Recommender Systems: Content-based, Knowledge-based, Hybrid

Radek Pelánek

2018
lecture, basic principles:
 - content-based
 - knowledge-based
 - hybrid, choice of approach, ...
 - critiquing, explanations, ...

discussion – projects
 - brief presentation of your projects
 - application of covered notions to projects
 ⇒ make notes during lecture
Content-based vs Collaborative Filtering

- collaborative filtering: “recommend items that similar users liked”
- content based: “recommend items that are similar to those the user liked in the past”
Content-based Recommendations

we need explicit (cf latent factors in CF):

- information about items (e.g., genre, author)
- user profile (preferences)

Recommender Systems: An Introduction (slides)
Architecture of a Content-Based Recommender

Handbook of Recommender Systems
Most CB-recommendation techniques were applied to recommending text documents.

- Like web pages or newsgroup messages for example.

Content of items can also be represented as text documents.

- With textual descriptions of their basic characteristics.
- Structured: Each item is described by the same set of attributes

<table>
<thead>
<tr>
<th>Title</th>
<th>Genre</th>
<th>Author</th>
<th>Type</th>
<th>Price</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Lace Reader</td>
<td>Fiction, Mystery</td>
<td>Brunonia Barry</td>
<td>Hardcover</td>
<td>49.90</td>
<td>American contemporary fiction, detective, historical</td>
</tr>
<tr>
<td>Into the Fire</td>
<td>Romance, Suspense</td>
<td>Suzanne Brockmann</td>
<td>Hardcover</td>
<td>45.90</td>
<td>American fiction, murder, neo-Nazism</td>
</tr>
</tbody>
</table>

- Unstructured: free-text description.
Content: Multimedia

- manual annotation
 - songs, hundreds of features
 - Pandora, Music Genome Project
 - experts, 20-30 minutes per song

- automatic techniques – signal processing
User Profile

- explicitly specified by user
- automatically learned
 - easier than in CF – features of items are now available
Similarity: Keywords

- general similarity approach based on keywords
- two sets of keywords A, B (description of two items or description of item and user)
- how to measure similarity of A and B
Similarity: Keywords

sets of keywords A, B

- Dice coefficient: $\frac{2 \cdot |A \cap B|}{|A| + |B|}$
- Jaccard coefficient: $\frac{|A \cap B|}{|A \cup B|}$

many other coefficients available, see e.g. “A Survey of Binary Similarity and Distance Metrics”
Recommendations by Nearest Neighbors

- k-nearest neighbors (kNN)
- predicting rating for not-yet-seen item i:
 - find k most similar items, already rated
 - predict rating based on these
- good for modeling short-term interest, “follow-up” stories

more complex methods available, e.g., Rocchio’s relevance feedback method (interactivity)
Similarity: Text Descriptions

Examples: product description, recipe instructions, movie plot

basic approach: bag-of-words representation (words + counts of occurrences)

limitations?
Term Frequency – Inverse Document Frequency

- Disadvantages of simple counts:
 - Importance of words ("course" vs "recommender")
 - Length of documents

- TF-IDF – standard technique in information retrieval
 - Term Frequency – how often term appears in a particular document (normalized)
 - Inverse Document Frequency – how often term appears in all documents
Term Frequency – Inverse Document Frequency

keyword (term) \(t \), document \(d \)
- \(TF(t, d) = \) frequency of \(t \) in \(d \) / maximal frequency of a term in \(d \)
- \(IDF(t) = \log(N/n_t) \)
 - \(N \) – number of all documents
 - \(n_t \) – number of documents containing \(t \)
- \(TFIDF(t, d) = TF(t, d) \cdot IDF(t) \)
similarity between user and item profiles (or two item profiles):
- vector of keywords and their TF-IDF values
- cosine similarity – angle between vectors
 \[\text{sim}(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \]
- (adjusted) cosine similarity
 - normalization by subtracting average values
 - closely related to Pearson correlation coefficient
Improvements

all words – long, sparse vectors

- common words, stop words (e.g., “a”, “the”, “on”)
- stemming (e.g., “went” → “go”, “university” → “univers”)
- cut-offs (e.g., n most informative words)
- phrases (e.g., “United Nations”, “New York”)

wider context: natural language processing techniques
Limitations of Bag-of-words

- semantic meaning unknown
- example – use of words in negative context

steakhouse description: “there is nothing on the menu that a vegetarian would like...” ⇒ keyword “vegetarian” ⇒ recommended to vegetarians
ontology – formal definition of entities and their relations

taxonomy – tree, hierarchy (example: news, sport, soccer, soccer world cup)

talksonomy (folk + taxonomy) – collaborative tagging, tag clouds
Recommendation as Classification

- classification problem: features \rightarrow like/dislike (rating)
- use of general machine learning techniques
 - probabilistic methods – Naive Bayes
 - linear classifiers
 - decision trees
 - neural networks
 - ...

wider context: machine learning techniques
Content-Based Recommendations: Advantages

- **user independence** – does not depend on other users
- **transparency** – explanations, understandable
- **new items** can be easily incorporated (no cold start)
Content-Based Recommendations: Limitations

- **limited content analysis**
 - content may not be automatically extractable (multimedia)
 - missing domain knowledge
 - keywords may not be sufficient

- **overspecialization** – “more of the same”, too similar items

- **new user** – ratings or information about user has to be collected
Content-Based vs Collaborative Filtering

- paper “Recommending new movies: even a few ratings are more valuable than metadata” (context: Netflix)
- our experience in educational domain – difficulty rating (Sokoban, countries)
Knowledge-based Recommendations

application domains:
- expensive items, not frequently purchased, few ratings (car, house)
- time span important (technological products)
- explicit requirements of user (vacation)

- collaborative filtering unusable – not enough data
- content based – “similarity” not sufficient
Knowledge-based Recommendations

- constraint-based
 - explicitly defined conditions
- case-based
 - similarity to specified requirements

“conversational” recommendations
Constraint-Based Recommendations – Example

<table>
<thead>
<tr>
<th>id</th>
<th>price(£)</th>
<th>mpx</th>
<th>opt-zoom</th>
<th>LCD-size</th>
<th>movies</th>
<th>sound</th>
<th>waterproof</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>148</td>
<td>8.0</td>
<td>4×</td>
<td>2.5</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>P_2</td>
<td>182</td>
<td>8.0</td>
<td>5×</td>
<td>2.7</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P_3</td>
<td>189</td>
<td>8.0</td>
<td>10×</td>
<td>2.5</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P_4</td>
<td>196</td>
<td>10.0</td>
<td>12×</td>
<td>2.7</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>P_5</td>
<td>151</td>
<td>7.1</td>
<td>3×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P_6</td>
<td>199</td>
<td>9.0</td>
<td>3×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P_7</td>
<td>259</td>
<td>10.0</td>
<td>3×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>P_8</td>
<td>278</td>
<td>9.1</td>
<td>10×</td>
<td>3.0</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Recommender Systems: An Introduction (slides)
Constraint Satisfaction Problem

- V is a set of variables
- D is a set of finite domains of these variables
- C is a set of constraints

Typical problems: logic puzzles (Sudoku, N-queen), scheduling
CSP: N-queens

problem: place N queens on an $N \times N$ chess-board, no two queens threaten each other

- V – N variables (locations of queens)
- D – each domain is \{1, \ldots, N\}
- C – threatening
CSP Algorithms

- basic algorithm – backtracking
- heuristics
 - preference for some branches
 - pruning
 - ... many others
CSP Example: N-queens Problem
Recommender Knowledge Base

- customer properties V_C
- product properties V_{PROD}
- constraints C_R (on customer properties)
- filter conditions C_F – relationship between customer and product
- products C_{PROD} – possible instantiations
$V_C = \{ k_{lc}: \{\text{expert, average, beginner}\} \} \quad /* \text{level of expertise} */
\text{wrc}_c: \{\text{low, medium, high}\} \quad /* \text{willingness to take risks} */
\text{id}_c: \{\text{shortterm, mediumterm, longterm}\} \quad /* \text{duration of investment} */
\text{aw}_c: \{\text{yes, no}\} \quad /* \text{advisory wanted?} */
\text{dsc}_c: \{\text{savings, bonds, stockfunds, singleshares}\} \quad /* \text{direct product search} */
\text{sl}_c: \{\text{savings, bonds}\} \quad /* \text{type of low-risk investment} */
\text{av}_c: \{\text{yes, no}\} \quad /* \text{availability of funds} */
\text{sh}_c: \{\text{stockfunds, singleshares}\} \quad /* \text{type of high-risk investment} */ \}

