Selecting Sketches for Similarity Search

<u>Vladimir Mic¹</u>, David Novak¹, Lucia Vadicamo² and Pavel Zezula¹

¹ Masaryk University Brno, Czech Republic ² CNR-ISTI Pisa, Italy

4th September 2018

- Field: searching for similar objects
- Queries by example
 - The goal is to efficiently find the most similar objects to a given query object

- Wide range of applications
 - information retrieval, recommender systems, searching in biometrics, event detection, ...

• We consider similarity modelled by the metric space (D, d)

- D domain of objects original objects or their descriptive features
- $d: D \times D \mapsto \mathbb{R}^+$ distance function
 - the bigger the value $d(o_1, o_2)$, the less similar objects o_1, o_2

• Dataset $X \subseteq D$

 Having a query object *q* ∈ *D*, the goal is to efficiently find the most similar objects *o* ∈ *X* to *q*

• Challenges:

- Dataset X usually contains a lot of objects
- Objects $o \in X$ are often big
- Similarity function *d* may be complex and expensive

- We have limited computational power
- Queries have to be evaluated fast

Bit String Sketches

- Successful family of techniques to mitigate these problems: transformation of the metric space (D, d) to the Hamming space
 - sketch sk(o) of object $o \in X$ is bit string of length λ
 - $sk: D \mapsto \{0,1\}^{\lambda}$: sketching (transformation) technique
- Sketches compared by the Hamming distance approximate similarity relationships between objects o ∈ X

- Sketches are small ($\lambda \approx 64-256$ bits)
- Evaluation of the Hamming distance is efficient

• Current state

- many sketching techniques *sk* exist
- each sketching technique is suitable for just some datasets
- sketch length λ and all parameters of sk must be set, which requires an expert knowledge or complex testing

Our Objectives

• we provide a tool to efficiently estimate a quality of a sketching technique *sk* considering a given dataset

- Established way of testing is expensive:
 - select a sample set of X of a representative size
 - select a set of query objects $Q \subseteq D$
- and compare precise query results
 - k most similar objects $o \in X$ to each query $q \in Q$
- with approximate (and more efficient) query evaluation based on sketch filtering

• This comparison is made for each investigated sketching technique to select the best one

7 / 22

Testing Sketching Techniques

- Established way of testing is expensive:
 - select a sample set of X of a representative size
 - select a set of query objects $Q \subseteq D$
- and compare precise query results
 - k most similar objects $o \in X$ to each query $q \in Q$
- with approximate (and more efficient) query evaluation based on sketch filtering
 - identify $c \ge k$ most similar sketches sk(o) to sk(q)
 - access objects $o \in X$ that correspond to the most similar sketches (*candidate objects*) and evaluate distances d(q, o)
 - answer: k most similar candidate objects
- This comparison is made for each investigated sketching technique to select the best one

I= nan

- This established testing:
 - is affected by a selection of query objects Q
 - dataset X and query set Q must be of sufficient (big) size

• we usually use $|X| \ge 1,000,000$ objects

- $-\;$ all sketches for each $o\in X$ and $q\in Q$ must be created
- evaluation of precise answers for each query object $q \in Q$ must be performed (it is expensive)
- quality of approximate evaluations is strongly influenced by the number of selected candidate objects c
- selecting c with no prior knowledge of the sketching technique is difficult
- therefore: very expensive procedure with limited detachment
- + comparison of precise and approximate answer is intuitive and easy to understand

ELE NOR

- We propose two efficient methods to estimate quality of sketches sk(o), o ∈ X
 - i.e., their ability to approximate similarity relationships of objects $o \in X$

• Both use just a very small sample set of data

• Both are based on probabilistic analysis

• Our methods

- + do not use any query objects Q (so are not affected by their selection)
- + small sample set of $\approx 2,000 5,000$ objects $o \in X$ is sufficient for our estimations
- all sketches sk(o) for the sample set must be created
- + no need to expensively evaluate any *precise query answers*
- + no candidate set is used, so no expert knowledge or testing to set its size is required
- + therefore: efficient methods, easy to use
 - Examination of a set of sketches made by a given sketching technique *sk* requires less than 1 minute
- quality of sketching technique is expressed by an abstract real number with *no intuitive meaning*

ELE NOO

Our Approach

- Let us have a sketching technique sk producing sketches of length λ and distance x = d(o₁, o₂)
- we model¹ probability p(x, b) that the Hamming distance of sketches $sk(o_1), sk(o_2)$ is b for $0 \le b \le \lambda$, i.e. $h(sk(o_1), sk(o_2)) = b$

Figure: Example of probability function p(x, b) for a given value x

¹ details later		· · · · · · · · · · · · · · · · · · ·	୬୯୯
<u>Mic</u> , Novak, Vadicamo, Zezula	Selecting Sketches for Similarity Search	4th September 2018	11 / 22

Projection of Two Distances x_1 , x_2

• Consider two distances $x_1 < x_2$ and functions $p(x_1, b)$, $p(x_2, b)$

Figure: Functions $p(x_1, b)$, $p(x_2, b)$ for given values x_1, x_2

• Ideal case: sketching technique preserve ordering of distances

• i.e. $x_1 < x_2 \implies h(sk(o_1), sk(o_2)) < h(sk(o_3), sk(o_4))$

• We evaluate separation of probability functions $p(x_1, b)$, $p(x_2, b)$

Separation of Projected Distances

• $m_1, m_2 \dots$ means of $p(x_1, b), p(x_2, b)$ • s_1^2, s_2^2 ... variances of $p(x_1, b), p(x_2, b)$

