This Lecture

- “practical aspects”: attacks, shared accounts, context, ...
- case studies, illustrations of application
- illustration of different evaluation approaches
- specific requirements for particular domains

focus on “ideas”, quick discussion (consult cited papers for technical details)
Focus on Ideas

even simple implementation often brings most of the advantage
Focus on Ideas

potential inspiration for projects, for example:

- taking context into account
- highlighting specific aspects of each domain
- specific techniques used in case studies
- analysis of data, visualizations
- evaluation
Attacks on Recommender System

- Why?
- What type of recommender systems?
- How?
- Countermeasures?
Attacks

susceptible to attacks: collaborative filtering

reasons for attack:

- make the system worse (unusable)
- influence rating (recommendations) of a particular item
 - push attacks – improve rating of “my” items
 - nuke attacks – decrease rating of “opponent’s” items
Fig. 2 Simplified system database showing authentic user profiles and a number of attack profiles inserted. In this example, user h is seeking a prediction for item 7, which is the subject of a product nuke attack.

<table>
<thead>
<tr>
<th>Users</th>
<th>Items 1</th>
<th>Items 2</th>
<th>Items 3</th>
<th>Items 4</th>
<th>Items 5</th>
<th>Items 6</th>
<th>Items 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>i</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Types of Attacks

more knowledge about system → more efficient attack

random attack generate profiles with random values
(preferably with some typical ratings)
average attack effective attack on memory-based systems
(average ratings → many neighbors)
bandwagon attack high rating for “blockbusters”, random
values for others
segment attack insert ratings only for items from specific
segment
special nuke attacks love/hate attack, reverse bandwagon
Fig. 3 Prediction shift (left) and hit ratio (right) for product push attacks mounted against the user-based collaborative recommendation algorithm. Hit ratio results relate to a 10% attack size.
Countermeasures

- more robust techniques: model based techniques (latent factors), additional information
- increasing injection costs: Captcha, limited number of accounts for single IP address
- automated attack detection
Attacks and Educational Systems

- cheating \sim false rating
- gaming the system – using hints as solutions

Can have similar consequences as attacks breaks models that (implicitly) assume honest students
Cheating Using Page Source Code
common (implicit) assumption in recommender system:
database ID \sim one person
when violated?
Shared Accounts

typical example: family sharing single account

Is this a problem? Why?
Shared Accounts

typical example: family sharing single account

Is this a problem? Why?

- dominance: recommendations dominated by one user
- generality: too general items, not directly relevant for individual users
- presentation
Shared Account: Evaluation

- hard to get “ground truth” data
- log data insufficient

How to study and evaluate?
Shared Account: Evaluation

- hard to get “ground truth” data
- log data insufficient

How to study and evaluate?

- artificial shared accounts – mix of two accounts
- not completely realistic, but “ground truth” now available
- combination of real data and simulation
Table 3: Example of user 562 suffering from sharing an account with user 4385.

<table>
<thead>
<tr>
<th>user ID</th>
<th>562</th>
<th>4385</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{sa} = DAMIB-COVER$ (p=0.75)</td>
<td>The Silence of the Lambs, Fargo, Schindler’s List, A Nightmare on Elm Street, Halloween: H20, Pulp Fiction, Shakespeare in Love, The Shining, The Exorcist, Sleepy Hollow</td>
<td></td>
</tr>
</tbody>
</table>
Context-Aware Recommendations

taking context into account – improving recommendations

- when relevant?
- what kind of context?

Context-aware recommender systems (Recommender systems handbook chapter)
Context-Aware Recommendations

classification:

- **physical** – location, time
- **environmental** – weather, light, sound
- **personal** – health, mood, schedule, activity
- **social** – who is in room, group activity
- **system** – network traffic, status of printers
Context – Applications

- tourism, visitor guides
- museum guides
- home computing and entertainment
- social events
Contextualization

- pre- post- filtering
- model based
 - multidimensionality: user \times item \times time \times ...
 - tensor factorization
Context – Specific Example

- social events (meetup.com)
- inherent item cold-start problem
 - short-lived
 - in the future, without “historical data”
- contextual information useful
Contextual Models

- **social** groups, social interaction
- **content** textual description of events, TF-IDF
- **location** location of events attended
- **time** time of events attended
Figure 1: Geographical densities of two users.
Context: Time

(a) Distribution per day.