\begin{align*}
\text{V}_{\text{PROD}} & = \{ \text{name}_p: \{\text{text}\} \} \quad /* \text{name of the product} */ \\
\text{erp}_p: [1..40] & \quad /* \text{expected return rate} */ \\
\text{ri}_p: \{\text{low, medium, high}\} & \quad /* \text{risk level} */ \\
\text{mnipv}_p: [1..14] & \quad /* \text{minimum investment period of product in years} */ \\
\text{inst}_p: \{\text{text}\} & \quad /* \text{financial institute} */ \}
\end{align*}
\[C_R = \{ CR_1: \text{wr}_c = \text{high} \rightarrow \text{id}_c \neq \text{shortterm}, \\
CR_2: \text{kl}_c = \text{beginner} \rightarrow \text{wr}_c \neq \text{high} \} \]

\[C_F = \{ CF_1: \text{id}_c = \text{shortterm} \rightarrow \text{mniv}_p < 3, \\
CF_2: \text{id}_c = \text{mediumterm} \rightarrow \text{mniv}_p \geq 3 \land \text{mniv}_p < 6, \\
CF_3: \text{id}_c = \text{longterm} \rightarrow \text{mniv}_p \geq 6, \\
CF_4: \text{wr}_c = \text{low} \rightarrow \text{ri}_p = \text{low}, \\
CF_5: \text{wr}_c = \text{medium} \rightarrow \text{ri}_p = \text{low} \lor \text{ri}_p = \text{medium}, \\
CF_6: \text{wr}_c = \text{high} \rightarrow \text{ri}_p = \text{low} \lor \text{ri}_p = \text{medium} \lor \text{ri}_p = \text{high}, \\
CF_7: \text{kl}_c = \text{beginner} \rightarrow \text{ri}_p \neq \text{high}, \\
CF_8: \text{sl}_c = \text{savings} \rightarrow \text{name}_p = \text{savings}, \\
CF_9: \text{sl}_c = \text{bonds} \rightarrow \text{name}_p = \text{bonds} \} \]

\[C_{\text{PROD}} = \{ \text{CPROD}_1: \text{name}_p = \text{savings} \land \text{er}_p = 3 \land \text{ri}_p = \text{low} \land \text{mniv}_p = 1 \land \text{inst}_p = A; \\
\text{CPROD}_2: \text{name}_p = \text{bonds} \land \text{er}_p = 5 \land \text{ri}_p = \text{medium} \land \text{mniv}_p = 5 \land \text{inst}_p = B; \\
\text{CPROD}_3: \text{name}_p = \text{equity} \land \text{er}_p = 9 \land \text{ri}_p = \text{high} \land \text{mniv}_p = 10 \land \text{inst}_p = B \} \]
Development of Knowledge Bases

- difficult, expensive
- specialized graphical tools
- methodology (rapid prototyping, detection of faulty constraints, ...
Unsatisfied Requirements

- no solution to provided constraints
 - we want to provide user at least something
 - constraint relaxation
 - proposing "repairs"
 - minimal set of requirements to be changed
User Guidance

requirements elicitation process

- session independent user profile (e.g., social networking sites)
- static fill-out forms
- conversational dialogs
User Guidance

Recommender Systems Handbook; Developing Constraint-based Recommenders
Fig. 6.4: Interactive and personalized preference elicitation example. Customers specify their preferences by answering questions.
Critiquing

Find your favourite restaurant

In Vienna you chose:

+43 1 123 123 123
Mariahilferstrasse 123,
1010 Wien

Biergasthof

30€-50€
Local cuisine

local food, central in the city, weekend brunch, room with a view,
famous for beer, seasonal dishes, group bookings, open all day

For Graz we recommend:

+43 316 45 45 45
Brauhofstrasse 45,
8023 Graz

Brauhof

30€-50€
Local cuisine

local food, own beer, weekend lunch, open all day, private function room,
famous for beer, seasonal dishes, group bookings, good transport connection

Less $$ Nicer Cuisine More Quiet

Traditional Creative Livelier

Recommender Systems: An Introduction (slides)
Critiquing Recommender Systems: An Introduction (slides)

Critique on price

entry item (recommended item)

more expensive

less mpix

more mpix

most similar item

cheaper

entry item (recommended item)

threshold: items with a higher mpix than the entry item are considered further

threshold: items with a lower price than the entry item are considered further

new most similar item
Critiquing: Example

A Visual Interface for Critiquing-based Recommender Systems
Critiquing: Example

Fig. 3 Critiquing support to guide users to critique the current example product for comparing it with the other tradeoff alternatives.