• Separation of functions²

$$sep_{sk}(x_1, x_2) = \frac{m_2 - m_1}{\sqrt{\frac{s_1^2 + x_2^2}{2}}}$$

²adopted formula

Mic, Novak, Vadicamo, Zezula

Quality of Sketching Technique

 Quality of a sketching technique sk: We evaluate sep_{sk}(x₁, x₂) over whole range [0, Γ] of distances x₁, x₂:

$$quality(sk) = \int_0^{\Gamma} \int_{x_1}^{\Gamma} sep_{sk}(x_1, x_2) \, \partial x_2 \, \partial x_1$$

Interpretation

Value *quality(sk)* describes, how much a sketching technique *sk* distinguishes distances between objects $o \in X$, i.e. quality of *sk*

- Possible modifications:
 - (1) normalization by Γ^2
 - (2) similarity search: focus on separation of *small distances* (that are smaller than some *t*) from others

$$quality_{norm}(sk, t) = \frac{\int_0^t \int_{x_1}^{\Gamma} sep_{sk}(x_1, x_2) \, \partial x_2 \, \partial x_1}{\Gamma^2}$$

• Details: two approaches to model probability function p(x, b)

- Approach A (analytique)
- Approach PM (partially measured)
- Both approaches use
 - set of distances $d(o_1, o_2)$ and
 - corresponding Hamming distances on sketches h(sk(o₁), sk(o₂))

to estimate means *m* and variances s^2 of p(x, b), and therefore $sep_{sk}(x_1, x_2)$:

$$sep_{sk}(x_1, x_2) = rac{m_2 - m_1}{\sqrt{rac{s_1^2 + x_2^2}{2}}}$$

- Approach A models (complete) function p(x, b)
 - precomputed distances are investigated to get an average probability $p_i(x, 1)$ that one bit of sketches $sk(o_1)$ and $sk(o_2)$ is different
 - complete p(x, b) is modelled by a composition of λ instances of $p_i(x, 1)$
 - Approach A reveals statistical properties of sketches that improve their quality
- Approach PM:
 - means and variances m and s^2 of p(x, b) are directly evaluated using precomputed distances d and h
 - Approach PM does not reveal statistical properties of sketches that improve their quality

We experimentally verify our estimators by their comparison with the established testing procedure

- 4 different sketching techniques sk
 - based on generalyzed hyperplane partitioning (GHP50, GHP80), ball partitioning (BP50), and thresholding (THRR50)
 - their detailed description is in the paper
- For each technique 4 different lengths λ are examined (if possible)
 - 64, 128, 192, 256 bits
- Two datasets of size |X| = 1,000,000 vectors, each
 - real-valued vectors of length 4,096 (*DeCAF from neural network*)
 - real-valued vectors of length 128 (SIFT: local visual image descriptors)

ELE SQC

• Established testing procedure:

- *the recall value*: size of intersection of the precise and approximate query answers
- 1,000 queries q, search for 100 nearest neighbour
- candidate set size: 2,000 objects (i.e. 0.2%)

- Costs:
 - Precise answers: up to 2 billion d(q, o) evaluations (brute force)
 - among other things, 6.5 billion $d(o_1, o_2)$ evaluations to create 30 different sets of sketches

Our estimators use 5,000 randomly selected objects o ∈ X and their sketches sk(o) made by each investigated sketching technique

• We evaluate 2,000,000 distances $d(o_1, o_2)$ and corresponding $h(sk(o_1), sk(o_2))$ to get our estimations

• Estimation takes 30 - 50 seconds per set of sketches

Results – DeCAF dataset

- <u>x-axis</u>: sets of sketches, 3 last digits: sketch length λ, colours of box plots: principaly different sketching techniques
- primary y-axis: the recall examined by expensive established testing (box plots)

Mic, Novak, Vadicamo, Zezula

4th September 2018

20 / 22

Results – SIFT dataset

- <u>x-axis</u>: sets of sketches, 3 last digits: sketch length λ, colours of box plots: principaly different sketching techniques
- primary y-axis: the recall examined by expensive established testing (box plots)

Mic, Novak, Vadicamo, Zezula

4th September 2018

21 / 22

 Average of both estimations – high quality results (possible since both estimations use the same scale)

Table: Correlations of quality estimations and measured medians of the recall

	Approach A	Approach PM	Average of estimations
DeCAF	+0.96	+0.97	+0.98
SIFT	+0.55	+0.74	+0.93

• Conclusions:

- We proposed analytical tools to estimate quality of binary sketches
- They use very small sample of data
- They are very efficient

• The recall value (i.e. quality of sketch based filtering examined by the established approach) is expressed by box plots to show distribution of values among particular query objects $q \in Q$

Question in reviews: how about scalability of sketches:

- If sketches are not indexed³, just their *quality* matters
- Indexing of sketches is hard, in general, due to big Hamming distance to nearest neighbours
- *Indexability* of sketches made a given sketching technique *sk* strongly depends on a dataset
- We cannot make conclusions about the examined techniques based on testing on 2 datasets ...

³i.e. our case: sequential evaluation of (all) Hamming distances is considered =
Image: Image: