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Introduction

Uppaal Tool

verification tool for real time systems

based on timed automata

UPPsala + AALborg university, academic tool
widely used for teaching

several industrial case studies

www.uppaal.org


www.uppaal.org

Uppaal
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Extensions of Timed Automata

Extensions

@ time extensions: location invariants, ‘diagonal’ constraints
on clocks (comparison of two clocks)

@ data: integer variables, C code

@ concurrency: networks of timed automata,
communication via handshake (without value passing)

@ modeling aid: committed locations, urgent channels
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Functionality

Functionality of the Tool

modeling graphical tool for specification of timed
automata, templates

simulation simulation of the model (manual, random)

verification verification of simple properties (restricted subset
of Timed Computational Tree Logic),
counterexamples can be simulated
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Fischer's Protocol

Fischer’'s Protocol

@ real-time protocol — correctness depends on timing
assumptions

@ simple, just 1 shared variable, arbitrary number of
processes

@ assumption: known upper bound D on reading/writing
variable in shared memory

@ each process has it's own timer (for delaying)
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Fischer's Protocol

Fischer’'s Protocol

@ id — shared variable, initialized -1
@ each process has it's own timer (for delaying)
@ for correctness it is necessary that K > D

Process 1i:
while (true) {
<noncritical section>;
while id != -1 do {}
id := 1i;
delay K;
if (id = 1) {
<critical section>;
id := -1;
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Fischer's Protocol

Fischer’'s Protocol: Demo

Notice:

@ modeling: templates

@ simulation: time zones

@ verification: ability to find counterexample
Try:

@ change the number of processes

@ model has just one constant K, introduce two constants
D.K

@ let K < D and find a run violating mutual exclusion
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Bridge Puzzle

Bridge Puzzle

4 men, river, bridge, night, 1 flashlight
at most 2 man on a bridge, flashlight necessary
flashlight cannot be thrown

men — different time to cross: 5 min, 10 min, 20 min, 25
min

can they cross in 60 minutes?
can they cross is less than 60 minutes?
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Bridge Puzzle

Bridge Puzzle: Demo

Notice:
@ modeling: channels, synchronization
@ simulation: message sequence chart
@ verification: ability to find the fastest trace
Try:
@ change the time to cross: 2 min, 3 min, 5 min, 8 min

@ what is the minimum time to cross?



Train-Gate

Examples
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Communication via channels and
shared variable.

Stopable
Area
appr. \ [10,20]

stop

Crossing

Queue empty

nonempty
W hd, add,rer Gate
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Train-Gate

Train Crossing: Demo

Notice:

@ modeling: C-code

@ verification: types of properties
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Modeling exercises

Concurrent Addition Puzzle

c=1,x%:=0,x:=0

Xpo = C Xy = C
X=X +c || xx:=x+c
C =X cC =X

@ construct model, hints:

e one template for the two processes
e int x[2];

@ automatically find a run leading to ¢ = 23



Examples
0®00

Modeling exercises

Coffe Machine

Person \

Machine Observer

coin

For model without “error states’:
@ committed locations “Start”, “Go”

@ urgent channel “cof”
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Modeling exercises

Mutual Exclusion

@ protocols:

e Peterson’s protocol: model without time
e Alur and Taubenfeld's protocol: see handout

@ property to check: mutual exclusion

@ for each protocol make both correct and erroneous version
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Modeling exercises

Peterson’s Algorithm

e flag[0], flag[1] (initialed to false) — meaning /
want to access CS

@ turn (initialized to 0) — used to resolve conflicts

Process O: Process 1:
while (true) { while (true) {

<noncritical section>;

flag[0] := true;

turn := 1;

while flag[1l] and
turn = 1 do { };

<critical section>;

flag[0] := false;

<noncritical section>;

flag[1] := true;

turn := 0;

while flag[O0] and
turn = 0 do { };

<critical section>;

flag[1] := false;
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Gear Controller

Gear Controller

Formal Design and Analysis of a Gear Controller. M. Lindahl,
P. Pettersson, W. Yi.

@ component in the real-time embedded system that
operates in a modern vehicle (specifically Mecel AB)

@ the gear-requests from the driver are delivered over a
communication network to the gear controller

@ the controller implements the actual gear change by
actuating the lower level components of the system, such
as the clutch, the engine and the gear-box
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Gear Controller

Interface

@ receives service requests, keeps information about the
current status
@ used by:

e the driver using the gear stick
o dedicated component implementing the gear change
algorithm
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Case Studies
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\ J
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SpeedSet

Engine

ETimer
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Gear Controller

Functionality of the Controller

@ gear change performed in five steps:
@ accomplish zero torque
@ release the current gear
© achieve synchronous speed
© set the new gear
@ increase the engine torque back to previous level

@ under difficult driving conditions: zero torque or
synchronous speed not possible; then use the clutch
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Gear Controller

Timing Parameters

@ setting/releasing of a gear by electrically controlled
gear-box

@ timeout for reaching the zero torque
@ timeout for reaching synchronous speed

@ time needed for opening/closing the clutch
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Gear Controller

GearControl

Reqewear?
et

cnitiate
RegzeroTorquet

Pronbeaso gpsnctuteny
NewGear! GeTimer -0 ClutchIsopen?
CheckTorque CheckClutchg,
(GCTimer<=255) (CCTimer<=200) \
Torauezero?
SHimer <550 GeTimer>150
SEHRaE2E0
e:ReqNe
c:ClutchOpenz
Reqeu :
seqien! Copenkiror el
Semimer-200 GeTiner
GNeuEmor
c-ReqSyncSpeed semmerisy. Geartieu?
Togeare

Regspecat
Hiher
Todears0

Openclutchi cReqSetGear2

GETimers-150
GeTimer: 0

ClutchIsopen?

‘CheckSyncs|

1
|
(GCTimer=2 Jodeary |
GCTimer<150 ’
Speedset?
CReqSeGear cClutchOpen |
Regset |
Regget | Sefner:-o
GCTimer: =0 GCTimer>300 Timex>30
§Etmer 22930 dEhReizi,
ChockGearSer < CheckGe
(GCTimer==350) GSetEgror (CCTimer==330)
Gearset?
Gearser?
CloseCiutcnt
ClutchIsClosed? GCTimer :=0
( cClutchClose |
" EheckClutchClosed
c:ReqTorqueC j/‘(("hmer 200) |
gy, R,
ReqTorquet g

oot

CheckCluchClosed2
ik Ghachlgss




Case Studies
000000e0

Gear Controller

Requirements

e performance: a gear shift should be completed within 1.5
seconds, ...

@ safety: controller detects and report errors if and only if
clutch is not opened (closed) in time, ...

e functionality: it is possible to use all gears

@ predictability: strict synchronization between components,
e.g., when regulating torque, clutch should be closed, ...
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Gear Controller

GearControl@Initiate ~ <509 ( ( ErrStat =0 ) = GearControl@GearChanged )
GearControl@lnitiate ~+<1p00

( (ErrStat =0 A UseCase =0) = GearControl@GearChanged )
Clutch@ErrorClose ~+<209 GearControl@CCloseError
Clutch@ErrorOpen ~» <99 GearControl@COpenError
GearBox@Errorldle ~» <350 GearControl@GSetError
GearBox@ErrorNeu ~+ <299 GearControl@GNeuError

Inv ( GearControl@CCloseError =+ Clutch@ErrorClose )

Inv ( GearControl@CQpenError = Clutch@ErrorOpen )
Inv ( GearControl@GSetError = GearBox@Errorldle )
Inv ( GearControl@GNeuError = GearBox@ErrorNeu )
Inv ( Engine@ErrorSpeed = ErrStat # 0 )

Inv ( Engine@Torque = Clutch@Closed )
/\ Poss ( Gear@Gear; )

ic{R,N.1,..5}

/\ Inuv { ( GearControl@Gear A Gear@Gear; ) = Engine@Torque )
ie{R,1,...5}
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Power control

Power Control

Formal Verification of a Power Controller Using the Real-Time
Model Checker Uppaal. K. Havelund, K. G. Larsen and A.
Skou.

@ real-time system for power-down control in audio/video
components

@ system is supposed to reside in an audio/video
component and control (read from and write to) links to

neighbor audio/video components such as TV, VCR and
remote-control

@ protocol used by audio/video company B&O

@ design verified before implementation into products;
several design errors were found
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Power control

Main Room Other Rooms

Broadcast Bus

MX-TV

VXT000-VCR Audio Center

Fig. 1. Example B&O configuration.
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Stand-by Mode

components (processors) communicate via bus
minimization of energy consumption = stand-by mode
valid data on bus = leave stand-by mode

entering (leaving) stand-by mode takes ap. 1ms, it is not
atomic action

purpose of protocol: switching to stand-by mode in
consistent way
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Power control

data no data*,

initial state

Fig. 3. Major protocol phases. The dotted lines indicate transitions leading towards power down.
The full lines are leading towards power up. The two neighboring 'check driver’ phases are
necessary in order to be able to ignore noise from the communication lines.
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Power control

10P 3212 processor device links

AP 3002 processor check driver
ap_down drivers
10P data/no_data
ap_down_ack
ap_down_nac
check interrupt
ap_active
interrupt
handlers
interrupt/no_interrupt

Fig. 2. Software architecture of the power down protocol. The protocol entity process (IOP) re-

ceives protocol commands (left arrows) from the drivers and interrupt handlers by issuing check
commands (right arrows).
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Power control
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. sleeping must not change from 0 to 1 while sleep_op has the value 0. (The [OP must

not go to sleep if there has been an interrupt — see Figure 10 for an explanation of these
variables.)

