
Collaborative Filtering

Radek Pelánek

Movie Recommendations

How would you do it?

data

computation, algorithms

presentation

Notes on Lecture

the most technical lecture of the course

includes some “math with many indices”, but typically
with intuitive interpretation

use of standard machine learning techniques, which are
briefly described

projects: at least basic versions of the presented
algorithms (when relevant)

Collaborative Filtering: Basic Idea

Recommender Systems: An Introduction (slides)

Collaborative Filtering

simplifying assumption: users with similar taste in past
will have similar taste in future

requires only matrix of ratings
⇒ applicable in many domains

widely used in practice

Basic CF Approach

input: matrix of user-item ratings (with missing values,
often very sparse)

output: predictions for missing values

Netflix Prize

Netflix – video rental company

contest: 10% improvement of the quality of
recommendations

prize: 1 million dollars

data: user ID, movie ID, time, rating

Non-personalized Recommendations

Let us start with something simple:

non-personalized recommendations

How?

Non-personalized Recommendations

“most popular items”

compute average rating for each item

recommend items with highest averages

(filter those already known to user)

problems?

Non-personalized Predictions

“averages”, issues:

uncertainty, size of data

average 5 from 3 ratings
average 4.9 from 100 ratings

bias, normalization

some users give systematically higher ratings
ratings not distributed uniformly
(specific example in later lecture)

⇒ even a simple idea like “most popular items” is not that
simple to realize properly

Exploitation vs Exploration

“pure exploitation” – always recommend “top items”

what if some other item is actually better, rating is poorer
just due to noise?

“exploration” – presenting items to get more data

how to balance exploration and exploitation?

too much exploitation: we may omit some very good
items
too much exploration: we present poor items needlessly

Multi-armed Bandit

standard model for exploitation vs exploration

arm ⇒ (unknown) probabilistic reward

how to choose arms to maximize reward?

well-studied, many algorithms (e.g., upper confidence
bounds)

related to reinforcement learning

typical application: online advertisements

Core Idea

do not use just “averages”

quantify uncertainty (e.g., standard deviation)

combine average & uncertainty for decisions

example: TrueSkill, ranking of players (leaderboard)

systematic approach: Bayesian statistics

pragmatic approach: U(n) ∼ 1
n
, roulette wheel selection,

...

Personalized Techniques

now we want to make recommendations:

personalized: based on the user’s previous rankings

collaborative filtering: using other user’s rankings

Main CF Techniques

memory based

find “similar” users/items, use them for prediction
nearest neighbors (user, item)

model based

model “taste” of users and “features” of items
latent factors
matrix factorization

Neighborhood Methods: Illustration

Matrix factorization techniques for recommender systems

Latent Factors: Illustration

Matrix factorization techniques for recommender systems

Latent Factors: Netflix Data

Matrix factorization techniques for recommender systems

Ratings

explicit

e.g., “stars” (1 to 5 Likert scale)
issues: users may not be willing to rate ⇒ data sparsity

implicit

“proxy” data for quality rating
clicks, page views, time on page

the following applies directly to explicit ratings, modifications
may be needed for implicit (or their combination)

Note on Improving Performance

simple predictors often
provide reasonable
performance

further improvements
often small

but can have significant
impact on behavior
(not easy to evaluate)

⇒ evaluation lecture

Introduction to Recommender Systems, Xavier Amatriain

User-based Nearest Neighbor CF

user Alice:

item i not rated by Alice:

find “similar” users to Alice who have rated i
compute average to predict rating by Alice

recommend items with highest predicted rating

User-based Nearest Neighbor CF

Recommender Systems: An Introduction (slides)

User Similarity

Pearson correlation coefficient (alternatives: Spearman cor.
coef., cosine similarity, ...)

