Formal Verification of Real Time Systems
Timed Automata

Radek Pelánek
Aim of the Lecture

- knowledge of a basic formalism for modeling timed systems
- basic understanding of verification algorithms for timed systems
Example: Peterson’s Algorithm

- flag[0], flag[1] (initialized to false) – meaning / want to access CS
- turn (initialized to 0) – used to resolve conflicts

Process 0:
while (true) {
 <noncritical section>;
 flag[0] := true;
 turn := 1;
 while flag[1] and turn = 1 do { }
 <critical section>;
 flag[0] := false;
}

Process 1:
while (true) {
 <noncritical section>;
 flag[1] := true;
 turn := 0;
 while flag[0] and turn = 0 do { }
 <critical section>;
 flag[1] := false;
}
Example: Peterson’s Algorithm

- flag[0]:=1
- flag[0]:=0
- turn:=1
- flag[1]==0 or turn==2

Diagram:

- NCS
- W1
- CS
- W2
Example: Peterson’s Algorithm
Fischer’s Protocol

- real-time protocol – correctness depends on timing assumptions
- simple, just 1 shared variable, arbitrary number of processes
- assumption: known upper bound D on reading/writing variable in shared memory
- each process has its own timer (for delaying)
Fischer’s Protocol

- id – shared variable, initialized -1
- each process has its own timer (for delaying)
- for correctness it is necessary that $K > D$

Process i:
while (true) {
 <noncritical section>;
 while id != -1 do {}
 id := i;
 delay K;
 if (id = i) {
 <critical section>;
 id := -1;
 }
}
Modeling Fischer’s Protocol

- how do we model clocks?
- how do we model waiting (delay)?
Modeling Real Time Systems

Two models of time:

- discrete time domain
- continuous time domain
Discrete Time Domain

- clocks tick at regular interval
- at each tick something may happen
- between ticks – the system only waits
Discrete Time Domain

- choose a fixed sample period ϵ
- all events happen at multiples of ϵ
- simple extension of classical model (time = new integer variable)
- main disadvantage – how to choose ϵ?
 - big $\epsilon \Rightarrow$ too coarse model
 - low $\epsilon \Rightarrow$ time fragmentation, too big state space
- usage: particularly synchronous systems (hardware circuits)
Continuous Time Domain

- time \sim real number
- delays may be arbitrarily small
- more faithful model, suited for asynchronous systems
- model checking (automatic verification) \sim traversal of state space
- uncountable state space \Rightarrow cannot be directly handled automatically by "brute force"
Timed Automata

- extension of finite state machines with clocks
- continuous real semantics
- limited list of operations over clocks ⇒ automatic verification is feasible
- allowed operations:
 - comparison of a clock with a constant
 - reset of a clock
 - uniform flow of time (all clocks have the same rate)
- note: even simple extensions lead to undecidability
What is a Timed Automaton?

- an automaton with locations (states) and edges
- the automaton spends time only in locations, not in edges
What is a Timed Automaton? (2)

- real valued clocks
- all clocks run at the same speed
- clock constraints can be guards on edges
What is a Timed Automaton? (3)

- clocks can be *reseted* when taking an edge
- only a reset to value 0 is allowed
What is a Timed Automaton? (4)

- Location invariants forbid to stay in a state too long.
- Invariants force taking an edge.
Clock Constraints

Definition (Clock constraints)

Let X be a set of clock variables. Then set $C(X)$ of clock constraints is given by the following grammar:

$$\phi \equiv x \leq k \mid k \leq x \mid x < k \mid k < x \mid \phi \land \phi$$

where $x \in X$, $k \in \mathbb{N}$.
Timed Automata Syntax

Definition (Timed Automaton)

A timed automaton is a 4-tuple: \(A = (L, X, l_0, E) \)

- \(L \) is a finite set of locations
- \(X \) is a finite set of clocks
- \(l_0 \in L \) is an initial location
- \(E \subseteq L \times C(X) \times 2^X \times L \) is a set of edges

edge = (source location, clock constraint, set of clocks to be resetted, target location)
Semantics: Main Idea

- semantics is a state space
 (reminder: guarded command language, extended finite state machines)
- states given by:
 - location (local state of the automaton)
 - clock valuation
- transitions:
 - waiting – only clock valuation changes
 - action – change of location
Clock Valuations

- A clock valuation is a function $\nu : X \to \mathbb{R}^+$
- $\nu[Y := 0]$ is the valuation obtained from ν by resetting clocks from Y:
 \[
 \nu[Y := 0](x) = \begin{cases}
 0 & x \in Y \\
 x & \text{otherwise}
 \end{cases}
 \]
- $\nu + d =$ flow of time (d units):
 \[
 (\nu + d)(x) = \nu(x) + d
 \]
- $\nu \models c$ means that valuation ν satisfies the constraint c
Evaluation of a clock constraint ($\nu \models g$):

- $\nu \models x < k$ iff $\nu(x) < k$
- $\nu \models x \leq k$ iff $\nu(x) \leq k$
- $\nu \models g_1 \land g_2$ iff $\nu \models g_1$ and $\nu \models g_2$
Examples

let \(\nu = (x \rightarrow 3, y \rightarrow 2.4, z \rightarrow 0.5)\)

- what is \(\nu[y := 0]\)?
- what is \(\nu + 1.2\)?
- does \(\nu \models y < 3\)?
- does \(\nu \models x < 4 \land z \geq 1\)?
Basic Concepts

Theoretical Results

Practical Verification

Summary

Semantics

Timed Automata Semantics

Definition (Timed automata semantics)

The semantics of a timed automaton A is a transition system $S_A = (S, s_0, \rightarrow)$:

- $S = L \times (X \rightarrow \mathbb{R}^+)$
- $s_0 = (l_0, \nu_0)$, $\nu_0(x) = 0$ for all $x \in X$
- transition relation $\rightarrow \subseteq S \times S$ is defined as:
 - (delay action) $(l, \nu) \xrightarrow{\delta} (l, \nu + \delta)$
 - (discrete action) $(l, \nu) \rightarrow (l', \nu')$ iff there exists $(l, c, Y, l') \in E$ such that $\nu \models c$, $\nu' = \nu[Y := 0]$
What is a clock valuation?

What is a state?

Find a run = sequence of states
Semantics

Example

- clock valuation: assignment of a real value to x
- initial state (off, 0)
- example of a run:
 $(off, 0) \xrightarrow{2.4} (off, 2.4) \rightarrow (light, 0) \xrightarrow{1.5} (light, 1.5) \rightarrow (bright, 1.5) \rightarrow ...$
Example

Construct a timed automaton, which models the following schedule of a student:

- the student wakes up between 7 and 9
- if the student wakes up before 8, he has a breakfast, which takes exactly 15 minutes
- the students travels to school, it takes between 30 and 45 minutes
- if the student arrives to school before 10, he goes to the lecture, otherwise he goes to the library
Semantics: Notes

- the semantics is infinite state (even uncountable)
- the semantics is even infinitely branching
Reachability Problem

Input: a timed automaton A, a location l of the automaton

Question: does there exist a run of A which ends in l?

This problem formalises the verification of safety problems – is an erroneous state reachable?
Example

How to do it algorithmically?
Other Verification Problems

- verification of temporal (timed) logic
- equivalence checking – (timed) bisimulation of timed automata
- universality, language inclusion (undecidable)
Verification Problems

Reachability: Attempt 1

- discretization (sampled semantics)
- allow time step (delay) 1
- clock above maximal constant \Rightarrow value does not increase
- finite state space
- but not equivalent \Rightarrow find counterexample
Reachability: Attempt 2

- what about time step 0.5
Reachability: Attempt 2

- what about time step 0.5

```
y := 0
```

```
s -----------------> t -----------------> u
x < 1  y > 0  x > 1  y < 1
```
Reachability: Attempt X

- what about time step 0.25?
- what about time step 2^{-n}?
for each automaton there exists ϵ such that sampled and dense semantics are reachability equivalent

- why?
- how to determine ϵ?

no fixed ϵ is sufficient for all timed automata

more complex equivalences (trace equivalence, bisimulation) and verification problems – sampled and dense semantics are not equivalent
Sampled vs Dense Semantics

- dense semantics: arbitrary long words
- sampled semantics: bounded length of words
Another Approach?