Critiquing-based recommenders: survey and emerging trends
Fig. 5 The Dynamic Critiquing interface with system suggested compound critiques for users to select (McCarthy et al. 2005c)
Limitations

- cost of knowledge acquisition (consider your project proposals)
- accuracy of models
- independence assumption for preferences
Hybrid Methods

collaborative filtering: “what is popular among my peers”
content-based: “more of the same”
knowledge-based: “what fits my needs”

- each has advantages and disadvantages
- hybridization – combine more techniques, avoid some shortcomings
- simple example: CF with content-based (or simple “popularity recommendation”) to overcome “cold start problem”
Hybridization Designs

- monolithic designing, combining different features
- parallel use of several systems, weighting/voting
- pipelined invocation of different systems
Types of Recommender Systems

- non-personalized
- demographic
- collaborative filtering
- content based
- knowledge-based
- hybrid

what to apply when?
Taxonomy of Knowledge Sources

Knowledge source

Social
- Context
- Opinions
- Behavior
- Demographics
- Ratings
- Tags
- Reviews

Individual
- Opinions
- Behavior
- Demographics
- Requirements
- Query
- Constraints
- Preferences
- Context
- Ratings
- Tags
- Reviews

Content
- Item Features
- Domain Knowledge
- Contextual Knowledge
- Means-ends
- Feature
- Ontology
- Domain
- Constraints

Matching Recommendation Technologies and Domains
Knowledge Sources and Recommendation Types

Matching Recommendation Technologies and Domains
<table>
<thead>
<tr>
<th>Domain</th>
<th>Risk</th>
<th>Churn</th>
<th>Heterogeneous</th>
<th>Preferences</th>
<th>Interaction Style</th>
<th>Scrutability</th>
<th>Examples</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-commerce</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Stable</td>
<td>Implicit</td>
<td>Not required</td>
<td>Amazon.com eBay</td>
<td>Collaborative-Filtering</td>
</tr>
<tr>
<td>Web Page Recommender</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Unstable</td>
<td>Implicit</td>
<td>Not required</td>
<td>[9, 36, 4]</td>
<td>Collaborative-Filtering Hybrid</td>
</tr>
<tr>
<td>Music</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Stable?</td>
<td>Implicit</td>
<td>Not required</td>
<td>Pandora and [24, 28, 14]</td>
<td>Content-based Hybrid</td>
</tr>
<tr>
<td>Financial-services</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Explicit</td>
<td>Required</td>
<td>Koba4MS[17] FSAvisor[19] [65]</td>
<td>Knowledge-Based</td>
</tr>
<tr>
<td>Life-insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Explicit /Implicit</td>
<td>Required</td>
<td>[13] and [29]</td>
<td>Hybrid and Content-based</td>
</tr>
<tr>
<td>Tourism</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Unstable</td>
<td>Explicit</td>
<td>Required</td>
<td>Travel Recommender [55] [37]</td>
<td>Content-based Knowledge-based</td>
</tr>
<tr>
<td>Job search Recruiting</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Explicit</td>
<td>Required</td>
<td>CASPER [35] and [39]</td>
<td>Content-based Knowledge-based</td>
</tr>
<tr>
<td>Real Estate</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Stable</td>
<td>Explicit</td>
<td>Required</td>
<td>RentMe FlatFinder[67] and [73]</td>
<td>Knowledge-based</td>
</tr>
</tbody>
</table>
Explanations of Recommendations

- recommendations: selection (ranked list) of items
- explanations: (some) reasons for the choice
Goals of Providing Explanations

Why explanations?
Goals of Providing Explanations

Why explanations?

- transparency, trustworthiness, validity, satisfaction (users are more likely to use the system)
- persuasiveness (users are more likely to follow recommendations)
- effectiveness, efficiency (users can make better/faster decisions)
- education (users understand better the behaviour of the system, may use it in better ways)
Examples of Explanations

- knowledge-based recommenders
 - “Because you, as a customer, told us that simple handling of car is important to you, we included a special sensor system in our offer that will help you park your car easily.”
- algorithms based on CSP representation
Examples of Explanations

- knowledge-based recommenders
 - “Because you, as a customer, told us that simple handling of car is important to you, we included a special sensor system in our offer that will help you park your car easily.”
- algorithms based on CSP representation
- recommendations based on item-similarity
 - “Because you watched X we recommend Y”
Explanations – Collaborative Filtering

Your Neighbors' Ratings for this Movie

<table>
<thead>
<tr>
<th>Rating</th>
<th>Number of Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>★</td>
<td>1</td>
</tr>
<tr>
<td>★★</td>
<td>2</td>
</tr>
<tr>
<td>★★★</td>
<td>7</td>
</tr>
<tr>
<td>★★★★</td>
<td>14</td>
</tr>
<tr>
<td>★★★★★</td>
<td>9</td>
</tr>
</tbody>
</table>

Your Neighbors' Ratings for this Movie

Explaining Collaborative Filtering Recommendations, Herlocker, Konstan, Riedl
Figure 4. A screen explaining the recommendation for the movie “The Sixth Sense.” Each bar represents a rating of a neighbor. Upwardly trending bars are positive ratings, while downward trending ones are negative. The x-axis represents similarity to the user.
Table 1.

