Lemma 1. Having an arbitrary lists of binary values I and J, e.g. values in the i th and j th bit of bit strings $o \in X$, and list $\neg I$ of the negated values from I, the following holds for the Pearson correlation coefficient corr:

$$
\operatorname{corr}(I, J)=-\operatorname{corr}(\neg I, J) .
$$

Proof. Let us denote $|X|$ the length of arrays $I, J, \neg I$, and

- a the number of positions in lists I, J with bits 1 and 1,
$-b$ the number of positions with bits 0 and 1 in these lists,
$-c$ the number of positions with bits 1 and 0 in these lists,
$-d$ the number of positions with bits 0 and 0 in these lists.
Please see, that $a+b+c+d=|X|$. The Pearson correlation coefficient $\operatorname{corr}(I, J)$ is:

$$
\begin{align*}
\operatorname{corr}(I, J) & =\frac{|X| \cdot a-(a+b)(a+c)}{\sqrt{|X| \cdot(a+b)-(a+b)^{2}} \cdot \sqrt{|X| \cdot(a+c)-(a+c)^{2}}} \tag{1}\\
& =\frac{a d-b c}{\sqrt{(a+b)(c+d)} \cdot \sqrt{(a+c)(b+d)}}
\end{align*}
$$

The numbers a, b, c, d stands for the following values after the negation the list I to list $\neg I$:
$-b$ the number of positions in lists $\neg I, J$ with bits 1 and 1,
$-a$ the number of positions with bits 0 and 1 in these lists,
$-d$ the number of positions with bits 1 and 0 in these lists,
$-c$ the number of positions with bits 0 and 0 in these lists.
Therefore the Pearson correlation coefficient $\operatorname{corr}(\neg I, J)$ is equal to:

$$
\begin{align*}
\operatorname{corr}(\neg I, J) & =\frac{|X| \cdot b-(b+a)(b+d)}{\sqrt{|X| \cdot(b+a)-(b+a)^{2}} \cdot \sqrt{|X| \cdot(b+d)-(b+d)^{2}}} \tag{2}\\
& =\frac{b c-a d}{\sqrt{(a+b)(c+d)} \cdot \sqrt{(a+c)(b+d)}}
\end{align*}
$$

Obviously, the Equations 1 and 2 describe opposite values, and thus $\operatorname{corr}(I, J)=$ $-\operatorname{corr}(\neg I, J)$.

