Recommender Systems: Content-based, Knowledge-based, Hybrid

Radek Pelánek

2017
Today

- lecture, basic principles:
 - content-based
 - knowledge-based
 - hybrid, choice of approach, . . .
 - critiquing, explanations, . . .

- discussion – projects
 - brief presentation of your projects
 - application of covered notions to projects
 ⇒ *make notes during lecture*
Content-based vs Collaborative Filtering

- collaborative filtering: “recommend items that similar users liked”
- content based: “recommend items that are similar to those the user liked in the past”
we need explicit (cf latent factors in CF):

- information about items (e.g., genre, author)
- user profile (preferences)
Architecture of a Content-Based Recommender

Handbook of Recommender Systems
Most CB-recommendation techniques were applied to recommending text documents.

- Like web pages or newsgroup messages for example.

Content of items can also be represented as text documents.

- With textual descriptions of their basic characteristics.
- Structured: Each item is described by the same set of attributes.

<table>
<thead>
<tr>
<th>Title</th>
<th>Genre</th>
<th>Author</th>
<th>Type</th>
<th>Price</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Lace Reader</td>
<td>Fiction, Mystery</td>
<td>Brunonia Barry</td>
<td>Hardcover</td>
<td>49.90</td>
<td>American contemporary fiction, detective, historical</td>
</tr>
<tr>
<td>Into the Fire</td>
<td>Romance, Suspense</td>
<td>Suzanne Brockmann</td>
<td>Hardcover</td>
<td>45.90</td>
<td>American fiction, murder, neo-Nazism</td>
</tr>
</tbody>
</table>

- Unstructured: free-text description.

Recommender Systems: An Introduction (slides)
Content: Multimedia

- manual annotation
 - songs, hundreds of features
 - Pandora, http://www.pandora.com
 - Music Genome Project
 - experts, 20-30 minutes per song

- automatic techniques – signal processing
User Profile

- explicitly specified by user
- automatically learned
 - easier than in CF – features of items are now available
Similarity: Keywords

- general similarity approach based on keywords
- two sets of keywords A, B (description of two items or description of item and user)
- how to measure similarity of A and B
Similarity: Keywords

sets of keywords A, B

- Dice coefficient: $\frac{2 \cdot |A \cap B|}{|A| + |B|}$
- Jaccard coefficient: $\frac{|A \cap B|}{|A \cup B|}$

many other coefficients available, see e.g. “A Survey of Binary Similarity and Distance Metrics”
Term Frequency – Inverse Document Frequency

- keywords (particularly automatically extracted) – disadvantages:
 - importance of words ("course" vs "recommender")
 - length of documents
- TF-IDF – standard technique in information retrieval
 - Term Frequency – how often term appears in a particular document (normalized)
 - Inverse Document Frequency – how often term appears in all documents
Term Frequency – Inverse Document Frequency

keyword (term) \(t \), document \(d \)

- \(TF(t, d) = \) frequency of \(t \) in \(d \) / maximal frequency of a term in \(d \)
- \(IDF(t) = \log(N/n_t) \)
 - \(N \) – number of all documents
 - \(n_t \) – number of documents containing \(t \)
- \(TFIDF(t, d) = TF(t, d) \cdot IDF(t) \)
similarity between user and item profiles (or two item profiles):
- vector of keywords and their TF-IDF values
- cosine similarity – angle between vectors
 \[sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \]
- (adjusted) cosine similarity
 - normalization by subtracting average values
 - closely related to Pearson correlation coefficient
Recommendations by Nearest Neighbors

- *k*-nearest neighbors (kNN)
- predicting rating for not-yet-seen item \(i \):
 - find *k* most similar items, already rated
 - predict rating based on these
- good for modeling short-term interest, “follow-up” stories

More complex methods available, e.g., Rocchio’s relevance feedback method (interactivity)
Improvements

all words – long, sparse vectors

- common words, stop words (e.g., "a", "the", "on")
- stemming (e.g., "went" → "go", "university" → "univers")
- cut-offs (e.g., n most informative words)
- phrases (e.g., "United Nations", "New York")

wider context: natural language processing techniques
Limitations

- semantic meaning unknown
- example – use of words in negative context

steakhouse description: “there is nothing on the menu that a vegetarian would like...” ⇒ keyword “vegetarian” ⇒ recommended to vegetarians
Ontologies, Taxonomies, Folkosomies

- **ontology** – formal definition of entities and their relations
- **taxonomy** – tree, hierarchy (example: news, sport, soccer, soccer world cup)
- **folksonomy** (folk + taxonomy) – collaborative tagging, tag clouds
Recommendation as Classification

- classification problem: features → like/dislike (rating)
- use of general machine learning techniques
 - probabilistic methods – Naive Bayes
 - linear classifiers
 - decision trees
 - neural networks
 - ...

wider context: machine learning techniques
Content-Based Recommendations: Advantages

- **user independence** – does not depend on other users
- **transparency** – explanations, understandable
- **new items** can be easily incorporated (no cold start)
Content-Based Recommendations: Limitations

- limited content analysis
 - content may not be automatically extractable (multimedia)
 - missing domain knowledge
 - keywords may not be sufficient
- overspecialization – “more of the same”, too similar items
- new user – ratings or information about user has to be collected
Content-Based vs Collaborative Filtering

- paper “Recommending new movies: even a few ratings are more valuable than metadata” (context: Netflix)
- our experience in educational domain – difficulty rating (Sokoban, countries)
Knowledge-based Recommendations

application domains:
- expensive items, not frequently purchased, few ratings (car, house)
- time span important (technological products)
- explicit requirements of user (vacation)

- collaborative filtering unusable – not enough data
- content based – “similarity” not sufficient
Knowledge-based Recommendations

- constraint-based
 - explicitly defined conditions
- case-based
 - similarity to specified requirements
“conversational” recommendations
Constraint-Based Recommendations – Example

<table>
<thead>
<tr>
<th>id</th>
<th>price(€)</th>
<th>mpix</th>
<th>opt-zoom</th>
<th>LCD-size</th>
<th>movies</th>
<th>sound</th>
<th>waterproof</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>148</td>
<td>8.0</td>
<td>4×</td>
<td>2.5</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>P₂</td>
<td>182</td>
<td>8.0</td>
<td>5×</td>
<td>2.7</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P₃</td>
<td>189</td>
<td>8.0</td>
<td>10×</td>
<td>2.5</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P₄</td>
<td>196</td>
<td>10.0</td>
<td>12×</td>
<td>2.7</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>P₅</td>
<td>151</td>
<td>7.1</td>
<td>3×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P₆</td>
<td>199</td>
<td>9.0</td>
<td>3×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P₇</td>
<td>259</td>
<td>10.0</td>
<td>3×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P₈</td>
<td>278</td>
<td>9.1</td>
<td>10×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Recommender Systems: An Introduction (slides)
Constraint Satisfaction Problem

- V is a set of variables
- D is a set of finite domains of these variables
- C is a set of constraints

Typical problems: logic puzzles (Sudoku, N-queen), scheduling
CSP: N-queens

problem: place N queens on an $N \times N$ chess-board, no two queens threaten each other

- V – N variables (locations of queens)
- D – each domain is $\{1, \ldots, N\}$
- C – threatening
CSP Algorithms

- basic algorithm – backtracking
- heuristics
 - preference for some branches
 - pruning
 - ... many others
CSP Example: N-queens Problem
Recommender Knowledge Base

- customer properties V_C
- product properties V_{PROD}
- constraints C_R (on customer properties)
- filter conditions C_F – relationship between customer and product
- products C_{PROD} – possible instantiations
$V_C = \{ kl_c: \text{[expert, average, beginner]} \} \quad /* \text{level of expertise} */$

$wr_c: \text{[low, medium, high]} \quad /* \text{willingness to take risks} */$

$id_c: \text{[shortterm, mediumterm, longterm]} \quad /* \text{duration of investment} */$

$aw_c: \text{[yes, no]} \quad /* \text{advisory wanted?} */$

$ds_c: \text{[savings, bonds, stockfunds, singleshares]} \quad /* \text{direct product search} */$

$sl_c: \text{[savings, bonds]} \quad /* \text{type of low-risk investment} */$

$av_c: \text{[yes, no]} \quad /* \text{availability of funds} */$

$sh_c: \text{[stockfunds, singleshares]} \quad /* \text{type of high-risk investment} */$}