(b) Distribution per hour.
Learning, Evaluation

- machine learning feature weights (Coordinate Ascent)
- historical data, train-test set division
- ranking metric: normalized discounted cumulative gain (NDCG)
Case Studies: Note

- recommender systems widely commercially applied
- nearly no studies about “business value” and details of applications (trade secrets)
Case Studies

- Game Recommendations
- App Recommendations
- YouTube
- Google News
- Yahoo! Music Recommendations
- Book Recommendations for Children
Personalized Game Recommendations

“textbook case study, focusing on basic algorithms”

- Recommender Systems - An Introduction book, chapter 8
 Personalized game recommendations on the mobile internet

- A case study on the effectiveness of recommendations in the mobile internet, Jannach, Hegelich, Conference on Recommender systems, 2009
Personalized Game Recommendations

setting:

- mobile Internet portal, telecommunications provider in Germany
- catalog of games (nonpersonalized in the original version):
 - manually edited lists
 - direct links – teasers (text, image)
 - predefined categories (e.g., Action&Shooter, From 99 Cents)
 - postsales recommendations
Figure 1: Catalog navigation and categories
Personalized Game Recommendations

personalization:

- new “My Recommendations” link
- choice of teasers
- order of games in categories
- choice of postsales recommendations
Algorithms

- nonpersonalized:
 - top rating
 - top selling

- personalized:
 - item-based collaborative filtering (CF)
 - Slope One (simple CF algorithm)
 - content-based method (using TF-IDF, item descriptions, cosine similarity)
 - hybrid algorithm (< 8 ratings: content, ≥ 8 ratings: CF)
Figure 2: Average number of item detail views per “My Recommendations” visits
Figure 3: Average number of downloads per “My Recommendations” visit
Figure 4: Average number of game purchases and demo downloads in post-sales situation.
Figure 5: Total number of non-free game downloads.
App Recommendations

App recommendations (e.g., Google Play, Apple App store)

- What are the main differences? (e.g., compared to movies/book recommendations)
- Why the basic application of recommendation techniques may fail?
App recommendations: a contest between satisfaction and temptation (2013)

- one-shot consumption (books, movies) vs continuous consumption (apps)
- impact on alternative (closely similar) apps, e.g., weather forecast
- when to recommend alternative apps?
Figure 2: Three scenarios of failed recommendation. The solid arrow means the user downloads the app while the dashed arrow indicates the particular app is recommended to the user.
actual value – “real satisfactory value of the app after it is used”

tempting value – “estimated satisfactory value” (based on description, screenshots, ...)

computed based on historical data: users with installed App i who view description of App j and decide to (not) install j
Figure 5: Actual-tempting difference with regarding to app category. Note that negative value means the app’s actual value is smaller than its tempting value and vice versa.
Recommendations, Evaluation

- AT model, combination with content-based, collaborative filtering
- evaluation using historical data
- relative precision, recall
The YouTube video recommendation system (2010)
 - description of system design (e.g., related videos)

The impact of YouTube recommendation system on video views (2010)
 - analysis of data from YouTube

Video suggestion and discovery for YouTube: taking random walks through the view graph (2008)
 - algorithm description, based on view graph traversal

 - use of context, predicting watch times
YouTube videos compared to movies (Netflix) or books (Amazon)

What are the specifics? Challenges?
YouTube: Challenges

YouTube videos compared to movies (Netflix) or books (Amazon)

What are the specifics? Challenges?

