The Sources of Randomness in Smartphones with Symbian OS

Jan Krhovják, Petr Švenda, Vašek Matyáš, Luděk Smolík

Faculty of Informatics
Masaryk University, Brno
Outline

• Basics on random number generation
 • True- & pseudo- random number generators
 • Specifics of mobile devices

• Analysis of selected sources on Nokia N73
 • Entropy estimation
 • Microphone input
 • Camera input

• Practical pseudorandom number generator
 • Performance comparison
Basics on random number generation

- **Random data in cryptography**
 - Cryptographic keys, padding values, nonces, etc.
 - Quality and unpredictability is critical

- **Generating truly random numbers**
 - Based on nondeterministic physical phenomena
 - Radioactive decay, thermal noise, etc.
 - In deterministic environments hard and slow

- **Generating pseudorandom numbers**
 - Based on deterministic algorithm
 - Short input (seed) – truly random data
 - Output – pseudorandom data, computationally indistinguishable from truly random data

- **Quality assurance – statistical testing**
Specifics of mobile devices

- True random number generator
 - Quality strongly dependent on source of randomness
 - Possibility of influencing by attacker
 - General purpose computer systems
 - Many sources exist (hardware/software based, user inputs)
 - Mobile devices
 - Typically located only inside the chip (SIM card)

- Mobile device-dependent sources of randomness
 - Based on specific HW components of device
 - Microphone, digital camera, touchable LCD, battery level
 - Based on mobile nature of device
 - Information about current location, strength of transmitted signal (or other signal characteristics)
 - Better categorization
 - External & internal environment (+ mutual interactions)
Entropy estimation

- Basic measure for randomness is called *uncertainty* or *entropy* (average-case)

 \[H_1(X) = -\sum_{x \in X} P_X(x) \log P_X(x) \]

 - Sample \(x \) is drawn from random distribution \(X \) with probability \(P_X(x) \)
 - Logarithm base corresponds to units (2 => bits)
 - How many random bits is extractable per one time unit?

- Attacker can force source to produce most probable values => those values contains minimum entropy

- Better measure is *min-entropy* (worst-case)

 \[H_{\infty}(X) = \min_{x \in X}(-\log P_X(x)) = -\log(\max_{x \in X} P_X(x)) \]

 - Always less then or equal then Shannon entropy
• **Selected device:** smartphone Nokia N73
 • Symbian OS, JavaME, good camera, etc.

• **Nokia N73 voice input**
 • Embedded or hands-free microphone
 • Modulation method, sampling frequency $\Rightarrow \sim 16$ kB/s
 • 16-bit pulse coded modulation (a signed PCM)
 • Sampling a sound wave at frequency 8000 Hz

• **Entropy in input sound signal**
 • Focused on noise originated in microphone
 • Basic analysis (embedded/hands-free)
 • Fast/discrete Fourier transform \Rightarrow quality
 • Histogram analysis \Rightarrow upper bound
Camera input

- Digital optical input devices
 - Array of semiconductor photo-sensors
 - Several chip designs
 - CCD, CMOS, EMCCD, ICCD, etc.
 - Different sensitivity, noise level, exposure time
 - More than 6 sources of noise
 - Mostly thermal noise => sensitivity to temperature
 - Higher temp. == higher noise

- Nokia N73 uses CMOS based 3.2 Mpix camera
 - View finding instead of high-resolution picture
 - No post-processing
 - noise reduction, compression
 - Fast data acquisition (12 fps, ~1600 kB)
 - 1 frame, 240×180 pixels, ~130 kB
 - Closed camera cover
 - Defense against overexposure
 - Temperatures 5 °C to 45 °C
Camera input entropy estimation

- Systematic defects in camera image
 - Sensor technology & post-processing
 - Avg. value of blue color component
 - Hot pixels around borders
 - Significant rips in the rows
 - Centered circle rips
 - Different intensity towards centre

- Independency of pixels in image (& between images)
 - Matlab corrcoef cross-correlation function [OK]
 - Neighboring pixels & pixels in the same row
 - Matlab auto-correlation and FFT/DFT [OK]
 - Vector of values taken in time from single pixel (12 fps)
 - NIST test battery [green component always passed]
 - Bit-streams generated from R/G/B pixel values
Practical pseudorandom number generator

- Pseudorandom number generator
 - Often based on cryptographic primitives (AES, SHA-xxx)
 - Serve as fast entropy extractors
 - No mathematical guarantee of security
 - Amount of raw data from sources limited by the performance of mobile device

- Performance comparison (tested on SHA-1)
 - Nokia N73 (Symbian v9.1) ~ 2200.00 kB/s
 - Nokia N73 (JavaME) ~ 426.00 kB/s
 - Sony-Ericsson k750i (JavaME) ~ 84.00 kB/s
 - Nokia 6230 (JavaME) ~ 67.00 kB/s
 - Nokia 6021 (JavaME) ~ 4.65 kB/s
• Mobile device contains several randomness sources
 • Some low-level sources have no sufficient precision (API restrictions) or have a slow refresh frequency
 • Battery level and signal strength (only ten values scale)
 • GPS position (only one measurement per second)
 • Other sources seems to be suitable

• Analysis of selected sources on Nokia N73
 • Microphone & camera input have great potential
 • Big throughput and inherently presented internal noise
 • Min-entropy (upper bound) is 2/4 bits per audio sample/subpixel
 • Our analysis found several defects in camera input
 • Due to sensor technology & post-processing
 • Statistical tests of random data from camera noise promising
 • Symbian OS performance significantly higher than JavaME
 • Possibility to extract entropy from high throughput sources