$V_{PROD} = \{ name_p: \text{[text]} \} \quad /* \text{name of the product} */$

$er_p: [1..40] \quad /* \text{expected return rate} */$

$ri_p: \text{[low, medium, high]} \quad /* \text{risk level} */$

$mnip: [1..14] \quad /* \text{minimum investment period of product in years} */$

$inst_p: \text{[text]} \quad /* \text{financial institute} */$}

Recommender Systems Handbook; Developing Constraint-based Recommenders
\[\begin{align*}
C_R &= \{ CR_1: \text{wr}_c = \text{high} \rightarrow \text{id}_c \neq \text{shortterm}, \\
&\quad \quad \quad \quad CR_2: \text{kl}_c = \text{beginner} \rightarrow \text{wr}_c \neq \text{high} \} \\
C_F &= \{ CF_1: \text{id}_c = \text{shortterm} \rightarrow \text{mniv}_p < 3, \\
&\quad \quad \quad \quad CF_2: \text{id}_c = \text{mediumterm} \rightarrow \text{mniv}_p \geq 3 \land \text{mniv}_p < 6, \\
&\quad \quad \quad \quad CF_3: \text{id}_c = \text{longterm} \rightarrow \text{mniv}_p \geq 6, \\
&\quad \quad \quad \quad CF_4: \text{wr}_c = \text{low} \rightarrow \text{ri}_p = \text{low}, \\
&\quad \quad \quad \quad CF_5: \text{wr}_c = \text{medium} \rightarrow \text{ri}_p = \text{low} \lor \text{ri}_p = \text{medium}, \\
&\quad \quad \quad \quad CF_6: \text{wr}_c = \text{high} \rightarrow \text{ri}_p = \text{low} \lor \text{ri}_p = \text{medium} \lor \text{ri}_p = \text{high}, \\
&\quad \quad \quad \quad CF_7: \text{kl}_c = \text{beginner} \rightarrow \text{ri}_p \neq \text{high}, \\
&\quad \quad \quad \quad CF_8: \text{sl}_c = \text{savings} \rightarrow \text{name}_p = \text{savings}, \\
&\quad \quad \quad \quad CF_9: \text{sl}_c = \text{bonds} \rightarrow \text{name}_p = \text{bonds} \} \\
C_{PROD} &= \{ CPROD_1: \text{name}_p = \text{savings} \land \text{er}_p = 3 \land \text{ri}_p = \text{low} \land \text{mniv}_p = 1 \land \text{inst}_p = A; \\
&\quad \quad \quad \quad CPROD_2: \text{name}_p = \text{bonds} \land \text{er}_p = 5 \land \text{ri}_p = \text{medium} \land \text{mniv}_p = 5 \land \text{inst}_p = B; \\
&\quad \quad \quad \quad CPROD_3: \text{name}_p = \text{equity} \land \text{er}_p = 9 \land \text{ri}_p = \text{high} \land \text{mniv}_p = 10 \land \text{inst}_p = B \} \\
\end{align*} \]
Development of Knowledge Bases

- difficult, expensive
- specialized graphical tools
- methodology (rapid prototyping, detection of faulty constraints, ...)

Unsatisfied Requirements

no solution to provided constraints

- we want to provide user at least something
- constraint relaxation
- proposing “repairs”
- minimal set of requirements to be changed
User Guidance

requirements elicitaiton process

- session independent user profile (e.g., social networking sites)
- static fill-out forms
- conversational dialogs
Fig. 6.4: Interactive and personalized preference elicitation example. Customers specify their preferences by answering questions.
Critiquing

Find your favourite restaurant

In Vienna you chose:
Biergasthof
+43 1 123 123 123
Mariahilferstrasse 123,
1010 Wien

local food, central in the city, weekend brunch, room with a view,
famous for beer, seasonal dishes, group bookings, open all day

For Graz we recommend:
Brauhof
+43 316 45 45 45
Brauhofstrasse 45,
8023 Graz

local food, own beer, weekend lunch, open all day, private function room,
famous for beer, seasonal dishes, group bookings, good transport connection

Less $$ Nicer Cuisine More Quiet
Traditional Creative Livelier

Recommender Systems: An Introduction (slides)
Critiquing Recommender Systems: An Introduction (slides)
Critiquing: Example

A Visual Interface for Critiquing-based Recommender Systems
Critiquing: Example

Fig. 3 Critiquing support to guide users to critique the current example product for comparing it with the other tradeoff alternatives.