- discretization (sampling) is not sufficient
- any other idea?
Another Approach?

- discretization (sampling) is not sufficient
- any other idea?
- is it necessary to distinguish the following valuations?
 \((0.589, 1.234)\) and \((0.587, 1.236)\)
Another Approach?

- discretization (sampling) is not sufficient
- any other idea?
- is it necessary to distinguish the following valuations?

 $(0.589, 1.234)$ and $(0.587, 1.236)$

- some clock valuations are equivalent \sim the automaton cannot distinguish between them \sim any run possible from one valuation is also possible from the second
- let us find these equivalence classes (regions)
Reachability Problem

Theorem

The reachability problem is PSPACE-complete.

- note that even decidability of the problem is not straightforward – the semantics is infinite state
- **decidability** proved by region construction (to be discussed)
- completeness proved by general reduction from linearly bounded Turing machine (not discussed)
Main idea:

- some clock valuations are equivalent
- work with regions of valuations instead of valuations
- finite number of regions
Let \(d \in \mathbb{R}_{\geq 0} \). Then:

- let \(\lfloor d \rfloor \) be the integer part of \(d \)
- let \(fr(d) \) be the fractional part of \(d \)

Thus \(d = \lfloor d \rfloor + fr(d) \).

Example: \(\lfloor 42.37 \rfloor = 42, \ fr(42.37) = 0.37 \)
we want an equivalence \approx such that if $\nu \approx \nu'$ then the automaton “cannot distinguish between ν and ν'”

formally: bisimulation

informally: whatever action an automaton can do in ν, it can also do it in ν' (and vice versa, repeatedly)

what conditions on \approx do we need?
Let c_x by the largest constant compared to a clock x ("max bound").

Condition 1:

Clock x is in both valuations ν and ν' are above its max bound, or it has the same integer part in both of them.

$$\nu(x) \geq c_x \land \nu'(x) \geq c_x \text{ or } \lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$$
Condition 2:

If the value of clock is below its max bound, then either it has zero fractional part in both ν and ν' or in neither of them.

$$\nu(x) \leq c_x \Rightarrow (fr(\nu(x)) = 0 \iff fr(\nu'(x) = 0))$$
Equivalence on Clock Valuation: Condition 3

Condition 3:

For two clocks that are below their max bound, the ordering of fractional parts must be the same in both ν and ν'.

$$\nu(x) \leq c_x \land \nu(y) \leq c_y \Rightarrow
fr(\nu(x)) \leq fr(\nu(y)) \iff fr(\nu'(x)) \leq fr(\nu'(y))$$
Let c_x be the largest constant compared to a clock x ("max bound").

\sim is equivalence on clock valuations such that $\nu \sim \nu'$ iff for all clocks x, y holds:

1. $\nu(x) \geq c_x \land \nu'(x) \geq c_x$ or $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$
2. $\nu(x) \leq c_x \Rightarrow (fr(\nu(x)) = 0 \iff fr(\nu'(x) = 0))$
3. $\nu(x) \leq c_x \land \nu(y) \leq c_y \Rightarrow fr(\nu(x)) \leq fr(\nu(y)) \iff fr(\nu'(x)) \leq fr(\nu'(y))$
Why Do We Need Condition 3?

- Why do we need condition 3, when the automaton cannot compare clocks?
- Find an automaton and clock valuations ν_1, ν_2 such that:
 - ν_1, ν_2 satisfy condition 1 and 2, but not condition 3
 - automaton can “distinguish” between ν_1, ν_2, i.e. there exists timed run r such that r is possible from ν_1 but not from ν_2
Equivalence: Example 1

Identify c_x, c_y
Region Construction

Equivalence: Example 2

- suppose \(c_x = 4, c_y = 5, c_z = 1 \)
- let \((x, y, z)\) denote valuations, decide:
 1. \((0, 0.14, 0.3) \approx (0.05, 0.1, 0.32)\) ?
 2. \((1.9, 4.2, 0.4) \approx (2.8, 4.3, 0.7)\) ?
 3. \((0.05, 0.1, 0.3) \approx (0.2, 0.1, 0.4)\) ?
 4. \((0.03, 1.1, 0.3) \approx (0.05, 1.2, 0.3)\) ?
 5. \((3.9, 5.3, 0.4) \approx (3.8, 6.9, 0.8)\) ?
Definition (Region)

Classes of equivalence \(\sim \) are called regions, denoted \([\nu]\).

Lemma

The number of regions is at most \(|X|! \cdot 2^{|X|} \cdot \prod_{x \in X} (2c_x + 2)\).
Regions: Example

- suppose TA with two clocks, $c_x = 3, c_y = 2$
- draw all regions (since we have just 2 clocks, we can draw them in plane)
- hints:
 - what is the region $[(x = 0.3, y = 0.2)]$?
 - what is the region $[(x = 1.3, y = 0.3)]$?
 - what is the region $[(x = 2.0, y = 1.0)]$?
Regions for TA with two clocks $c_x = 3, c_y = 2$.
Basic Concepts

Theoretical Results

Practical Verification

Summary

Region Construction

Region Graph

- states are 2-tuples location + clock region: \((l, [\nu])\)
- there is a transition from \((l, [\nu])\) to \((l', [\nu'])\) if there exists \(\omega \equiv \nu, \omega' \equiv \nu'\) such that \((l, \omega) \rightarrow (l', \omega')\)
- region graph is equivalent to the semantics of \(A\) with respect to reachability (note: in fact it is equivalent wrt bisimulation equivalence)
- moreover region graph is finite and can be effectively constructed \(\Rightarrow\) region graph can be used to answer the reachability problem
To construct the region graph, we need the following operations:

- let **time pass** – go to adjacent region at top right
- intersect with a clock **constraint** (note that clock constraints define supersets of regions)
 - if region is in the constraint: no change
 - otherwise: empty
- reset a clock – go to a corresponding region
Example: Automaton

Figure 6: The automaton A_0

(source: R. Alur)
Example: Region Graph

Figure 7: The region automaton $R(A_0)$
Zones

- regions ... nice theory, but inefficient and hard to implement
- zones:
 - convex sets of clock valuations
 - defined by conjunction of constraints $x - y < k$
 - allows efficient representation and manipulation (Difference Bound Matrix)
Difference Bound Matrix

\[x < 20 \land y \leq 20 \land y - x \leq 10 \land x - y \leq -10 \land z > 5 \]

\[
M(D) = \begin{pmatrix}
(0, \leq) & (0, \leq) & (0, \leq) & (5, <) \\
(20, <) & (0, \leq) & (-10, \leq) & \infty \\
(20, \leq) & (10, \leq) & (0, \leq) & \infty \\
\infty & \infty & \infty & (0, \leq)
\end{pmatrix}
\]

matrix representation can be used to perform necessary operation: passing of time, resetting clock, intersection with constraint, ...
Zones: Operations

(source: J.P. Katoen)
Zone Graph: Example

Figure 6: The automaton A_0

Figure 8: Reachable zone automaton
Extensions

For practical modeling we use several extensions:

- location invariants
- parallel composition of automata
- channel communication, synchronization
- integer variables

These issues are solved in the ‘usual way’. Here we focused on the basic model, basic aspects dealing with time.
Example: Parallel Composition

Fig. 2. Train-gate controller

(source: R. Alur)
Fischer’s Protocol

- id – shared variable, initialized -1
- assumption: known upper bound D on reading/writing variable in shared memory, for correctness it is necessary that $K > D$

Process i:
while (true) {
 <noncritical section>;
 while id != -1 do {}
 id := i;
 delay K;
 if (id = i) {
 <critical section>;
 id := -1;
 }
}
Fischer’s Protocol: Model

The diagram represents the states and transitions of Fischer's protocol.

- **A**: id == 0, x = 0
- **req**: x <= k
- **cs**: id != pid
- **wait**: x > k && id == pid
- **x = 0, id = pid**: x <= k
Summary

- timed automata: formal syntax and semantics
- reachability problem, equivalence of valuations, region automaton
- practical verification: zones, extensions