Recommender Systems: An Introduction (slides)

Pearson Correlation Coefficient: Reminder

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ)2

Test your intuition: https://www.umimematiku.cz/rozhodovacka-korelacni-koeficient-2

https://www.umimematiku.cz/rozhodovacka-korelacni-koeficient-2

Making Predictions: Naive

rai – rating of user a, item i

neighbors N = k most similar users
prediction = average of neighbors’ ratings

pred(a, i) =

∑
b∈N rbi
|N |

improvements?

user bias: consider difference from average rating
(rbi − rb)

user similarities: weighted average, weight sim(a, b)

Making Predictions: Naive

rai – rating of user a, item i

neighbors N = k most similar users
prediction = average of neighbors’ ratings

pred(a, i) =

∑
b∈N rbi
|N |

improvements?

user bias: consider difference from average rating
(rbi − rb)

user similarities: weighted average, weight sim(a, b)

Making Predictions

pred(a, i) = ra +

∑
b∈N sim(a, b) · (rbi − rb)∑

b∈N sim(a, b)

rai – rating of user a, item i

ra, rb – user averages

Improvements

number of co-rated items

agreement on more “exotic” items more important

case amplification – more weight to very similar neighbors

neighbor selection

Item-based Collaborative Filtering

compute similarity between items

use this similarity to predict ratings

more computationally efficient, often:
number of items << number of users

practical advantage (over user-based filtering): feasible to
check results using intuition

Item-based Nearest Neighbor CF

Recommender Systems: An Introduction (slides)

Cosine Similarity

rating by Alice

ra
tin

g
by

 B
ob

cos(α) =
A · B

∥A∥∥B∥

Similarity, Predictions

(adjusted) cosine similarity – similar to Pearson’s r , works
slightly better

pred(u, p) =

∑
i∈R sim(i , p)rui∑
i∈R sim(i , p)

neighborhood size limited (20 to 50)

Notes on Similarity Measures

Pearson’s r? (adjusted) cosine similarity? other?

no fundamental reason for choice of one metric

mostly based on practical experiences

may depend on application

Preprocessing

O(N2) calculations – still large

original article: Item-item recommendations by Amazon
(2003)

calculate similarities in advance (periodical update)

supposed to be stable, item relations not expected to
change quickly

reductions (min. number of co-ratings etc)

Practical Note: NaNs and zeros

common student mistake:

creating matrix of ratings

replacing missing values (NaN) by zeros

computing similarity measures (e.g., Pearson r)

using similarity measures for recommendations

Where is the mistake? Why is it a problem?

Matrix Factorization CF

main idea: latent factors of users/items

use these to predict ratings

related to singular value decomposition

Notes

singular value decomposition (SVD) – theorem in linear
algebra

in CF context the name “SVD” usually used for an
approach only slightly related to SVD theorem

related to “latent semantic analysis” and “embeddings”

introduced during the Netflix prize, in a blog post (Simon
Funk)
http://sifter.org/~simon/journal/20061211.html

http://sifter.org/~simon/journal/20061211.html

Singular Value Decomposition (Linear Algebra)

X = USV T

U ,V orthogonal matrices

S diagonal matrix, diagonal entries ∼ singular values

low-rank matrix approximation (use only top k singular values)

http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/svd.html

http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/svd.html

SVD – CF Interpretation

X = USV T

X – matrix of ratings

U – user-factors strengths

V – item-factors strengths

S – importance of factors

Latent Factors

Matrix factorization techniques for recommender systems

Latent Factors

Matrix factorization techniques for recommender systems

Sidenote: Embeddings, Word2vec

Missing Values

matrix factorization techniques (SVD) work with full
matrix

ratings – sparse matrix

solutions:

value imputation – expensive, imprecise
alternative algorithms (greedy, heuristic): gradient
descent, alternating least squares

Notation

u – user, i – item

rui – rating

r̂ui – predicted rating

b, bu, bi – bias

qi , pu – latent factor vectors (length k)

Simple Baseline Predictors

[note: always use baseline methods in your experiments]

naive: r̂ui = µ, µ is global mean

biases: r̂ui = µ+ bu + bi
bu, bi – biases, average deviations
some users/items – systematically larger/lower ratings

Latent Factors

(for a while assume centered data without bias)

r̂ui = qT
i pu

vector multiplication

user-item interaction via latent factors

illustration (3 factors):

user (pu): (0.5, 0.8,−0.3)

item (qi): (0.4,−0.1,−0.8)

Latent Factors

r̂ui = qT
i pu

vector multiplication

user-item interaction via latent factors

we need to find qi , pu from the data (cf content-based
techniques)

note: finding qi , pu at the same time

Learning Factor Vectors

we want to minimize “squared errors” (related to RMSE,
more details leater)

min
q,p

∑
(u,i)∈T

(rui − qT
i pu)

2

regularization to avoid overfitting (standard machine
learning approach)

min
q,p

∑
(u,i)∈T

(rui − qT
i pu)

2 + λ(||qi ||2 + ||pu||2)

How to find the minimum?