Critiquing-based recommenders: survey and emerging trends
Fig. 5 The Dynamic Critiquing interface with system suggested compound critiques for users to select (McCarthy et al. 2005c)
Limitations

- cost of knowledge acquisition (consider your project proposals)
- accuracy of models
- independence assumption for preferences
Hybrid Methods

collaborative filtering: “what is popular among my peers”
content-based: “more of the same”
knowledge-based: “what fits my needs”

each has advantages and disadvantages
hybridization – combine more techniques, avoid some shortcomings
simple example: CF with content-based (or simple “popularity recommendation”) to overcome “cold start problem”
Hybridization Designs

- monolithic design, combining different features
- parallel use of several systems, weighting/voting
- pipelined invocation of different systems
Types of Recommender Systems

- non-personalized
- demographic
- collaborative filtering
- content based
- knowledge-based
- hybrid

what to apply when?
Knowledge Sources and Recommendation Types

Matching Recommendation Technologies and Domains
Sample Domains for Recommendation

<table>
<thead>
<tr>
<th>Domain</th>
<th>Risk</th>
<th>Churn</th>
<th>Heterogeneous</th>
<th>Preferences</th>
<th>Interaction Style</th>
<th>Scrutability</th>
<th>Examples</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>News</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Stable?</td>
<td>Implicit</td>
<td>Not required</td>
<td>Yahoo news[6], ACR news[45] and [38] Google news[16]</td>
<td>Content-based, Collaborative-Filtering</td>
</tr>
<tr>
<td>E-commerce</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Stable</td>
<td>Implicit</td>
<td>Not required</td>
<td>Amazon.com, eBay</td>
<td>Collaborative-Filtering</td>
</tr>
<tr>
<td>Web Page Recommender</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Unstable</td>
<td>Implicit</td>
<td>Not required</td>
<td>[9, 36, 4]</td>
<td>Collaborative-Filtering Hybrid</td>
</tr>
<tr>
<td>Movie</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Implicit</td>
<td>Not required</td>
<td>Netflix[50, 64] and Movielens[21]</td>
<td>Collaborative-Filtering</td>
</tr>
<tr>
<td>Music</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Stable?</td>
<td>Implicit</td>
<td>Not required</td>
<td>Pandora and [24, 28, 14]</td>
<td>Content-based Hybrid</td>
</tr>
<tr>
<td>Financial-services</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Explicit</td>
<td>Required</td>
<td>Koba4MS[17] and FSAvisor[19][65]</td>
<td>Knowledge-Based</td>
</tr>
<tr>
<td>Life-insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Stable</td>
<td>Explicit /Implicit</td>
<td>Required</td>
<td>[13] and [29]</td>
<td>Hybrid and Content-based</td>
</tr>
<tr>
<td>Tourism</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Unstable</td>
<td>Explicit</td>
<td>Required</td>
<td>Travel Recommender[55][37]</td>
<td>Content-based Knowledge-based</td>
</tr>
<tr>
<td>Job search Recruiting</td>
<td>High</td>
<td>Low</td>
<td>Stable</td>
<td>Explicit</td>
<td>Required</td>
<td>Required</td>
<td>CASPER[35] and [39]</td>
<td>Content-based Knowledge-based</td>
</tr>
<tr>
<td>Real Estate</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Explicit</td>
<td>Required</td>
<td>RentMe[10], FlatFinder[67] and [73]</td>
<td>Knowledge-based</td>
</tr>
</tbody>
</table>
Explanations of Recommendations

- recommendations: selection (ranked list) of items
- explanations: (some) reasons for the choice
Goals of Providing Explanations

Why explanations?
Goals of Providing Explanations

Why explanations?

- transparency, trustworthiness, validity, satisfaction (users are more likely to use the system)
- persuasiveness (users are more likely to follow recommendations)
- effectiveness, efficiency (users can make better/faster decisions)
- education (users understand better the behaviour of the system, may use it in better ways)
Examples of Explanations

- knowledge-based recommenders
 - “Because you, as a customer, told us that simple handling of car is important to you, we included a special sensor system in our offer that will help you park your car easily.”
- algorithms based on CSP representation
Examples of Explanations

- Knowledge-based recommenders
 - “Because you, as a customer, told us that simple handling of car is important to you, we included a special sensor system in our offer that will help you park your car easily.”
- Algorithms based on CSP representation
- Recommendations based on item-similarity
 - “Because you watched X we recommend Y”
Explanations – Collaborative Filtering

Your Neighbors' Ratings for this Movie

<table>
<thead>
<tr>
<th>Rating</th>
<th>Number of Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>★</td>
<td>1</td>
</tr>
<tr>
<td>★★</td>
<td>2</td>
</tr>
<tr>
<td>★★★</td>
<td>7</td>
</tr>
<tr>
<td>★★★★</td>
<td>14</td>
</tr>
<tr>
<td>★★★★★</td>
<td>9</td>
</tr>
</tbody>
</table>

