data
augmentation, replicating each observed attempt (𝑁 + 1)
times and changing its value of 𝑡𝑘, followed by computing the

average prediction as for the marginal learning curve. We use
notation 𝑃 (𝑠𝑎, 𝑞𝑎, �⃗�𝑎, 𝑡𝑘=𝑡) to denote the prediction of the
AFM for the attempt 𝑎 in which the practice opportunity for
the concept 𝑘 is replaced by value 𝑡:

𝐿𝐶𝐶
𝑘 (𝑡) = avg(1− 𝑃 (𝑠𝑎, 𝑞𝑎, �⃗�𝑎, 𝑡𝑘=𝑡) | 𝑎 ∈ 𝐴𝑘)

To understand the difference between the marginal and com-
pleted learning curves, consider a Q-matrix with only two
concepts, 𝑘1 and 𝑘2 and assume we want to compute the
failure rate for concept 𝑘1 at the practice opportunity 𝑡 = 3.
The marginal learning curve would estimate the failure rate
from attempts with 𝑘1 = 1 and 𝑡1 = 3 (and arbitrary values
of 𝑘2 and 𝑡2), while the completed learning curve would es-
timate the failure rate using all attempts with 𝑘1 = 1 (and
arbitrary values of 𝑡1, 𝑘2 and 𝑡2), substituting 𝑡1 = 3 before
computing the predictions.

This definition differs from the definition of the completed
learning curve in [13], in which attempts are simulated only
after the last observed attempt of each student, and observed
success is used rather than the predicted one whenever avail-
able. However, it is not clear (and not specified in the paper),

how to set �⃗�𝑎, �⃗�𝑎 for the imputed attempts.
The completed learning curve (as defined in our paper) can

be understood as an instance of a more general partial depen-
dence plot [10], which is used in the area of interpretability
of machine learning models, here applied to slice of data for
a given concept 𝑘.

Advantage of the completed learning curve is that it uses
the same population of items for each practice opportunity
count, diminishing the effect of item ordering and attrition
biases on the visualization, as can be seen in Figure 1 (right).
Of course, it only helps if the model itself is not biased. An-
other caveat is that in the process of data augmentation, it
creates possibly unrealistic attempts with unlikely combina-
tions of practice opportunities for concepts whose occurrence
correlates.

4.4 Idealized learning curve

Idealized learning curve does not use any observed data at
all. It computes the probability of failure for an imaginary
item that only contains a single concept and an imaginary
average student 𝑠0 with 𝛼𝑠0 = 0:

𝐿𝐶𝐼
𝑘(𝑡) = 1− 𝑃 (𝑠0, 𝑞=0⃗, 𝑞𝑘=1, �⃗�=0⃗, 𝑡𝑘=𝑡) = 𝜎(𝛽𝑘 + 𝛾𝑘𝑡)

Not using any observed data means no influence of data
collection biases, but, again, only provided that the model
itself is not biased. While the interpretation of this learning
curve is simple, it might not be much useful, because the
imaginary item is unrealistic, as the actual items usually
contain multiple concepts.

5 APPLICATION TO INTRODUCTORY
PROGRAMMING DATA

In this section, we apply AFM to real data from introductory
programming. As in previous studies, we define several Q-
matrices, fit them to a subset of our data, and evaluate
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Table 3: Evaluated Q-matrices and covered concepts.
Game concepts are emphasized by italics.

Name Concepts

Q1 teleports, collectables, obstacles, destructibles, pro-
gram length limit, sequences, while, repeat, loop,
nested-loops, if, else, test, nested control struc-
tures, comparison

Q2 teleports, collectables, obstacles, destructibles, se-
quences, while, repeat, nested loops, if, else

Q3 sequences, while, repeat, nested loops, if, else
Q4 sequences, loop, nested loops, test

the fitted models on the remaining test set to see which
model performs best. The best AFM is then used to identify
relevant concepts, their difficulties, and learning curves. Our
goal in this study, however, is not to obtain conclusions
about a suitable domain model for learning introductory
programming; rather, we are interested in how well AFM
generalizes to this new context. Therefore, we repeat this
experiment with various methodology choices to see their
influence on the potential interpretations of the results.

5.1 Data

We use data from RoboMission (en.robomise.cz), an adap-
tive system for learning introductory programming [8]. In
RoboMission, students build programs using a block-based
programming interface to solve problems in a grid microworld.
The items practice basic programming concepts like sequences
of commands, conditional statements, and loops. The system
uses adaptive recommendations of items to solve. The data
contains 85, 000 attempts of 5, 800 students to 85 items [7]. In
these analyses, we use only the correctness information about
each attempt, i.e., whether the student eventually solved the
item or not.