Stochastic Gradient Descent

standard technique in machine learning

greedy, may find local minimum

Gradient Descent for CF

prediction error eui = rui − qT
i pu

update (in parallel):

qi := qi + γ(euipu − λqi)
pi := pu + γ(euiqi − λpu)

math behind equations – gradient = partial derivatives

γ, λ – constants, set “pragmatically”

learning rate γ (0.005 for Netflix)
regularization λ (0.02 for Netflix)

Advice

if you want to learn/understand gradient descent (and also
many other machine learning notions) experiment with linear
regression

can be (simply) approached in many ways: analytic
solution, gradient descent, brute force search

easy to visualize

good for intuitive understanding

relatively easy to derive the equations

Advice II

recommended sources:

Koren, Yehuda, Robert Bell, and Chris Volinsky. Matrix
factorization techniques for recommender systems.
Computer 42.8 (2009): 30-37.

Koren, Yehuda, and Robert Bell. Advances in
collaborative filtering. Recommender Systems Handbook.
Springer US, 2011. 145-186.

Adding Bias

predictions:
r̂ui = µ+ bu + bi + qT

i pu

function to minimize:

min
q,p

∑
(u,i)∈T

(rui−µ−bu−bi−qT
i pu)

2+λ(||qi ||2+||pu||2+b2u+b2i)]

Improvements

additional data sources (implicit ratings)

varying confidence level

temporal dynamics

Temporal Dynamics

Netflix data

Y. Koren, Collaborative Filtering with Temporal Dynamics

Temporal Dynamics

Netflix data, jump early in 2004

Y. Koren, Collaborative Filtering with Temporal Dynamics

Temporal Dynamics

baseline = behaviour influenced by exterior considerations
interaction = behaviour explained by match between users and
items

Y. Koren, Collaborative Filtering with Temporal Dynamics

Results for Netflix Data

Matrix factorization techniques for recommender systems

Slope One

Slope One Predictors for Online Rating-Based Collaborative
Filtering

average over such simple prediction

Slope One

accurate within reason

easy to implement

updateable on the fly

efficient at query time

expect little from first visitors

Other CF Techniques

clustering

association rules

classifiers

Clustering

main idea:

cluster similar users

non-personalized predictions (“popularity”) for each
cluster

Clustering

Introduction to Recommender Systems, Xavier Amatriain

Clustering

unsupervised machine learning

many algorithms – k-means, EM algorithm, . . .

Clustering: K-means

Association Rules

relationships among items, e.g., common purchases

famous example (google it for more details): “beer and
diapers”

general machine learning algorithms

“Customers Who Bought This Item Also Bought...”

advantage: provides explanation, useful for building trust

closely related to item-based collaborative filtering

Classifiers

general machine learning techniques

positive / negative classification

train, test set

logistic regression, support vector machines, decision
trees, Bayesian techniques, ...

Limitations of CF

cold start problem

impact of noise (e.g., one account used by different
people)

possibility of attacks

popularity bias – difficult to recommend items from the
long tail

Limitations of CF

cold start problem

impact of noise (e.g., one account used by different
people)

possibility of attacks

popularity bias – difficult to recommend items from the
long tail

Cold Start Problem

How to recommend new items?

What to recommend to new users?

Cold Start Problem

use another method (non-personalized, content-based ...)
in the initial phase

ask/force user to rate items

use defaults (means)

better algorithms (e.g., recursive CF)

Collaborative Filtering: Summary

requires only ratings, widely applicable

neighborhood methods, latent factors

use of machine learning techniques