. There must be a path from active to standby and vice versa. (It must be possible for

the IOP to switch between its two final states.)

. Every path from active to noise must pass through standby (The IOP must have

been asleep before reaching the noise state where it on its way up due to an interrupt
discovers that the interrupt is “false ", and hence caused by noise only.)

. The variable sleeping must not change from 0 to 1 while 1sl_interrupt is | or

ap-interrupt is 1 (The IOP must not go to sleep as long as there is an untreated inter-
rupt,)

. The shortest way from driver_returnl to driver_.call2 does not take more than

1500 ps (If the IOP on its way down verifies that the link is empty by calling the driver, and
then immediately thereafter data arrive (an interrupt occurs) no more than 1500 ps must
pass before the driver is called again.)

. The shortest way from driver_returnl to active does not take more than 1500 ps (If

the IOP on its way down discovers data on the link by calling the driver; then no more than
1500 ps must pass before the IOP is active again.)

. The shortest way from driver_return3 to driver_call2 does not take more than

1500 s (Like 5. but in a different place in the protocol’s execution.)

. The shortest way from driver_return3 to active does not take more than 1500 us

(Like 6, but in a different place in the protocol s execution.)

. If the last value of the variable 1s1_command has been 1 or 3 (driver starting commands),

then the value of sleeping must not change from 0 to 1 (If the last command issued to the
driver was a “start command ", then the IOP must not go to sleep.)
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Bounded Retransmission Protocol

Bounded Retransmission Protocol

The Bounded Retransmission Protocol must be on time!, P. R.
D’Argenio, J.P. Katoen, T.C. Ruys, J. Tretmans

@ protocol goal: message transmission over unrealible
medium
@ based on the well-known alternating bit protocol

@ allows only bounded number of retransmissions of each
frame (piece of a file); timed specification

@ protocol used in one of the Philips’ products
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Bounded Retransmission Protocol

I
|
| Sender S Receiver R I
|
|
|
| |F G‘ I
Channel K |
|
|
I B A |
| Channel L |
| |
L — — o o o -

Schematic view of the BRP.



Case Studies
©00®000

Bounded Retransmission Protocol

Timing Parameters

@ sender's timeout (T1)

@ receiver's timeout (T2)

e maximal delay in the channel (TD)

@ synchronization time after failure (TR, SYNC)
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Bounded Retransmission Protocol

000e00
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Bounded Retransmission Protocol

first_safe_frame
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rbN=—=0 7z=—TR exp_abi=0 exp ab:=1 rab==0

Rout_I_NOK!

cireport

frame received
(wz=0)

Rout_I_0OK!
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Bounded Retransmission Protocol

Comment

using the tool it is possible to

@ derive timing constraints necessary for the correctness of
the protocol:
T1>2-TD,SYNC>TR>2-MAX-T1+3-TD

@ verify that under these constraints the protocol satisfies
formal specification
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Collision Avoidance Protocol

Modelling and Analysis of a Collision Avoidance Protocol using
SPIN and Uppaal. H. E. Jensen, K. G. Larsen, A. Skou

@ several stations connected by an ethernet-like medium

@ we assume basic protocol for error-free transmission

@ on top of the basic protocol we built protocol for avoiding
collisions (simultaneous transmission)

@ basic ideas:

e master station, assigns bus to slaves
e delays (bus, receiving stations) have to be taken into
account
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Collision Avoidance Protocol

Master Slave 1 Slave 2 Slave 3

Ethernet
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Collision Avoidance Protocol

Goals of the Protocol

@ collisions cannot occur
@ transmitted data eventually reach their destination
@ data which are received have been transmitted by a sender

@ there is known upper bound on the transmission delay

the model is similar to the previous one



Extensions

Extensions: Beyond Timed Automata ...

@ probabilistic
@ hybrid
@ tasks (scheduling)

@ games (controller synthesis)



Extensions

Hybrid Automata

@ embedded system modeling
@ discrete control unit + continuous variables

@ main difference wrt TA: change of continous variables
does not need to be uniform (arbitrary function)

@ used to model external physical processes, e.g.
temperature
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Hybrid Automata: Example
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Automata with Tasks

@ Times — A Tool for Modeling and Implementation of
Embedded Systems

@ timed automata extended with tasks
@ TA used to model task arrival patterns (more complex
than simple periodicity)

@ support for schedulability analysis, code generation
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Summary

@ Uppaal tool: verification of real time models
@ simple examples, main features of the tool
@ overview of several realistic case studies

@ extensions
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