
Overview of Languages POSIX RT Operating Systems

Real Time Support in Programming

Languages

Radek Pelánek



Overview of Languages POSIX RT Operating Systems

Aim of the Lecture

brief overview, not a tutorial

to illustrate:

how different programming languages realize general
concepts

that each programming languages focuses on different
aspects



Overview of Languages POSIX RT Operating Systems

About (Not Just) Programming ...

choose the right tool (language) for a given problem

lectures can help
often it is not your decision

master the tool

practice, practice, practice, ...



Overview of Languages POSIX RT Operating Systems

Contents

1 Overview of Languages
Ada
Java
Other Languages

2 POSIX
Introduction
Threads
Signals and Messages
RT Support

3 RT Operating Systems
Specifics
Architecture
Standards and Implementations



Overview of Languages POSIX RT Operating Systems

Ada

Ada

designed for United States
Department of Defense
during 1977-1983

targeted at embedded and
real-time systems

Ada 95 revision

used in critical systems
(avionics, weapon systems,
spacecrafts)

free compiler: gnat

Ada Lovelace
(1815-1852)



Overview of Languages POSIX RT Operating Systems

Ada

Main Principles

structured, statically typed imperative computer
programming language

strong typing

modularity mechanisms (packages)

run-time checking

parallel processing (tasks)

exception handling

object-oriented programming (Ada95)



Overview of Languages POSIX RT Operating Systems

Ada

Concurrency: Tasks

task = the unit of concurrency

explicitly declared (no fork/join statement, cobegin, ...)

tasks may be declared at any program level

created implicitly upon entry to the scope of their
declaration or via the action of an allocator



Overview of Languages POSIX RT Operating Systems

Ada

Tasks: interaction

communicationa and synchronization via a variety of
mechanisms:

rendezvous (a form of synchronised message passing)
protected units (a form of monitor)
shared variables

support for hierarchies, parent-child, guardian-dependent
relations



Overview of Languages POSIX RT Operating Systems

Ada

Communication

remote invocation with direct asymmetric naming

one task defines an entry and then, within its body,
accepts any incoming call (accept statement)

a randezvous occurs when one task calls an entry in
another task

selective waiting allows a process to wait for more than
one message



Overview of Languages POSIX RT Operating Systems

Ada

Task States



Overview of Languages POSIX RT Operating Systems

Ada

Time

access to clock:

package Calendar
abstract data type Time
function Clock for reading time
data type Duration predefined fixed point real for time
calculations
conversion utilities (to human readable units)

waiting: delay, delay until statements



Overview of Languages POSIX RT Operating Systems

Ada

Example

task Ticket_Agent is

entry Registration(...);

end Ticket_Agent;

task body Ticket_Agent is

-- declarations

Shop_Open : Boolean := True;

begin

while Shop_Open loop

select

accept Registration(...) do

-- log details

end Registration;

or

delay until Closing_Time;

Shop_Open := False;

end select;

-- process registrations

end loop;

end Ticket_Agent;



Overview of Languages POSIX RT Operating Systems

Java

Java

object-oriented programming language

developed by Sun Microsystems in the early 1990s

compiled to bytecode (for a virtual machine), which is
compiled to native machine code at runtime

syntax of Java is largely derived from C/C++



Overview of Languages POSIX RT Operating Systems

Java

Concurrency: Threads

predefined class java.lang.Thread – provides the
mechanism by which threads (processes) are created

to avoid all threads having to be child classes of Thread,
it also uses a standard interface:

public interface Runnable {

public abstract void run();