Your Neighbors' Ratings for this Movie

- 1's and 2's: 3 neighbors
- 3's: 7 neighbors
- 4's and 5's: 23 neighbors

Explaining Collaborative Filtering Recommendations, Herlocker, Konstan, Riedl
Figure 4. A screen explaining the recommendation for the movie “The Sixth Sense.” Each bar represents a rating of a neighbor. Upwardly trending bars are positive ratings, while downward trending ones are negative. The x-axis represents similarity to the user.
<table>
<thead>
<tr>
<th>#</th>
<th>Explanation</th>
<th>N</th>
<th>Mean Response</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Histogram with grouping</td>
<td>76</td>
<td>5.25</td>
<td>1.29</td>
</tr>
<tr>
<td>2</td>
<td>Past performance</td>
<td>77</td>
<td>5.19</td>
<td>1.16</td>
</tr>
<tr>
<td>3</td>
<td>Neighbor ratings histogram</td>
<td>78</td>
<td>5.09</td>
<td>1.22</td>
</tr>
<tr>
<td>4</td>
<td>Table of neighbors ratings</td>
<td>78</td>
<td>4.97</td>
<td>1.29</td>
</tr>
<tr>
<td>5</td>
<td>Similarity to other movies rated</td>
<td>77</td>
<td>4.97</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>Favorite actor or actress</td>
<td>76</td>
<td>4.92</td>
<td>1.73</td>
</tr>
<tr>
<td>7</td>
<td>MovieLens percent confidence in prediction</td>
<td>77</td>
<td>4.71</td>
<td>1.02</td>
</tr>
<tr>
<td>8</td>
<td>Won awards</td>
<td>76</td>
<td>4.67</td>
<td>1.49</td>
</tr>
<tr>
<td>9</td>
<td>Detailed process description</td>
<td>77</td>
<td>4.64</td>
<td>1.40</td>
</tr>
<tr>
<td>10</td>
<td># neighbors</td>
<td>75</td>
<td>4.60</td>
<td>1.29</td>
</tr>
<tr>
<td>11</td>
<td>No extra data – focus on system</td>
<td>75</td>
<td>4.53</td>
<td>1.20</td>
</tr>
<tr>
<td>12</td>
<td>No extra data – focus on users</td>
<td>78</td>
<td>4.51</td>
<td>1.35</td>
</tr>
<tr>
<td>13</td>
<td>MovieLens confidence in prediction</td>
<td>77</td>
<td>4.51</td>
<td>1.20</td>
</tr>
<tr>
<td>14</td>
<td>Good profile</td>
<td>77</td>
<td>4.45</td>
<td>1.53</td>
</tr>
<tr>
<td>15</td>
<td>Overall percent rated 4+</td>
<td>75</td>
<td>4.37</td>
<td>1.26</td>
</tr>
<tr>
<td>16</td>
<td>Complex graph: count, ratings, similarity</td>
<td>74</td>
<td>4.36</td>
<td>1.47</td>
</tr>
<tr>
<td>17</td>
<td>Recommended by movie critics</td>
<td>76</td>
<td>4.21</td>
<td>1.47</td>
</tr>
<tr>
<td>18</td>
<td>Rating and %agreement of closest neighbor</td>
<td>77</td>
<td>4.21</td>
<td>1.20</td>
</tr>
<tr>
<td>19</td>
<td># neighbors with std. deviation</td>
<td>78</td>
<td>4.19</td>
<td>1.45</td>
</tr>
<tr>
<td>20</td>
<td># neighbors with avg correlation</td>
<td>76</td>
<td>4.08</td>
<td>1.46</td>
</tr>
<tr>
<td>21</td>
<td>Overall average rating</td>
<td>77</td>
<td>3.94</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Table 1. Mean response of users to each explanation interface, based on a scale of one to seven. Explanations 11 and 12 represent the base case of no additional information. Shaded rows indicate explanations with a mean response significantly different from the base cases (two-tailed $\alpha = 0.05$).
Moment of Recommendation

- front page, dashboard
- follow-up
- sidebar
- on demand
Your Projects: Questions

- What is the purpose / use case? What is the “business model”?
- What type of recommendations?
- A new system or extension of an existing one?
- Where/how will you obtain data?
 - items
 - user preferences; explicit/implicit ratings?
- Which techniques are relevant/suitable for your project? Collaborative filtering? Content-based? Knowledge-based? Combination?
- Are the following notions relevant: taxonomy, critiquing, explanations?
Projects

1. research project: slepemapy.cz data
2. board games
3. quotes
4. jokes
5. recipes I: allrecepies.com
6. recipes II
7. educational
8. travel
9. travel or beer