
Analysis, demands, and properties of pseudorandom
number generators

Jan Krhovják

Department of Computer Systems and Communications
Faculty of Informatics, Masaryk University

Brno, Czech Republic

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 1 / 12



Pseudorandom number generators (PRNGs) Basic Information

Outline

Random and pseudorandom data in cryptography

Review of demands of common cryptographic schemes on
pseudorandom data

I Cryptographic keys and initialization vectors
I Padding schemes and salting
I Cryptographic protocols

The analysis of properties used in PRNGs
I Generating pseudorandom data in computer systems
I Basic categories and principles of PRNGs

Conclusion & future research

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 2 / 12



Pseudorandom number generators (PRNGs) Basic Information

Random and pseudorandom data in cryptography

Random data in cryptography
I Cryptographic keys, padding values, nonces, etc.
I Quality and unpredictability is critical

Generating truly random data
I Based on nondeterministic physical phenomena

F Radioactive decay, thermal noise, etc.

I In deterministic environments extremely hard and slow
F Only a small amount of random data in a reasonable time

Generating pseudorandom data
I Typically (in many computational environments) faster
I Generated by deterministic algorithm

F Short input (often called seed) – truly random data
F Output – computationally indistinguishable from truly random data

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 3 / 12



Pseudorandom number generators (PRNGs) Basic Information

Random and pseudorandom data in cryptography

Random data in cryptography
I Cryptographic keys, padding values, nonces, etc.
I Quality and unpredictability is critical

Generating truly random data
I Based on nondeterministic physical phenomena

F Radioactive decay, thermal noise, etc.

I In deterministic environments extremely hard and slow
F Only a small amount of random data in a reasonable time

Generating pseudorandom data
I Typically (in many computational environments) faster
I Generated by deterministic algorithm

F Short input (often called seed) – truly random data
F Output – computationally indistinguishable from truly random data

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 3 / 12



Pseudorandom number generators (PRNGs) Basic Information

Random and pseudorandom data in cryptography

Random data in cryptography
I Cryptographic keys, padding values, nonces, etc.
I Quality and unpredictability is critical

Generating truly random data
I Based on nondeterministic physical phenomena

F Radioactive decay, thermal noise, etc.

I In deterministic environments extremely hard and slow
F Only a small amount of random data in a reasonable time

Generating pseudorandom data
I Typically (in many computational environments) faster
I Generated by deterministic algorithm

F Short input (often called seed) – truly random data
F Output – computationally indistinguishable from truly random data

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 3 / 12



Pseudorandom number generators (PRNGs) Basic Information

Random and pseudorandom data in cryptography

Random data in cryptography
I Cryptographic keys, padding values, nonces, etc.
I Quality and unpredictability is critical

Generating truly random data
I Based on nondeterministic physical phenomena

F Radioactive decay, thermal noise, etc.

I In deterministic environments extremely hard and slow
F Only a small amount of random data in a reasonable time

Generating pseudorandom data
I Typically (in many computational environments) faster
I Generated by deterministic algorithm

F Short input (often called seed) – truly random data
F Output – computationally indistinguishable from truly random data

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 3 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic keys and initialization vectors I

Symmetric cryptosystems (block & stream ciphers)
I Supported length of keys and initialization vectors is hardwired &

their potential modification imply:
F Change of usage model (e.g., from DES to 3DES-2/3)
F Change of cipher itself (e.g., from CAST-128 to CAST-256)

Block ciphers (requirements)
I Keys: mostly between 112 and 256 bits (e.g., 3DES-2, AES, Serpent)

F <80 bits (DES); 256–448 (Blowfish, MARS); 448< (RC5, RC6)

I Initialization vectors: same as blocksize (i.e., 64, 128, or 256 bits)

Stream ciphers (very similar requirements)
I Keys: typically do not go beyond 256 bits (e.g., HC-256, Dragon-256)
I Initialization vectors: mostly comparable to the length of the used key

Initialization vectors require only freshness (not secrecy)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 4 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic keys and initialization vectors I

Symmetric cryptosystems (block & stream ciphers)
I Supported length of keys and initialization vectors is hardwired &

their potential modification imply:
F Change of usage model (e.g., from DES to 3DES-2/3)
F Change of cipher itself (e.g., from CAST-128 to CAST-256)

Block ciphers (requirements)
I Keys: mostly between 112 and 256 bits (e.g., 3DES-2, AES, Serpent)

F <80 bits (DES); 256–448 (Blowfish, MARS); 448< (RC5, RC6)

I Initialization vectors: same as blocksize (i.e., 64, 128, or 256 bits)

Stream ciphers (very similar requirements)
I Keys: typically do not go beyond 256 bits (e.g., HC-256, Dragon-256)
I Initialization vectors: mostly comparable to the length of the used key

Initialization vectors require only freshness (not secrecy)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 4 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic keys and initialization vectors I

Symmetric cryptosystems (block & stream ciphers)
I Supported length of keys and initialization vectors is hardwired &

their potential modification imply:
F Change of usage model (e.g., from DES to 3DES-2/3)
F Change of cipher itself (e.g., from CAST-128 to CAST-256)

Block ciphers (requirements)
I Keys: mostly between 112 and 256 bits (e.g., 3DES-2, AES, Serpent)

F <80 bits (DES); 256–448 (Blowfish, MARS); 448< (RC5, RC6)

I Initialization vectors: same as blocksize (i.e., 64, 128, or 256 bits)

Stream ciphers (very similar requirements)
I Keys: typically do not go beyond 256 bits (e.g., HC-256, Dragon-256)
I Initialization vectors: mostly comparable to the length of the used key

Initialization vectors require only freshness (not secrecy)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 4 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic keys and initialization vectors I

Symmetric cryptosystems (block & stream ciphers)
I Supported length of keys and initialization vectors is hardwired &

their potential modification imply:
F Change of usage model (e.g., from DES to 3DES-2/3)
F Change of cipher itself (e.g., from CAST-128 to CAST-256)

Block ciphers (requirements)
I Keys: mostly between 112 and 256 bits (e.g., 3DES-2, AES, Serpent)

F <80 bits (DES); 256–448 (Blowfish, MARS); 448< (RC5, RC6)

I Initialization vectors: same as blocksize (i.e., 64, 128, or 256 bits)

Stream ciphers (very similar requirements)
I Keys: typically do not go beyond 256 bits (e.g., HC-256, Dragon-256)
I Initialization vectors: mostly comparable to the length of the used key

Initialization vectors require only freshness (not secrecy)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 4 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic keys and initialization vectors II

Asymmetric cryptosystems (in comparison with symmetric)
I Depend on the intractability of certain mathematical problems

F Their solution is not so time consuming as an exhaustive search of the
key space => the need of several times larger keys

F Typically between 1024 and 8192 bits (or 160 and 512 bits for ECC)

I Easily parameterizable
F Key-length is restricted only by implementation

Common asymmetric cryptosystems
I RSA: size of key is bit-length of its modulus n = pq
I DSA: size of key is bit-length of its prime modulus p
I ECDSA: size of key is bit-length of order n of the base point G

(of the chosen elliptic curve E )

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 5 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic keys and initialization vectors II

Asymmetric cryptosystems (in comparison with symmetric)
I Depend on the intractability of certain mathematical problems

F Their solution is not so time consuming as an exhaustive search of the
key space => the need of several times larger keys

F Typically between 1024 and 8192 bits (or 160 and 512 bits for ECC)

I Easily parameterizable
F Key-length is restricted only by implementation

Common asymmetric cryptosystems
I RSA: size of key is bit-length of its modulus n = pq
I DSA: size of key is bit-length of its prime modulus p
I ECDSA: size of key is bit-length of order n of the base point G

(of the chosen elliptic curve E )

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 5 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Padding schemes and salting

Padding used to extend messages to required length of block
(or integer multiple of block)

I Padding typically not required by stream ciphers
I Deterministic padding required by block ciphers (in the CBC mode)

and cryptographic hash functions
I Randomized padding required by deterministic asymmetric

cryptosystems (e.g., RSA)

Padding schemes adapted for algorithm RSA (see PKCS #1)
I Encryption schemes: RSAES-OAEP and RSAES-PKCS1-v1 5

F hLen bytes and k −mLen − 3 bytes of random data
I Signature scheme: RSASSA-PSS (and RSASSA-PKCS1-v1 5)

F hLen bytes (and 0 bytes) of random data

Salting – used commonly in the password-based cryptography
I Key derivation functions as PBKDF1/PBKDF2 (see PKCS #5)

F PBKDF1 requires 64 bits of salt; PBDF2 requires 8 bits of salt

I UNIX function crypt also uses up to 128 bits of salt

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 6 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Padding schemes and salting

Padding used to extend messages to required length of block
(or integer multiple of block)

I Padding typically not required by stream ciphers
I Deterministic padding required by block ciphers (in the CBC mode)

and cryptographic hash functions
I Randomized padding required by deterministic asymmetric

cryptosystems (e.g., RSA)

Padding schemes adapted for algorithm RSA (see PKCS #1)
I Encryption schemes: RSAES-OAEP and RSAES-PKCS1-v1 5

F hLen bytes and k −mLen − 3 bytes of random data
I Signature scheme: RSASSA-PSS (and RSASSA-PKCS1-v1 5)

F hLen bytes (and 0 bytes) of random data

Salting – used commonly in the password-based cryptography
I Key derivation functions as PBKDF1/PBKDF2 (see PKCS #5)

