Formal Verification of Real Time Systems
Timed Automata

Radek Pelanek

INVESTICE DO ROZVOIJE VZDELAVANI

Basic Concepts

Aim of the Lecture

@ knowledge of a basic formalism for modeling timed
systems

@ basic understanding of verification algorithms for timed
systems

Basic Concepts
©000000000

Motivation

Example: Peterson’s Algorithm

e flag[0], flag[1] (initialed to false) — meaning /
want to access CS

@ turn (initialized to 0) — used to resolve conflicts

Process 1:
while (true) {

Process O:
while (true) {

<noncritical section>;

flag[0] := true;

turn := 1;

while flag[1] and
turn = 1 do { };

<critical section>;

flag[0] := false;

<noncritical section>;

flag[1] := true;

turn := 0;

while flag[0] and
turn = 0 do { };

<critical section>;

flag[1] := false;

Basic Concepts
0®00000000

Motivation

Example: Peterson’s Algorithm

flag[0]:=1
@ e

flag[0]:=0

\\ flag[1]==0 or turn==2 '

S
=
+
-
@)
80
<
wn
c
@]
0
—
()
+-
()
o
.hb.
o
S
L)
X
L

Basic Concepts
00®000000

Motivation

Basic Concepts
000®000000

Motivation

Fischer's Protocol

@ real-time protocol — correctness depends on timing
assumptions

@ simple, just 1 shared variable, arbitrary number of
processes

@ assumption: known upper bound D on reading/writing
variable in shared memory

@ each process has it's own timer (for delaying)

Basic Concepts
0000®00000

Motivation

Fischer's Protocol

@ id — shared variable, initialized -1
@ each process has it's own timer (for delaying)
@ for correctness it is necessary that K > D

Process 1i:
while (true) {
<noncritical section>;
while id !'= -1 do {}
id := 1i;
delay K;
if (id = 1) {
<critical section>;
id := -1;

Basic Concepts
00000e0000

Motivation

Modeling Fischer’'s Protocol

@ how do we model clocks?

@ how do we model waiting (delay)?

Basic Concepts
000000e000

Motivation

Modeling Real Time Systems

Two models of time:

@ discrete time domain

@ continuous time domain

Basic Concepts
0000000800

Motivation

Discrete Time Domain

@ clocks tick at regular interval
@ at each tick something may happen

@ between ticks — the system only waits

Basic Concepts
000000000

Motivation

Discrete Time Domain

€ € € ¢ ¢ i

@ choose a fixed sample period €
@ all events happen at multiples of ¢

@ simple extension of classical model (time = new integer
variable)
@ main disadvantage — how to choose €7
e big ¢ = too coarse model
e low € = time fragmentation, too big state space

@ usage: particularly synchronous systems (hardware
circuits)

Basic Concepts
©000000000e

Motivation

Continuous Time Domain

time ~ real number
delays may be arbitrarily small
more faithful model, suited for asynchronous systems

model checking (automatic verification) ~ traversal of
state space

uncountable state space = cannot be directly handled
automatically by “brute force”

Basic Concepts
®0000

TA Introduction

Timed Automata

@ extension of finite state machines with clocks
@ continuous real semantics

@ limited list of operations over clocks = automatic
verification is feasible
@ allowed operations:

e comparison of a clock with a constant
e reset of a clock
o uniform flow of time (all clocks have the same rate)

@ note: even simple extensions lead to undecidability

Basic Concepts
0®000

TA Introduction

What is a Timed Automaton?

(off o)

@ an automaton with locations (states) and edges

@ the automaton spends time only in locations, not in edges

Basic Concepts
00800

TA Introduction

What is a Timed Automaton? (2)

X>2 z<5

y=9

@ real valued clocks
@ all clocks run at the same speed

@ clock constraints can be guards on edges

Basic Concepts
0000

TA Introduction

What is a Timed Automaton? (3)

@ clocks can be reseted when taking an edge

@ only a reset to value 0 is allowed

Basic Concepts
ooooe

TA Introduction

What is a Timed Automaton? (4)

@ location invariants forbid to stay in a state too long

@ invariants force taking an edge

Basic Concepts
®0

Syntax

Clock Constraints

Definition (Clock constraints)

Let X be a set of clock variables. Then set C(X) of clock
constraints is given by the following grammar:

dp=x<k|k<x|x<k|k<x|pNo

where x € X, k € N.

Basic Concepts
oce

Syntax

Timed Automata Syntax

Definition (Timed Automaton)

A timed automaton is a 4-tuple: A= (L, X, I, E)
@ L is a finite set of locations
@ X is a finite set of clocks

@ Iy € L is an initial location
@ ECLxC(X)x2Xx Lis a set of edges

edge = (source location, clock constraint, set of clocks to be
resetted, target location)

Basic Concepts
©00000000

Semantics

Semantics: Main Idea

@ semantics is a state space
(reminder: guarded command language, extended finite
state machines)

@ states given by:

o location (local state of the automaton)
e clock valuation

@ transitions:

e waiting — only clock valuation changes
e action — change of location

Basic Concepts
0®000000D

Semantics

Clock Valuations

@ a clock valuation is a function v : X — Rt

@ v[Y := 0] is the valuation obtained from v by resetting
clocks from Y

0 xeY

x otherwise

v[Y :=0](x) = {
e v+ d = flow of time (d units):
(v+d)(x) =v(x)+d

@ v = ¢ means that valuation v satisfies the constraint ¢

Basic Concepts
00®00000D

Semantics

Evaluation of Clock Constraints

Evaluation of a clock constraint (v = g):
o v x < kiff v(x) < k
o v Ex<kiffv(x) <k
evkEgAgiffriEgandr =g

Basic Concepts
000@0000D

Semantics

SEES

let v=(x — 3,y = 24,z—0.5)
e what is v[y :=0]?
@ what is v + 1.27
@ doesv =y < 37
@ doesv=x<4Nz>17

Basic Concepts

[e]elele] Jlelelele]

Semantics

Timed Automata Semantics

Definition (Timed automata semantics)
The semantics of a timed automaton A is a transition system
Sa=(S,s0, —):

e S=Lx(X—=R"

@ so = (lo,vp), vo(x) =0 for all x € X

@ transition relation —C S x S is defined as:

o (delay action) (/,v) N (l,v+9)
o (discrete action) (/,v) — (I', V') iff there exists
(I,c,Y,I') € E such that v |= ¢,V = v[Y :=0]

Basic Concepts
00000 @00

Semantics

Example

@ What is a clock valuation?
@ What is a state?
e Find a run = sequence of states

Basic Concepts
000000e0D

Semantics

Example

@ clock valuation:
assignment of a real value
to x

@ initial state (off,0) m

@ example of a run: G2 D Gord
(off,0) 22 (off,2.4) —>
(light,0) =2
(light,1.5) —
(bright,1.5) — ...

Basic Concepts
00000008V

Semantics

Example

Construct a timed automaton, which models the following
schedule of a student:

@ the student wakes up between 7 and 9

@ if the student wakes up before 8, he has a breakfast,
which takes exactly 15 minutes

@ the students travels to school, it takes between 30 and 45
minutes

@ if the student arrives to school before 10, he goes to the
lecture, otherwise he goes to the library

Basic Concepts
00000000®

Semantics

Semantics: Notes

@ the semantics is infinite state (even uncountable)

@ the semantics is even infinitely branching

Theoretical Results
Tololelclelololele}

Verification Problems

Reachability Problem

Reachability Problem
Input: a timed automaton A, a location / of the automaton
Question: does there exists a run of A which ends in /

This problem formalises the verification of safety problems — is
an erroneous state reachable?

Theoretical Results
o! Jolelelelololele}

Verification Problems

Example

%=1 y>5 && x <3 goal
(M

y>2 && x<4
=0

How to do it algorithmically?

Theoretical Results
0O®0000000

Verification Problems

Other Verification Problems

e verification of temporal (timed) logic

@ equivalence checking — (timed) bisimulation of timed
automata

@ universality, language inclusion (undecidable)

Theoretical Results
lo’olo] Telelololele}

Verification Problems

Reachability: Attempt 1

e discretization (sampled semantics)

@ allow time step (delay) 1

@ clock above maximal constant = value does not increase
o finite state space

@ but not equivalent = find counterexample

Theoretical Results
{oolole] Ielololele}

Verification Problems

Reachability: Attempt 2

@ what about time step 0.5

Theoretical Results
{oolole] Ielololele}

Verification Problems

Reachability: Attempt 2

@ what about time step 0.5

y:=0

&

VA

t u
x<1 N x>1 =O
y>0 y<1

Theoretical Results
{oololele] Yololele}

Verification Problems

Reachability: Attempt X

@ what about time step 0.257

@ what about time step 277

Theoretical Results
{oololeleleY Tolele}

Verification Problems

Reachability and Discretization

e for each automaton there exists € such that sampled and
dense semantics are reachability equivalent
e why?
e how to determine €?
@ no fixed ¢ is sufficient for all timed automata

@ more complex equivalences (trace equivalence,
bisimulation) and verification problems — sampled and
dense semantics are not equivalent

Theoretical Results
DO00000®00

Verification Problems

Sampled vs Dense Semantics

a,y>0Az<l,y:=0
m a,y=1,y:=0
—®) —@)

b,z>1,z:=0

@ dense semantics: arbitrary long words
@ sampled semantics: bounded length of words

Theoretical Results
DO000000 @0

Verification Problems

Another Approach?

e discretization (sampling) is not sufficient
@ any other idea?

Theoretical Results
DO000000 @0

Verification Problems

Another Approach?

e discretization (sampling) is not sufficient
@ any other idea?

@ is it necessary to distinguish the following valuations?
(0.589,1.234) and (0.587,1.236)

Theoretical Results
DO000000 @0

Verification Problems

Another Approach?

e discretization (sampling) is not sufficient
@ any other idea?

@ is it necessary to distinguish the following valuations?
(0.589,1.234) and (0.587,1.236)

@ some clock valuations are equivalent ~ the automaton
cannot distinguish between them ~ any run possible from
one valuation is also possible from the second

@ let us find these equivalence classes (regions)

Theoretical Results
{oololelelelolote] }

Verification Problems

Reachability Problem

The reachability problem is PSPACE-complete.

@ note that even decidability of the problem is not
straightforward — the semantics is infinite state

@ decidability proved by region construction (to be
discussed)

@ completeness proved by general reduction from linearly
bounded Turing machine (not discussed)

Theoretical Results
©0000000000000000

Region Construction

Region Construction

Main idea:

@ some clock valuations are equivalent
@ work with regions of valuations instead of valuations

@ finite number of regions

Theoretical Results
0®000000000000000

Region Construction

Preliminaries

Let d € R=°. Then:
o let | d| be the integer part of d
o let fr(d) be the fractional part of d

Thus d = |d]| + fr(d).

Example: [42.37] = 42, fr(42.37) = 0.37

Theoretical Results
0O®00000000000000

Region Construction

Equivalence on Clock Valuation

@ we want an equivalence = such that if v = v/ then the
automaton “cannot distinguish between v and "

e formally: bisimulation

@ informally: whatever action an automaton can do in v, it
can also do it in v/ (and vice verse, repeatedly)

@ what conditions on = do we need?

Theoretical Results
000O®0000000000000

Region Construction

Equivalence on Clock Valuation: Condition 1

Let ¢, by the largest constant compared to a clock x (“max
bound").

Condition 1:

Clock x is in both valuations v and 1/ are above its max
bound, or it has the same integer part in both of them.

v(x) > o ANV(x) > ¢ or |v(x)| = [V (x)]

Theoretical Results
0000®000000000000

Region Construction

Equivalence on Clock Valuation: Condition 2

Condition 2:

If the value of clock is below its max bound, then either it has
zero fractional part in both v and v/ or in neither of them.

v(x) < ¢ = (fr(v(x)) =0 < fr(v'(x) =0))

Theoretical Results
00000®00000000000

Region Construction

Equivalence on Clock Valuation: Condition 3

Condition 3:

For two clocks that are below their max bound, the ordering of
fractional parts must be the same in both v and /.

v(x) <ccAv(y) <c =
fr(v(x)) < fr(v(y)) < fr(v'(x)) < fr(V(y))

Theoretical Results
000000@®0000000000

Region Construction

Equivalence on Clock Valuation

Let ¢, by the largest constant compared to a clock x (“max
bound").

2 is equivalence on clock valuations such that v = v/ iff for all
clocks x, y holds:

v(x) = & AV(x) 2 ¢ or [v(x)] = [V (x)]
v(x) < ¢ fr(v(x)) =0 < fr(V'(x) = 0))
v(x) < ¢ A y()gcy:>

fr(v(x)) < fr(v(y)) < fr(v/(x)) < fr(v'(y))

Theoretical Results
0000000800000 0000

Region Construction

Why Do We Need Condition 37

@ Why do we need condition 3, when the automaton cannot
compare clocks?
@ Find an automaton and clock valuations v, 15 such that:
e v, p satisfy condition 1 and 2, but not condition 3
e automaton can “distinguish” between vy, 1, i.e. there
exists timed run r such that r is possible from v but not

from v,

Theoretical Results
00000000®00000000

Region Construction

Equivalence: Example 1

y>1
x>1 y>5 && x <3 goal
)

y>2 && x<4

x:=0

Identify ¢, c,

Theoretical Results
0000000008000 0000

Region Construction

Equivalence: Example 2

@ suppose ¢, =4,¢c, =5,¢c, =1

e let (x,y,z) denote valuations, decide:
© (0,0.14,0.3) = (0.05,0.1,0.32) ?

(1.9,4.2,0.4) = (2.8,4.3,0.7) ?

(0.05,0.1,0.3) = (0.2,0.1,0.4) ?

(0.03,1.1,0.3) 2 (0.05,1.2,0.3) ?

(

(2]
Q
Q
O (3.9,5.3,0.4) = (3.8,6.9,0.8) ?

Theoretical Results
0000000000e000000

Region Construction

Regions

Definition (Region)

Classes of equivalence 2 are called regions, denoted [v].

The number of regions is at most |X|! - 2X1-TT _,(2¢, + 2).

Theoretical Results
0000000000080 0000

Region Construction

Regions: Example

@ suppose TA with two clocks, ¢, = 3,¢c, = 2
e draw all regions (since we have just 2 clocks, we can draw
them in plane)
@ hints:
e what is the region [(x = 0.3,y = 0.2)]?

e what is the region [(x = 1.3,y = 0.3)]?
e what is the region [(x = 2.0,y = 1.0)]?

Theoretical Results
000000000000e0000

Region Construction

Regions: Example

Regions for TA with two clocks ¢, =3, ¢, = 2.

Theoretical Results
0000000000000 e000

Region Construction

Region Graph

@ states are 2-tuples location + clock region: (/,[v])

e there is a transition from (/, [v]) to (/',[¢']) if there exists
w = v,w =V such that (/,w) — (I',w')

@ region graph is equivalent to the semantics of A with
respect to reachability
(note: in fact it is equivalent wrt bisimulation
equivalence)

@ moreover region graph is finite and can be effectively
constructed = region graph can be used to answer the
reachability problem

Theoretical Results
0000000000000 0e00

Region Construction

Operations on Regions

To construct the region graph, we need the following
operations:

@ let time pass — go to adjacent region at top right

@ intersect with a clock constraint (note that clock
constraints define supersets of regions)

e if region is in the constraint: no change
e otherwise: empty

@ reset a clock — go to a corresponding region

Theoretical Results
000000000000000e0

Region Construction

Example: Automaton

Figure 6: The automaton A,

(source: R. Alur)

Theoretical Results
0000000000000000e

Region Construction

Example: Region Graph

Figure 7: The region automaton £(Ag)

Practical Verification
®000

@ regions ... nice theory, but inefficient and hard to
implement
@ zones:
e convex sets of clock valuations
o defined by conjunction of constraints x — y < k

o allows efficient representation and manipulation
(Difference Bound Matrix)

Practical Verification
oeo00

Zones

Difference Bound Matrix

X<20Ny<20Ny —x<10Ax—y<-10ANz>5

0,9 (0, (0,<)(5,<)
{9 0,9 -103)
MDY= 1 (20,<) (10,<) (0,<

o w0 (0,9)

matrix representation can be used to perform necessary
operation: passing of time, resetting clock, intersection with

constraint, ...

Practical Verification
ocoeo

Zones

Zones: Operations

g, a, C':=0
O— @
zones Z [C tl](? ng)
Q Q
Z Z Zng [y —0[(Z ng)

(source: J.P. Katoen)

Practical Verification
oooe

Zones

Zone Graph: Example

y>0Az <]l e

Figure 8: Reachable zone automaton

Practical Verification
®000
Extensions

Extensions

For practical modeling we use several extensions:
@ location invariants
@ parallel composition of automata
@ channel communication, synchronization
@ integer variables

These issues are solved in the ‘usual way'. Here we focused on
the basic model, basic aspects dealing with time.

Practical Verification
oeo0

Extensions

Example: Parallel Composition

'70\ approach s, > H/ ; 7\ lower _ N
Y/ ai=0 hash W y=0 sy
exit x>2,in y>1,up down
0G5 GE=t)
i5/ Q WEQ/ raise ,_/

TrAIN GATE

u exit, z:=0 J*\qpproa‘ch z —O ——

\z< H\ \< 1 /
raise 2z =1, lower
CONTROLLER

Fig. 2. Train-gate controller

(source: R. Alur)

Practical Verification
ocoeo

Extensions

Fischer's Protocol

@ id — shared variable, initialized -1
@ assumption: known upper bound D on reading/writing
variable in shared memory, for correctness it is necessary

that K > D

Process 1i:
while (true) {
<noncritical section>;
while id !'= -1 do {}
id := 1;
delay K;
if (dd = 1) {
<critical section>;
id := -1;

Practical Verification
oooe

Extensions

Fischer's Protocol: Model

x>k && id==pid

cs wait

Summary

Summary

@ timed automata: formal syntax and semantics

@ reachability problem, equivalence of valuations, region
automaton

@ practical verification: zones, extensions

	Basic Concepts
	Motivation
	TA Introduction
	Syntax
	Semantics

	Theoretical Results
	Verification Problems
	Region Construction

	Practical Verification
	Zones
	Extensions

	Summary

