Language

- lecture today: English
- course materials: English
- rest of lectures, your presentations: probably English
- personal consultations, project interface: English, Czech, Slovak
Very Brief Overview

- project-based course
- projects typically in teams (2-4 students)
- 6 lectures, consultations, presentations
- attendance registered (although not strictly compulsory)
Your Experience?

- machine learning, data mining
- information retrieval
- web implementation (PHP/Python, databases, JavaScript, ...)

A: good, B: reasonable, C: basic or none
Today

- motivation
- main notions
- course organization
- project discussion – mapping of preferences, brainstorming
Motivation

- information overload
 - many choices available
 - “the paradox of choice” (jam experiment, choice overload)
- recommender system
 - provide aid
 - set of items + user “context” \Rightarrow selection of items (predicted to be “good” for the user)
Motivation

1. What recommender systems do you know?
2. What recommender systems would you like to have?
Examples of Applications

- movies, online videos
- music
- books
- software (apps)
- products in general
- people (dating, friends)
- services (restaurants, accommodation, ...)
- research articles
- jokes
personalization, adaptation

recommender systems
focus of the course on recommendations

sometimes excursion into related techniques (personalization, adaptation)
 - educational applications: mastery learning
Value of Recommendations

- Netflix: 2/3 of the movies watched
- Amazon: 35% sales
- Google news: recommendations ⇒ 38% more clickthrough
Recommender systems reduce information overload by estimating relevance

Recommender Systems: An Introduction (slides)
Types of Recommender Systems

Personalized recommendations

User profile & contextual parameters

Recommendation component

Recommendation list

Recommender Systems: An Introduction (slides)
Types of Recommender Systems

Collaborative: "Tell me what's popular among my peers"

- User profile & contextual parameters
- Community data
- Recommendation component
- Recommendation list

Recommender Systems: An Introduction (slides)
Types of Recommender Systems

Content-based: "Show me more of the same what I've liked"

User profile & contextual parameters

Recommendation component

Recommendation list

Product features

<table>
<thead>
<tr>
<th>Title</th>
<th>Genre</th>
<th>Actors</th>
<th>...</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>item</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td>0.9</td>
</tr>
<tr>
<td>i2</td>
<td>1</td>
</tr>
<tr>
<td>i3</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Types of Recommender Systems

Knowledge-based: "Tell me what fits based on my needs"

Product features

Knowledge models

Title, Genre, Actors, ...

item	score
i1 | 0.9
i2 | 1
i3 | 0.3
... | ...
Types of Recommender Systems

Hybrid: combinations of various inputs and/or composition of different mechanism

- User profile & contextual parameters
- Community data
- Product features
- Knowledge models

Recommendation component

Recommendation list

<table>
<thead>
<tr>
<th>item</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td>0.9</td>
</tr>
<tr>
<td>i2</td>
<td>1</td>
</tr>
<tr>
<td>i3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Recommender Systems: An Introduction (slides)
Recommender System Functions

- provider’s point of view
- user’s point of view
Recommender System Functions

Provider’s point of view:

- sell more items
- sell more diverse items (long tail)
- increase user satisfaction, fidelity
- better understand what users want

Long tail:
Recommender System Functions

User’s point of view:
- looking for something:
 - find some good items
 - find all good items (closer to information retrieval)
 - recommend a sequence, a bundle
- just browsing
- side-effects (collaborative filtering systems):
 - express self
 - help others
 - influence others
Warning: Implementing Personalized Systems is Difficult

- (sometimes) complex algorithms
- (always) difficult debugging, testing, evaluation
 - personalization \Rightarrow different behaviour for each user
 - hard to distinguish bugs and surprising results
Usefulness of Recommendations

Implementing recommendations is non-trivial.

Is it worthwhile? It depends...

- Is there “large” number of items?
- Do users know exactly what are they looking for?
RecSys and Information Retrieval

Information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources. (Wikipedia)

The goal of a **Recommender System** is to generate meaningful recommendations to a collection of users for items or products that might interest them. (Melville, Sindhwni)

- RecSys and IR closely connected (many similar or analogical techniques)
- different goals:
 - IR – “I know what I’m looking for”
 - RecSys – “I’m not sure what I’m looking for”
Serendipity

- unsought finding
- unexpected, but useful result
- do not recommend items the user already knows or would find anyway, try something more interesting
- example – books:
 - I like books by Remarque, Potok, Skácel
 - recommending another book by Remarque not very useful
 - recommending Munro = serendipity
A Brief History

- 1990s – first systems (e.g., GroupLens), basic algorithms
- 1995-2000 – rapid commercialization, challenges of scale
- 2000-2005 – research explosion, mainstream applications
- 2006 – Netflix prize
- 2007 – the first Recommender Systems conference
- 2010s – applications common
- now – very active research, many applications
Netflix Prize

- Netflix – video rental company
- contest: 10% improvement of the quality of recommendations
- collaborative filtering
- prize: 1 million dollars
- data: user ID, movie ID, time, rating
Recommender Systems Conference Today

- very large conference
- insight into both current research and applications

commercial sponsors RecSys conference:

DIAMOND SUPPORTER
- Spotify

PLATINUM SUPPORTERS
- criteo labs
- HUAWEI
- hulu
- Netflix
- pandora
- zalando

GOLD SUPPORTERS
- amazon
- contentwise
- Medium
Collaborative Filtering

“tell me what’s popular among my peers (≈similar user)”

- one of the most often and successfully used techniques
- widely applicable, does not need any domain knowledge
- interesting analogies, metaphors, questions
 - ants, social insect: communication via pheromone
 - recommender systems: people ∼ ants, ratings (clicks) ∼ pheromone
 - between human intelligence and (good old-fashioned) artificial intelligence
Ratings

