Security of Electronic Transactions (Theory and Practice)

Jan Krhovják, Marek Kumpošt, Vašek Matyáš

Faculty of Informatics
Masaryk University, Brno
Outline

• Chip&PIN or signature cards – experiment
 • Anatomy of the experiment
 • Results of the Phase I & II
 • Summary of both phases

• EMV standard
 • Transaction processing
 • Selected security mechanisms
 • Other security implications
Anatomy of the Experiment

- The main question/objective
 - Is it easier for an opportunistic thief to abuse Chip&PIN or signature cards?
 - We wanted to see/have experimental practical results
- First (warm-up) phase (over 40 people involved)
 - Has taken place in pseudo-realistic conditions at a university bookstore (Masaryk U., Brno)
 - Age of the customers from 18 to 26 – “hired” students
 - Time to practice a signature limited to about 30 minutes
 - Time to practice “shoulder-surfing” about 2 hours
 - Not genuine payment cards (no verification of the PIN)
- Second phase (over 35 people involved)
 - Was realised in standard conditions
 - In one of the largest supermarket in Brno
 - Conditions set according to our experience from first phase
 - Genuine payment cards (real verification of the PIN)
Results of the Phase I

• PINpad 1 (security/privacy shielding)
 • Observers succeed in 6 from 17 PINs (35.3%)
 • They needed one guess in 5 from the 6 PINs (83.3%)
 • In 39 tips of 4-digit PINs (i.e., 156 digits)
 • 75 digits guessed correctly (48%)

• PINpad 2 (no shielding)
 • Observers succeed in 12 from 15 PINs (80%)
 • Just one guess needed in 10 out of 12 PINs (83.3%)
 • In 46 tips of 4-digit PINs (i.e., 184 digits)
 • 129 digits guessed correctly (70.1%)

• Signatures (15+17 customers)
 • Merchant detects 12 of 17 forging customers
 • 5 forging customers passed (29.4%)
 • 8 from 32 customers asked to sign twice
 • After second signing: 4 detected & 4 passed
 • We verified the signatures very carefully!!!
Results of the Phase II

- PINpads with & without security/privacy shielding
 - 13 obs. from shielded pad, 7 from unshielded pad
 - Observers succeed in 4 from 20 PINs (20%)
 - 3 PINs from shielded pads, one from unshielded pad
 - In 26 tips of 4-digit PINs (91 digits announced)
 - 38 digits guessed correctly (42%)
 - One (from three) observers group was more assertive and able to closely follow the targets => best results
 - Correct digits by groups: 25%, 27%, **68% (!)**
 - Third group: four correct PINs in 3 or less attempts

- Signatures (20 customers, stop after 17 succ. attempts)
 - 10–30 minutes for practicing a given signature
 - No problem reported from both the customers / till assistants
 - No one was asked to sign again or to show an ID
 - Some signatures were checked very poorly or not at all
Summary of Both Phases

- The signature forgers were newbies, as well as the shoulder-surfers
 - Correctly observed PIN digits (60% or 42%)
 - Significant difference between fake signatures detection (70% or 0%) – space for improvement

- Privacy shielding is really useful, however
 - Majority of PINpads not equipped by shielding
 - Light (=non-effective) privacy shielding in shops
 - Some customers may have motoric difficulties

- Temporary remedy (?)
 - Both PIN and signature
 - Different PINs for low- and high-level transactions?
EMV (Europay, MasterCard, and Visa) Standard

- EMV 4.1 specification (4 books with ~800 pages)
 - Interoperability & security of payment systems
 - Smartcards, payment terminals, banking HSMs
 - Introduction of Chip&PIN technology
 - Magnetic-stripe cards can be easily copied (skimming)

- Transaction processing (online or offline)
 - Authentication of on-card data
 - Offline detection of fake (altered/duplicated) cards
 - Static/dynamic data authentication
 - Authentication of cardholders/users
 - Based on handwritten signatures or PINs
 - Priority list of card-supported verification methods
 - Automatic risk analysis
 - Online transaction authorization
Selected Security Mechanisms

- **Static data authentication (SDA)**
 - On-card RSA signed static data
 - Send to the terminal for offline verification
 - No on-card asymmetric crypto => cheaper smartcards
 - SDA still allows skimming

- **Dynamic data authentication (DDA)**
 - Additional RSA key pair securely stored on card
 - On-card signing of random challenge from terminal
 => more expensive smartcards
 - DDA defeats skimming

- **User authentication & card verification methods (CVM)**
 - CVM list included in signed data only optionally
 - Adversary can modify this list of methods
 - PIN => handwritten signatures
Other Security Implications

- Problem of the EMV specification
 - Payment terminals protect interests of merchants
 - Payment cards protect interests of banks
 - Interests of customers are typically overlooked

- Malicious merchant can always cheat the customer
 - Copying the cards
 - Collecting of authorization data
 - Relay the EMV protocol

- Electronic advocate
 - Enters to the EMV protocol
 - Protects only interests of the customer
 - Portable electronic device between smartcard & terminal
 - Can display the details of each transaction & accept/reject
Conclusions

• Introduction of Chip&PIN does not improve customer protection against opportunistic thieves
 • Factor in problematic repudiation of false transactions
• Good PINpad privacy/security shielding recommended
 • The shop till clearly isn’t the right place to enter PINs
• Verification based on signatures
 • Absolutely insufficient in a standard shop
 • Better, e.g., in jewellery
• Shoulder-surfing is an underestimated issue
 • Also in other (less “hostile”) environments, e.g., office

• Security of EMV systems still dependent on particular implementation
• The system still protects mostly merchants and banks