5.2 Models

We evaluate three variants of AFM: (1) AFM-BG, which is a
simplified AFM without student prior skills (i.e., 𝛼𝑖 = 0 for
all 𝑖), (2) AFM-ABG, which is a full AFM, and (3) AFM-
BGT, which is AFM-BG with an additional parameter per
each item, allowing for different difficulties of items with the
same concepts; the motivation for this extension is explained
in Section 5.4. Each of the three AFM variants is used with
four Q-matrices of different granularity. Table 3 lists the
concepts covered by each Q-matrix.

Additionally, we compare the performance of AFMs to two
baseline models. The first is global-avg, which always predicts
the global success rate (computed from all attempts in the
training set), and the second is item-avg, which predicts the
success rate per item.

5.3 Methodology Choices

There is a myriad of methodology choices that one needs to
decide in order to fit and compare multiple AFMs. We are
interested in how critical these choices are, i.e., which choices
could influence the ordering of the fitted models with different
Q-matrices, and consequently the interpretation about the
domain model. Broadly, these choices can be divided into
three categories: data preprocessing, fitting, and evaluation.

Data preprocessing includes filtering, transformations, and
resampling. Repeated attempts are usually filtered, as well
as students or items with too few attempts. We have found
necessary to normalize practice opportunities counts to the
0–1 range, in order for the optimizer not to ignore some of
the parameters. Other strategies such as log-normalization or
capping of the practice opportunities counts can be employed
instead, or in the combination with the 0–1 normalization.

If there are too few failures, the models might overfocus
on the dominant successful attempts. One possible remedy
is to redefine success to obtain a more balanced distribution
of classes [5]. There are several performance measures that
could be considered for introductory programming, using
either response time or execution count [9].

Another remedy is to undersample successful attempts
or oversample the failed ones. Resampling can also be used
to reduce other biases in data; for example, balancing item
population to get the same proportions of attempts for each
item. If just a few easiest items have most attempts (as
is the case in RoboMission), this technique will eliminate
the danger of the model neglecting the more difficult items.
Similarly, balancing student pathways through items could
help to reduce attrition and item ordering biases in the data.

Fitting the model requires the choice of an optimizer, to-
gether with a regularization strength (which is in the original
model applied only on 𝛼𝑖, but may be helpful to add to other
parameters as well). As the standard randomized 𝑘-fold cross-
validation would lead to predicting past information from the
future attempts, a cross-validation scheme that avoids this
issue should be used; e.g., using time-aware or student-level
splits [27]. Finally, the best model can be chosen according to
many reasonable metrics, e.g., RMSE, AUC, precision, recall,
F1, or balanced accuracy.

Figure 2 shows that while filtering students with few at-
tempts affects the measured RMSE, it does not change the
ordering of the Q-matrices according to the model perfor-
mance. In the following experiments, we always filter students
with less than 10 attempts.

The ordering of Q-matrices is also robust with respect
to the evaluation metrics, as shown in Figure 3. However,
the ability to distinguish between different models varies
across metrics; most notably the AUC metric leads to nearly
identical values for the AFM-BG and AFM-ABG models and
similarly for AFM-BGT models with different Q-matrices.
Also the relative performance compared to the item-average
baseline varies: in RMSE and AUC metrics, only the AFM-
BGT model outperforms this baseline, while in the balanced
accuracy metric, also AFM-BG (with Q1 or Q2) outperforms
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Figure 2: Effect of the choice of threshold for filter-
ing students on the ordering of Q-matrices according
to the RMSE of corresponding AFMs. Vertical bars
show 95% confidence intervals based on 10 repeated
experiments.

it, and all the AFM variants outperform the baseline in the
F1 metric (with Q1, Q2, and Q3 matrices).

In the above experiments, we use 5-fold student-level cross-
validation, which means that all attempts of a single student
are either in the training set or the test set, reflecting the
requirement for generalization to new, unseen students. As
expected, randomized 𝑘-fold cross-validation, but also the
version with time-aware splits, lead to too optimistic RMSE
compared to the student-level cross-validation scheme. How-
ever, even this methodology choice does not influence the
ordering of Q-matrices on our data (Figure 4).

To summarize, ordering of AFMs is robust with respect to
the filtering of students with few attempts, chosen evaluation
metric, and cross-validation scheme, at least on our data.
This does not mean that these choices necessarily does not
matter at all—they may still influence other aspects, such as
predictions on different subpopulations, or the values of fitted
AFM parameters, which are important for conclusions about
the learning domain. A deeper analysis of these aspects is
left for future work.