- poor meta-data
- many items, relatively short
- short life cycle
- short and noisy interactions
Input Data

- content data
 - raw video streams
 - metadata (title, description, ...)
- user activity data
 - explicit: rating, liking, subscribing, ...
 - implicit: watch, long watch

in all cases quite noisy
Related Videos

goal: for a video v find set of related videos

relatedness score for two videos v_i, v_j:

$$r(v_i, v_j) = \frac{c_{ij}}{f(v_i, v_j)}$$

- c_{ij} – co-visitiation count (within given time period, e.g. 24 hours)
- $f(v_i, v_j)$ – normalization, “global popularity”, e.g., $f(v_i, v_j) = c_i \cdot c_j$ (view counts)

top N selection, minimum score threshold
Generating Recommendation Candidates

- seed set S – watched, liked, added to playlist, ...
- candidate recommendations – related videos to seed set

\[C_1(S) = \bigcup_{v_i \in S} R_i \]

\[C_n(S) = \bigcup_{v_i \in C_{n-1}} R_i \]
Ranking

1. video quality
 - “global stats”
 - total views, ratings, commenting, sharing, ...

2. user specificity
 - properties of the seed video
 - user watch history

3. diversification
 - balance between relevancy and diversity
 - limit on number of videos from the same author, same seed video
User Interface

screenshot in the paper:

Note: explanations “Because you watched...” – not available in the current version
System Implementation

“batch-oriented pre-computation approach”

1. data collection
 - user data processed, stored in BigTable

2. recommendation generation
 - MapReduce implementation

3. recommendation serving
 - pre-generated results quickly served to user
Evaluation

![Graph showing normalized click through rate for different categories on different days of the week. The categories are Most Viewed, Top Favorited, Top Rated, and Recommended. The graph shows a slight increase in the Most Viewed category on Wednesday and a decrease on Friday for all categories.]

- Most Viewed
- Top Favorited
- Top Rated
- Recommended
News Recommendations

recommending news stories

- What are the specifics?
- What approach would you use?
specific aspects:

- value of immediacy
- short time span of items (high churn)
- scale, timing requirements

basic idea: clustering

another example: *Scene: a scalable two-stage personalized news recommendation system*
Google News – System Setup

News Front End

News Statistics Server

User Table

News Personalization Server

Story Table

Offline Logs Analysis

User ID + Clicked Story

Clustering + Click History

User ID + Clicked Story

User ID + Clicked Story

Cluster + Click History

Update Statistics

Fetch Statistics
Google News: Algorithms

- collaborative filtering using MinHash clustering
- probabilistic latent semantic indexing
- co-visititation counts

MapReduce implementations
Evaluation

- datasets:
 - MovieLens \(\sim 1000\) users; 1700 movies; 54,000 ratings
 - NewsSmall \(\sim 5000\) users; 40,000 items; 370,000 clicks
 - NewsBig \(\sim 500,000\) users, 190,000 items; 10,000,000 clicks
- repeated randomized cross-validation (80% train set, 20% test set)
- metrics: precision, recall
Evaluation

![Graph showing precision and recall for different methods: MH, PLSI, CORR.](image)
Evaluation
Evaluation on Life Traffic

- large portion of life traffic on Google news
- comparison of two algorithms:
 - each algorithms generates sorted list of items
 - interlace these two lists
 - measure which algorithm gets more clicks
- baseline: “Popular” (age discounted click count)
Evaluation

The graph shows the number of clicks as a fraction of popular clicks over a period of days. Three lines are present, each representing a different condition:

- "Popular": The blue line represents the popular condition, fluctuating around the line at 1, indicating that the number of clicks is generally equal to the number of popular clicks.
- "CSBiased": The green line shows the CSBiased condition, with noticeable deviations from the popular line, indicating differences in the click pattern.
- "CVBiased": The purple line represents the CVBiased condition, also showing deviations from the popular line, suggesting biased behavior in click patterns.

The x-axis represents the number of days, while the y-axis represents the number of clicks as a fraction of the popular clicks.