}

any class which wishes to express concurrent execution
must implement this interface and provide the run()

method



Overview of Languages POSIX RT Operating Systems

Java

Threads: Creation

dynamic thread creation, arbitrary data to be passed as
parameters

thread hierarchies and thread groups can be created

no master or guardian concept



Overview of Languages POSIX RT Operating Systems

Java

Threads: Termination

one thread can wait for another thread (the target) to
terminate by issuing the join method call on the target’s
thread object

the isAlive method allows a thread to determine if the
target thread has terminated

garbage collection cleans up objects which can no longer
be accessed

main program terminates when all its user threads have
terminated



Overview of Languages POSIX RT Operating Systems

Java

Synchronized Methods

monitors can be implemented in the context of classes
and objects

lock associated with each object; lock cannot be accessed
directly by the application but is affected by

the method modifier synchronized
block synchronization

synchronized method – access to the method can only
proceed once the lock associated with the object has been
obtained

non-synchronized methods do not require the lock, can be
called at any time



Overview of Languages POSIX RT Operating Systems

Java

Waiting and Notifying

wait() always blocks the calling thread and releases the
lock associated with the object

notify() wakes up one waiting thread; the one woken is
not defined by the Java language

notifyAll() wakes up all waiting threads

if no thread is waiting, then notify() and notifyAll()

have no effect



Overview of Languages POSIX RT Operating Systems

Java

Illustration



Overview of Languages POSIX RT Operating Systems

Java

Real Time Java

Java is not directly suitable for real time systems:

no support for priority based scheduling
does not prevent priority inversion
garbage collection introduces unpredictable delays

Real-Time Specification for Java (RSTJ), enhanced areas:

thread scheduling and dispatching
memory management (garbage collection)
synchronization and resource sharing
asynchronous event handling, transfer of control, thread
termination
physical memory access



Overview of Languages POSIX RT Operating Systems

Java

Clocks

java.lang.System.currentTimeMilis returns the
number of milliseconds since Jan 1 1970

Real Time Java adds real time clocks with high resolution
time types



Overview of Languages POSIX RT Operating Systems

Other Languages

More Exotic Languages

Real Time Euclid

Occam

Pearl



Overview of Languages POSIX RT Operating Systems

Other Languages

Real Time Euclid

real-time language, restriction to time-bounded constructs

programmer is forced to specify time bounds and timeouts
in all loops, waits and device accessing statements

restrictions:

absence of dynamic data structures
absence of recursion
time bounded loops — maximum number of iterations
must be specified

only academic proposal, never widely used



Overview of Languages POSIX RT Operating Systems

Other Languages

Occam

concurrent programming language that builds on the
Communicating Sequential Processes (CSP) formalism

concurrency: cobegin (PAR)

mainly of pedegogical interest, not widely used

ALT

count1 < 100 & c1 ? data

SEQ

count1 := count1 + 1

merged ! data

count2 < 100 & c2 ? data

SEQ

count2 := count2 + 1

merged ! data

status ? request

SEQ

out ! count1

out ! count2



Overview of Languages POSIX RT Operating Systems

Other Languages

Pearl

Process and Experiment Automation Realtime Language

language designed for multitasking and real-time
programming

developed since 1977

used mainly in Germany



Overview of Languages POSIX RT Operating Systems

Other Languages

Pearl: Scheduling support

Scheduling on events and time instants, examples:

ALL 0.00005 SEC ACTIVATE Highspeedcontroller;

cyclical activation of a controller with a frequency of 20
kHz

AT 12:00 ALL 4 SEC UNTIL 12:30 ACTIVATE

lunchhour PRIO 1;

cyclical scheduling, every 4 seconds between 12:00 and
13:00 hrs with high priority

WHEN fire ACTIVATE extinguish;

activation of the task ’extinguish’, when interrupt ’fire’
occurs.