5.4 Q-matrix Granularity and Item
Difficulty

On the programming data, AFMs achieved lower RMSE
than the global success rate baseline, but not higher than
the item success rate baseline (Figure 3). The AFM assumes
that the items with identical rows in the Q-matrix have the
same difficulty, which is violated in our data. An undesirable
consequence is that the most fine-grained Q-matrix minimizes
the RMSE, even if it is a less truthful picture of reality, just
because more item-related parameters allow to predict more
closely at least the item success rates. Dangerously, even
completely made-up concepts can help the AFM to more
closely emulate the item success rate predictor. Consider
the following experiment: select a random number of new
concepts (1–10) and assign each to 10% of randomly selected
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Figure 3: Effect of the choice of evaluation metric on
the ordering of Q-matrices according to the perfor-
mance of corresponding AFMs. The arrows indicate
optimization direction—for RMSE, the lower is bet-
ter, for AUC, F1, and Balanced Accuracy, the higher
is better. In the AUC plot, the blue line (AFM-BG
model) is hidden below the green line (AFM-ABG
model). Vertical bars show 95% confidence intervals
based on 10 repeated experiments.

items. In our data, adding these made-up concepts results
in slightly lower RMSE on average, with improvement in
60% of experiments (mean difference of −0.001). Without
considering the violated assumptions of the model, such a
result could lead to a false conclusion that the made-up
concepts are true and reflect the learning domain.

As a solution, the AFM can be combined with the item
average model. Alternatively, the Q-matrix can be extended
by adding a special concept for each item. This results in an
improvement over the item success rate model, which means
that the concepts bring some new information (the red line
in Figure 3). Also, while the most granular Q-matrix (Q1)
still results in the lowest RMSE, the differences between the
other matrices is now lower (the difference in RMSE between
Q1 and Q4 drops from 0.011 to 0.002).

On the other hand, adding student priors did not result
in a decrease of RMSE on our data and even led to worse
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Figure 4: Effect of the choice of cross validation set-
ting on the ordering of Q-matrices according to the
performance of corresponding AFMs. Vertical bars
show 95% confidence intervals based on 10 repeated
experiments.

performance on some other metrics (the green line in Fig-
ure 3). All three AFM variants lead to the same ordering of
Q-matrices.

5.5 Learning Curves

Figure 5 shows learning curves using AFM with the most
granular Q-matrix (AFM-BG-Q1 model) for four concepts in
RoboMission. As the students generally progress from easier
to more difficult items (item ordering bias), the empirical
learning curves are increasing. Consequently, marginal learn-
ing curves are expected to increase as well, in order for the
model to fit the observed data. On the other hand, if the
model would not be susceptible to the item ordering bias, the
completed and idealized learning curves should be decreasing,
because the points on each curve are computed from the
same population of items.

AFM is, however, susceptible to the item ordering bias.
For this reason, even the completed and idealized learning
curves are either increasing or approximately constant. This
illustrates that if the assumptions of AFM are not met, model
parameters try to compensate for the violations and, as a
result, they do not retain their original interpretation as the
initial concept easinesses and learning rates. Interpreting the
model parameters or visualized learning curves in this way
would lead to false conclusions.

6 CONCLUSIONS

Our explorations of the Additive Factors Model show that the
current state-of-the-art of the application of the model is not
careful enough. The model makes many assumptions, which
are clearly not completely satisfied in real applications. This
is necessary as every model makes assumptions. However, it
is important to be aware of these assumptions, discuss them
explicitly, and check whether they are reasonably satisfied.
Our experiments show that when assumptions are violated,
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Figure 5: Learning curves for two game concepts (top
row) and two programming concepts (bottom row)
using AFM fitted on the data from RoboMission.

an analysis based on the model can easily lead to misleading
conclusions. In our case of items of different difficulty, AFM
predictions can be improved even by the addition of a random
knowledge component.

We would like to clarify that we do not claim that pre-
vious studies based on the Additive Factors Model present
misleading results. Interpretations obtained in some of these
studies have been used to redesign a tutoring system and the
improved version was rigorously tested in an experiment (e.g.,
[17]). But we believe that the methods used in the current
research could potentially lead to misleading results and thus
that greater care should be taken. Specifically, many AFM
studies compare only several variants of the model with differ-
ent Q-matrices. A basic step to improving the state-of-the-art
is to include in the comparison also basic baselines like “item
average”. When predictions of a fitted model are worse than
such simple baseline (as happened in some of our cases), we
should check which model assumptions are being violated.

Our explorations also show difficulties in replicating previ-
ous work. Many important details are not explicitly described,
e.g., the details of parameter fitting procedures, the details of
the used experimental methodology (e.g., the division of data
into a training set and a testing set, treatment of student
parameters 𝛼 in the testing set), or the exact method used
for computation of learning curves. We have explored and
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described some of these details; some of them can nontrivially
influence the results of model comparison.

For our analysis, we have explored data about introduc-
tory programming. For our data, AFM does not provide
satisfactory fit and insights. One important simplifying AFM
assumption, which is not satisfied in this domain, is that
the relevant information about student performance is given
by the observed binary outcome (solved/unsolved). In pro-
gramming exercises, other aspects of student performance
(specifically problem solving times) contains important infor-
mation for modeling. AFM could be rather naturally modified
to model problem solving time (leading to a model analogical
to multidimensional model of problem solving times reported
in [28]). We consider this an interesting direction for further
research.
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[25] Radek Pelánek. 2015. Metrics for Evaluation of Student Models.
Journal of Educational Data Mining 7, 2 (2015), 1–19.
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