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>N</th>
<th>Mean Response</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Histogram with grouping</td>
<td>76</td>
<td>5.25</td>
<td>1.29</td>
</tr>
<tr>
<td>2</td>
<td>Past performance</td>
<td>77</td>
<td>5.19</td>
<td>1.16</td>
</tr>
<tr>
<td>3</td>
<td>Neighbor ratings histogram</td>
<td>78</td>
<td>5.09</td>
<td>1.22</td>
</tr>
<tr>
<td>4</td>
<td>Table of neighbors ratings</td>
<td>78</td>
<td>4.97</td>
<td>1.29</td>
</tr>
<tr>
<td>5</td>
<td>Similarity to other movies rated</td>
<td>77</td>
<td>4.97</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>Favorite actor or actress</td>
<td>76</td>
<td>4.92</td>
<td>1.73</td>
</tr>
<tr>
<td>7</td>
<td>MovieLens percent confidence in prediction</td>
<td>77</td>
<td>4.71</td>
<td>1.02</td>
</tr>
<tr>
<td>8</td>
<td>Won awards</td>
<td>76</td>
<td>4.67</td>
<td>1.49</td>
</tr>
<tr>
<td>9</td>
<td>Detailed process description</td>
<td>77</td>
<td>4.64</td>
<td>1.40</td>
</tr>
<tr>
<td>10</td>
<td># neighbors</td>
<td>75</td>
<td>4.60</td>
<td>1.29</td>
</tr>
<tr>
<td>11</td>
<td>No extra data – focus on system</td>
<td>75</td>
<td>4.53</td>
<td>1.20</td>
</tr>
<tr>
<td>12</td>
<td>No extra data – focus on users</td>
<td>78</td>
<td>4.51</td>
<td>1.35</td>
</tr>
<tr>
<td>13</td>
<td>MovieLens confidence in prediction</td>
<td>77</td>
<td>4.51</td>
<td>1.20</td>
</tr>
<tr>
<td>14</td>
<td>Good profile</td>
<td>77</td>
<td>4.45</td>
<td>1.53</td>
</tr>
<tr>
<td>15</td>
<td>Overall percent rated 4+</td>
<td>75</td>
<td>4.37</td>
<td>1.26</td>
</tr>
<tr>
<td>16</td>
<td>Complex graph: count, ratings, similarity</td>
<td>74</td>
<td>4.36</td>
<td>1.47</td>
</tr>
<tr>
<td>17</td>
<td>Recommended by movie critics</td>
<td>76</td>
<td>4.21</td>
<td>1.47</td>
</tr>
<tr>
<td>18</td>
<td>Rating and %agreement of closest neighbor</td>
<td>77</td>
<td>4.21</td>
<td>1.20</td>
</tr>
<tr>
<td>19</td>
<td># neighbors with std. deviation</td>
<td>78</td>
<td>4.19</td>
<td>1.45</td>
</tr>
<tr>
<td>20</td>
<td># neighbors with avg correlation</td>
<td>76</td>
<td>4.08</td>
<td>1.46</td>
</tr>
<tr>
<td>21</td>
<td>Overall average rating</td>
<td>77</td>
<td>3.94</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Table 1. Mean response of users to each explanation interface, based on a scale of one to seven. Explanations 11 and 12 represent the base case of no additional information. Shaded rows indicate explanations with a mean response significantly different from the base cases (two-tailed $\alpha = 0.05$).
Moment of Recommendation

- front page, dashboard
- follow-up
- sidebar
- on demand
Your Projects: Questions

- What is the purpose / use case? What is the “business model”?
- What will you recommend? In what situation?
- A new system or extention of an existing one?
- Where/how will you obtain data?
 - items
 - user preferences; explicit/implicit ratings?
- Which techniques are relevant/suitable for you project? Collaborative filtering? Content-based? Knowledge-based? Combination?
- Are the following notions relevant: taxonomy, critiquing, explanations?
Projects

- research project: movies
- jokes
- English idioms
- recipies
- wallpapers / pictures
- Instagram photos
- video games
- board games
- city tours