- large dataset (KDD cup 2011): 600 thousand items, 1 million users, 250 million ratings
- multi-typed items: tracks, albums, artists, genres
- taxonomy
- temporal dynamics
Ratings

Figure 1: The distribution of ratings. The approximately discrete nature of the distribution is evident

Why the peaks?
Ratings

Figure 1: The distribution of ratings. The approximately discrete nature of the distribution is evident

Why the peaks?
Different widgets used for collecting ratings, including “5 stars” (translated into 0, 30, 50, 70, 90 values)
Figure 2: The distribution of item mean ratings
User Mean Ratings

Figure 3: The distribution of user mean ratings
Item vs user means – why the discrepancy?
Item vs user means – why the discrepancy?

Users who rate less, rate higher.
Long term users are more critical.
Figure 4: Median of user ratings as a function of the number of ratings issued by the user. The vertical lines represent inter-quartile range.
Types of Items

Also the type of rated items differs:

Figure 5: The fraction of ratings the four item types receive as a function of the number of ratings a user gives.
Get to know your data before you start to use it.
Figure 6: Items temporal basis functions $\{f_i(t)\}_{i=1}^4$ vs. time since an item’s first rating measured in weeks.
Evaluation

<table>
<thead>
<tr>
<th>#</th>
<th>Model Name</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean Score</td>
<td>38.0617</td>
</tr>
<tr>
<td>2</td>
<td>Items and Users Bias</td>
<td>26.8561</td>
</tr>
<tr>
<td>3</td>
<td>Taxonomy Bias</td>
<td>26.2553</td>
</tr>
<tr>
<td>4</td>
<td>User Sessions Bias</td>
<td>25.3901</td>
</tr>
<tr>
<td>5</td>
<td>Items Temporal Dynamics Bias</td>
<td>25.2095</td>
</tr>
<tr>
<td>6</td>
<td>MF</td>
<td>22.9533</td>
</tr>
<tr>
<td>7</td>
<td>Taxonomy</td>
<td>22.7906</td>
</tr>
<tr>
<td>8</td>
<td>Final</td>
<td>22.5918</td>
</tr>
</tbody>
</table>

Table 2: Root Mean Squared Error (RMSE) of the evolving model. RMSE reduces while adding model components.
What are the specific challenges compared to book recommendations for adults?

What type of data would you use? What techniques?
Book Recommendations for Children

books for children, specific aspects:
- focus on text difficulty
- less ratings available
Readability Analysis
Evaluation of Readability Analysis

dataset: > 2000 books, “gold standard”: publisher-provided grade level

(a) Readability Formulas (b) Analysis Tools

Figure 2: Performance evaluation of ReLAT
Book Recommender

1. identifying candidate books (based on readability)
2. content similarity measure
3. readership similarity measure
4. rank aggregation
Content Similarity

- brief descriptions from book-affiliated websites (not the content of book itself)
- cosine similarity, TF-IDF
- word-correlation factor – based on frequencies of co-occurrence and relative distance in Wikipedia documents
\[
CSim(B, P) = \max_{P_B \in P} \frac{\sum_{i=1}^{n} VB_i \times VP_{B_i}}{\sqrt{\sum_{i=1}^{n} VB_i^2} \times \sqrt{\sum_{i=1}^{n} VP_{B_i}^2}}
\]

where \(B\) and \(P_B\) are represented as \(n\)-dimensional vectors \(VB = <VB_1, ..., VB_n>\) and \(VP_B = <VP_{B_1}, ..., VP_{B_n}>\), respectively, \(n\) is the number of distinct words in the descriptions of \(B\) and \(P_B\), and \(VB_i\) (\(VP_{B_i}\), respectively), which is the \textit{weight} assigned to word \(B_i\) (\(P_{B_i}\), respectively), is calculated as shown in the equations in Table 2.

\[\]

Table 2: TF-IDF weighting scheme used in the enhanced cosine similarity measure in Equation 3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Weight Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_i \in B) and (P_{B_i} \in P_B)</td>
<td>(VB_i = tf_{B_i,B} \times idf_{B_i}) and (VP_{B_i} = tf_{P_{B_i},P_B} \times idf_{P_{B_i}})</td>
</tr>
<tr>
<td>(B_i \in B) and (P_{B_i} \notin P_B)</td>
<td>(VB_i = tf_{B_i,B} \times idf_{B_i}) and (\sum_{c \in HSB_i} tf_{c,P_B} \times idf_{c} /</td>
</tr>
<tr>
<td>(B_i \notin B) and (P_{B_i} \in P_B)</td>
<td>(VB_i = \sum_{c \in HSP_{B_i}} tf_{c,B} \times idf_{c} /</td>
</tr>
</tbody>
</table>
Readership Similarity

- collaborative filtering, item-item similarity
- co-occurrence of items bookmarked by users
- Lennon similarity measure

\[RSim(B, P) = \max_{P_B \in P} \left(1 - \frac{\min(|S_B - S_n|, |S_{P_B} - S_n|)}{\min(|S_B - S_n|, |S_{P_B} - S_n|) + |S_n|} \right) \]
Rank Aggregation

- combine ranking from content and readership similarity
- Borda Count voting scheme
 - simple scheme to combine ranked list
 - points \sim order in a list
Evaluation

- **Data**: BiblioNasium (web page for kids), bookmarked books
- **Evaluation protocol**: five-fold cross validation
- **Ranking metrics**: Precision10, Mean Reciprocal Rank (MRR), Normalized Discounted Cumulative Gain (nDCG)
Evaluation
Glimpse at Current Research

Recommender Systems conference

- Google Scholar → metrics ⇒ top cited publications from last 5 years
- lot of deep learning techniques... but also scepticism about them (2019 best paper)

Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches

- best papers from the conference

https://recsys.acm.org/best-papers/
<table>
<thead>
<tr>
<th>Title / Author</th>
<th>Cited by</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks M Quadran, A Karatzoglou, B Hidasi, P Cremonesi Proceedings of the Eleventh ACM Conference on Recommender Systems, 100-137</td>
<td>300</td>
<td>2017</td>
</tr>
<tr>
<td>Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction S Seo, J Huang, H Yang, Y Liu Proceedings of the 10th ACM Conference on Recommender Systems, 297-305</td>
<td>236</td>
<td>2017</td>
</tr>
<tr>
<td>Title / Author</td>
<td>Cited by</td>
<td>Year</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks
M Quedrana, A Karatzoglou, B Hidasi, P Cremonesi
Proceedings of the Eleventh ACM Conference on Recommender Systems, 130-137</td>
<td>434</td>
<td>2017</td>
</tr>
<tr>
<td>Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction
S Seo, J Huang, H Yang, Y Liu
Proceedings of the Eleventh ACM Conference on Recommender Systems, 297-305</td>
<td>352</td>
<td>2017</td>
</tr>
<tr>
<td>When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation
D Jannach, M Ludwig
Proceedings of the Eleventh ACM Conference on Recommender Systems, 306-310</td>
<td>300</td>
<td>2017</td>
</tr>
<tr>
<td>Deep reinforcement learning for page-wise recommendations
X Zhao, L Xia, L Zhang, Z Ding, D Yin, J Tang
Proceedings of the Eleventh ACM Conference on Recommender Systems, 95-103</td>
<td>281</td>
<td>2018</td>
</tr>
<tr>
<td>Sequential User-based Recurrent Neural Network Recommendations
T Donkers, B Loep, J Ziegler
Proceedings of the Eleventh ACM Conference on Recommender Systems, 132-160</td>
<td>226</td>
<td>2017</td>
</tr>
</tbody>
</table>
Summary

Illustration of many aspects relevant in development of recommender systems:

- attacks
- context
- groups, shared accounts
- approaches to evaluation
- diversity
- differences between domains (books, movies, news...).