- recommender systems (particularly collaborative filtering) rely on user “ratings”
- rating of item \sim how much the user likes the item
- many different forms of ratings
- what kinds of ratings do you know (can you imagine)?
- what are their advantages and disadvantages?
Ratings

- explicit
 - Likert scale (5 stars), like/dislike
 - require additional effort from users

- implicit
 - click through rate, buying an item, visiting a page, viewing a video, dwell time
 - easier to collect, less precise
 - more “honest” (Netflix example: highly rated vs watched)

Recommended reading: https://www.wired.com/2013/08/qq_netflix-algorithm

“We know that many of the ratings are aspirational rather than reflecting your daily activity.”
Potential Downside

- serving “low instincts” instead of “high aspirations”?
- news, optimizing clicks:
 - sex, tragedy, fear, celebrity
 - thorough analysis, complex problems
Personalization in general, collaborative filtering specifically

- “filter bubbles”
- news, social media
- users only see what they are expected to like
 - good for business (in the short term)
 - potentially bad (in the long term) for users and society
Downsides: What does it mean for us?

- do not “throw away” collaborative filtering techniques
- be aware of the limitations
- try to address limitations in suitable way (depending on the application)
Goals, Evaluation

- What is the goal of the system?
- How do we evaluate a recommender system?
- What is a “good” recommender system?
- How do we quantify the performance?

important topics of the course
RecSys and Educational Domain

- learning materials – direct application
- problems, exercises:
 - users ~ students
 - items ~ problems
 - ratings ~ performance (correctness of answers, problem solving times)
Personalization in Education

- adaptive learning, personalized learning, ...
- well-known:
 - open systems: Khan Academy
 - commercial companies: Pearson, Knewton
- Adaptive Learning group:
 www.fi.muni.cz/adaptivelearning/
Course Organization

- 6 weeks
 - lectures: main notions of the field
 - discussions: relations of notions to your projects

- November
 - work on projects
 - individual consultations

- December
 - presentation of projects
Focus of This Course

- practical experience
- collaborative filtering
- educational applications
- evaluation (illustration of methodological issues relevant not just for RecSys)

focus on consultations / discussions (good lectures available online)
Preliminary Schedule – Lectures

- Sep 26: Collaborative filtering
- Oct 3: Other recommendation techniques
- Oct 10: Evaluation
- Oct 17: Educational recommender systems, practical experiences
- Oct 24: Practical aspects; Case studies
Prerequisites

- programming
- math (basic linear algebra, statistics)
- (basics of machine learning – not strictly necessary)

(depends also on the choice of project)
Materials, Sources

- Introduction to Recommender Systems book
 - http://www.recommenderbook.net/
 - slides freely available – more details than in course slides
- Recommender Systems Handbook
 - electronic version available from MU
- Video lectures: Coursera, Machine learning summer school

(links at the course web page)
Projects

2 main options:

- “application”: development of a simple recommender system recommended for AP, INS students
- “research”: implementation and experimental evaluation of algorithms used by recommender systems recommended for UMI students

“hybrids” possible (e.g., extension / analysis of data from your own system)
team project (1-4 students)
goal: build a simple recommender system
requirements: simple web portal implementation (e.g., Python / MySQL / JavaScript)
 note: consultations will be about “recommendation topics”, not about implementation details
Ideas for Simple Recommender System

- “short text” recommendations: jokes, quotes, poetry, baby names, recipes
- travel, “local” recommendations (Brno): restaurants, cultural events, places, holiday locations, tourist attractions, geocaching
- educational recommendations: courses (MU, MOOC), foreign language vocabulary, learning materials
- product recommendation (specialized for a particular domain): board games, beers, specific movie genre
- personalized guides: TV program, museum guide
Typical Steps

- clarification of the purpose (for whom? why?), specific aspects of the domain, hypothetical business model
- getting/generating data
- basic analysis of data
- implementation of a simple web system
- design and implementation of several recommendation techniques
- evaluation
- presentation
Focus of Project

- “simple domains” (e.g., jokes, English vocabulary)
 - several recommendation algorithms (different types)
 - collection of your own data (ratings, feedback), analysis, evaluation

- “complex domains” (e.g., extension of an existing system)
 - analysis of existing data (what can we use for recommendations)
 - “design” of recommendations, formulation of aims, ...
 - evaluation: proposal, first steps
Advice 1

- prefer larger team (3 or 4 students)
- clear division of tasks, responsibilities
- use version control system (GitHub, gitlab.fi.muni.cz, ...)

experience from previous years:

- prefer something rather simple, but done well, focus on recommendation aspects
- ambitious projects often:
 - too much time on technical aspects (getting and cleaning data, implementation infrastructure)
 - little time left for recommendations
“Research”: Models, Evaluation

individual project or group in (mainly) “competitive mode”

- develop a model for predicting user ratings / student performance
- evaluate the model, visualize results
- provided: specific datasets (movies, slepemapy.cz data), guidelines, baseline model implementations (in Python)

requirements: data analysis (Python recommended), implementation of machine learning techniques
Projects from Previous Years

- products: board games, video games, wine, beer, PC parts
- funny quotes, jokes, recipes, blog posts, jobs, anime/manga, geocaching, linux applications
- educational resources, English vocabulary
- analysis of data from existing systems: movies, music, slepemapy, board games, blog system
- implementation of techniques into a real e-shop
Course Deliverables

- source code with basic documentation
- presentation
- individual report (2-3 pages)
 - description of individual contribution to the project
 - connection with course topics
 - discussion of related research papers
standard way:

- interesting project, presentation, report
- active participation during semester (attendance registered)

special cases (poor attendance, weak project, unclear contribution to the project, etc):

- revision of the project
- individual “examination” (discussion) at the end of semester
Discussion

- questions
- your project ideas
- potential groups