Overview of Languages POSIX RT Operating Systems

Introduction

POSIX

Portable Operating System Interface for uniX

standardised operating system interface and environment,
including:

system calls
standard C libraries
a command shell

based on various flavors of Unix, but vendor-independent

original release in 1988, formally designated as IEEE 1003



Overview of Languages POSIX RT Operating Systems

Introduction

POSIX Versions

Modularized set of standards:

POSIX.1, Core Services

standard C
process creation, control
signals, segmentation violations, illegal instructions, bus
errors
floating point exceptions

POSIX.1b, Real-time extensions

priority scheduling
real-time signals, clocks and timers
semaphores, message passing, shared memory

POSIX.1c, Threads extensions

thread creation, thread scheduling
thread synchronization, signal handling



Overview of Languages POSIX RT Operating Systems

Introduction

Outline

threads (pthread.h)

time (time.h, sys/time.h)

signals (signal.h)



Overview of Languages POSIX RT Operating Systems

Threads

Concurrency in POSIX

provides two mechanisms: fork and pthreads

fork creates a new process

pthreads are an extension to POSIX to allow threads

flat structure



Overview of Languages POSIX RT Operating Systems

Threads

Pthreads

pthread = posix thread

specified by the IEEE POSIX 1003.1c standard (1995)

set of C language programming types and procedure calls,
implemented with a pthread.h header/include file and a
thread library; compilation: gcc -pthread

Pthreads API:

thread management (creation, termination, joining, ...)
mutexes (lock, unlock, ...)
condition variables (not covered in lecture)



Overview of Languages POSIX RT Operating Systems

Threads

Example I

#include <pthread.h>

pthread_t id;

void *fun(void *arg) {

// Some code sequence

}

main() {

pthread_create(&id, NULL, fun, NULL);

// Some other code sequence

}



Overview of Languages POSIX RT Operating Systems

Threads

Example II

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

void *PrintHello(void *threadid)

{

printf("\n%d: Hello World!\n", threadid);

pthread_exit(NULL);

}

int main (int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int rc, t;

for(t=0; t<NUM_THREADS; t++){

printf("Creating thread %d\n", t);

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

if (rc){

printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);

}

}

pthread_exit(NULL);

}



Overview of Languages POSIX RT Operating Systems

Threads

Semaphors = Mutexes

pthread mutex init (mutex,attr)

pthread mutex lock (mutex) — attempt to lock a
mutex, if the mutex is already locked, this call blocks the
thread

pthread mutex trylock (mutex) — if the mutex is
locked, returns immediately with “busy” error code

pthread mutex unlock (mutex)



Overview of Languages POSIX RT Operating Systems

Signals and Messages

Communication

signals

message passing



Overview of Languages POSIX RT Operating Systems

Signals and Messages

Signals: Motivation

classical interrupts:

external interrupt ⇒ (short-lived) execution of a
pre-installed interrupt-handler

normal execution temporarily suspended during the run of
an interrupt-handler

even if a handler has been installed by a certain process,
its execution will interrupt any process that happens to be
active when the corresponding interrupt signal is received



Overview of Languages POSIX RT Operating Systems

Signals and Messages

Virtual Interrupts

process with threads ∼ virtual computer

can we use virtual interrupts within the process?

⇒ signals



Overview of Languages POSIX RT Operating Systems

Signals and Messages

Signals

signal is sent towards a particular process, and handlers
can be installed that are guaranteed to interrupt that
process only

signal can be sent to a process by executing kill(pid,

sig) where pid is process number(0 means self)

signals are also generated by dividing by zero, addressing
outside your address space, etc.

each thread can block incoming signals on a per-signal
basis, define signal handlers for each signal it might
receive, and queue signals

no data transfer

can be used also for exception handling



Overview of Languages POSIX RT Operating Systems

Signals and Messages

List of Signals

SIGABRT Abnormal termination signal caused by the
abort() function.

SIGALRM The timer has timed-out.
SIGFPE Arithmetic exception, such as overflow or divi-

sion by zero.
SIGHUP Hangup detected on controlling terminal or

death of a controlling process.
SIGILL Illegal instruction indicating a program error.
SIGINT Interrupt special character typed on controlling

keyboard (Ctrl-C).
SIGKILL Termination signal. This signal cannot be

caught or ignored.
SIGPIPE Write to a pipe with no readers.



Overview of Languages POSIX RT Operating Systems

Signals and Messages

List of Signals (cont.)

SIGQUIT Quit special character typed on controlling key-
board.

SIGSEGV Invalid memory reference. Like SIGILL,
portable programs should not intentionally gen-
erate invalid memory references.

SIGTERM Termination signal.
SIGUSR1 Application-defined signal 1.
SIGUSR2 Application-defined signal 2.
SIGCHLD Child process terminated or stopped.
SIGCONT Continue the process if it is currently stopped;

otherwise, ignore the signal.



Overview of Languages POSIX RT Operating Systems

Signals and Messages

Signal Handling

same basic idea as for real interrupt-handling; a handler
for a signal gets called ”spontaneously”, just as if the
interrupted code had made the call itself

like an interrupt handler ignores what process is running,
a signal handler ignores what thread is running

difference: signals are not delivered until the receiving
process is actually running

internally generated signals – the receiving process is
already running per definition



Overview of Languages POSIX RT Operating Systems

Signals and Messages

Messages

support for interprocess communication

see sys/ipc.h, sys/msg.h, mqueue.h, ...

also note Messsage Passing Interface (MPI)

not directly related to POSIX
used mainly for distributed computation



Overview of Languages POSIX RT Operating Systems

RT Support

Getting Time

POSIX requires at least one clock of minimum resolution
50Hz (20ms)

time() — seconds since Jan 1 1970

gettimeofday() — seconds + nanoseconds since Jan 1
1970

tm — structure for holding human readable time



Overview of Languages POSIX RT Operating Systems

RT Support

Timers

simple waiting: sleep, nanosleep

timers: timer t, can be set:

relative/absolute time
single alarm time and an optional repetition period

timer “rings” by sending a signal



Overview of Languages POSIX RT Operating Systems

Specifics

Specifics of RT OS

support for real time operations (timers), concurrency
(task scheduling), ...

deterministic timing behaviour, predictability



Overview of Languages POSIX RT Operating Systems

Specifics

Obstacles of Predictability

direct memory access (DMA)

DMA takes control of I/O
I/O shares bus with CPU, DMA can block CPU (cycle
stealing)

caches, memory management (page faults, page
replacements)

interrupts

system calls (what is the worst case execution time?)



Overview of Languages POSIX RT Operating Systems

Architecture

Functionality

basic services:

task management
interprocess communication and synchronization
timers
memory allocation
device I/O supervision

trade-off:

more features, more complex, performance degradation,
more difficult to analyze
less features, better performance, easier to analyze



Overview of Languages POSIX RT Operating Systems

Architecture

Task Scheduling

typically based on priority based preemtive scheduling

equal priority processes: FIFO, round-robin (time slicing)

switch time should be load-independent



Overview of Languages POSIX RT Operating Systems

Standards and Implementations

Standards

RT-POSIX

OSEK Offene Systeme und deren Schnittstellen fr die
Elektronik in Kraftfahrzeugen (”Open Systems
and their interfaces for the Electronics in Motor
vehicles”), founded in 1993 by a german
automotive companies consortium

APEX avionics standard

ITRON Industrial TRON (The Real-time Operating
System Nucleus), started 1984 in Japan, about
50 kernel products



Overview of Languages POSIX RT Operating Systems

Standards and Implementations

Implementations

Examples of POSIX-compliant implementations:

commercial:

VxWorks
QNX
OSE

Linux-related:

RTLINUX
RTAI



Overview of Languages POSIX RT Operating Systems

Standards and Implementations

Summary

Ada, Java

C/C++ and POSIX

specifics of real time operating systems


	Overview of Languages
	Ada
	Java
	Other Languages

	POSIX
	Introduction
	Threads
	Signals and Messages
	RT Support

	RT Operating Systems
	Specifics
	Architecture
	Standards and Implementations