F PBKDF1 requires 64 bits of salt; PBDF2 requires 8 bits of salt

I UNIX function crypt also uses up to 128 bits of salt

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 6 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Padding schemes and salting

Padding used to extend messages to required length of block
(or integer multiple of block)

I Padding typically not required by stream ciphers
I Deterministic padding required by block ciphers (in the CBC mode)

and cryptographic hash functions
I Randomized padding required by deterministic asymmetric

cryptosystems (e.g., RSA)

Padding schemes adapted for algorithm RSA (see PKCS #1)
I Encryption schemes: RSAES-OAEP and RSAES-PKCS1-v1 5

F hLen bytes and k −mLen − 3 bytes of random data
I Signature scheme: RSASSA-PSS (and RSASSA-PKCS1-v1 5)

F hLen bytes (and 0 bytes) of random data

Salting – used commonly in the password-based cryptography
I Key derivation functions as PBKDF1/PBKDF2 (see PKCS #5)

F PBKDF1 requires 64 bits of salt; PBDF2 requires 8 bits of salt

I UNIX function crypt also uses up to 128 bits of salt

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 6 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic protocols

Focused on challenge-response protocols
I Authentication protocols: random data for random challenges (nonces)
I Key establishment protocols: random data for generating shared keys
I Authenticated key establishment protocols: their combination

Common authentication protocols (e.g., ISO/IEC 9798)
I Random challenges are typically 64 (or better 128) bits long
I Some protocols use timestamps or sequence numbers instead of nonces

Key establishment (key distribution & key agreement) protocols
I One party is involved in key generation process

F Requirements are dependent on the type of generated key

I Both (or more) parties is involved in key generation process
F Typically based on Diffie-Hellman exponential key exchange
F Modulus at least 1024 bits; Key(s) at least 160 bits

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 7 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic protocols

Focused on challenge-response protocols
I Authentication protocols: random data for random challenges (nonces)
I Key establishment protocols: random data for generating shared keys
I Authenticated key establishment protocols: their combination

Common authentication protocols (e.g., ISO/IEC 9798)
I Random challenges are typically 64 (or better 128) bits long
I Some protocols use timestamps or sequence numbers instead of nonces

Key establishment (key distribution & key agreement) protocols
I One party is involved in key generation process

F Requirements are dependent on the type of generated key

I Both (or more) parties is involved in key generation process
F Typically based on Diffie-Hellman exponential key exchange
F Modulus at least 1024 bits; Key(s) at least 160 bits

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 7 / 12



Pseudorandom number generators (PRNGs) Review of demands of common cryptographic schemes

Cryptographic protocols

Focused on challenge-response protocols
I Authentication protocols: random data for random challenges (nonces)
I Key establishment protocols: random data for generating shared keys
I Authenticated key establishment protocols: their combination

Common authentication protocols (e.g., ISO/IEC 9798)
I Random challenges are typically 64 (or better 128) bits long
I Some protocols use timestamps or sequence numbers instead of nonces

Key establishment (key distribution & key agreement) protocols
I One party is involved in key generation process

F Requirements are dependent on the type of generated key

I Both (or more) parties is involved in key generation process
F Typically based on Diffie-Hellman exponential key exchange
F Modulus at least 1024 bits; Key(s) at least 160 bits

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 7 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Generating pseudorandom data in computer systems

PRNG is deterministic finite state machine =>
at any point of time it is in a certain internal state

I PRNG state is secret (PRNG output must be unpredictable)
I PRNG (whole) state is repeatedly updated (PRNG must produce

different outputs)

Secret state compromise may occur – recovering is difficult
I Mixing data with small amounts of entropy to the secret state
I Problem is limited amount of entropy between two requests for

pseudorandom data (solution is pooling)
F Frequent requests & brute force => new secret state
F Solution is pooling of incoming entropy to sufficient amount,

and then to mix it to the secret state

Basic types of PRNGs utilize
I Linear feedback shift register (LFSR), hard problems of number and

complexity theory, typical cryptographic functions/primitives

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 8 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Generating pseudorandom data in computer systems

PRNG is deterministic finite state machine =>
at any point of time it is in a certain internal state

I PRNG state is secret (PRNG output must be unpredictable)
I PRNG (whole) state is repeatedly updated (PRNG must produce

different outputs)

Secret state compromise may occur – recovering is difficult
I Mixing data with small amounts of entropy to the secret state
I Problem is limited amount of entropy between two requests for

pseudorandom data (solution is pooling)
F Frequent requests & brute force => new secret state
F Solution is pooling of incoming entropy to sufficient amount,

and then to mix it to the secret state

Basic types of PRNGs utilize
I Linear feedback shift register (LFSR), hard problems of number and

complexity theory, typical cryptographic functions/primitives

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 8 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Generating pseudorandom data in computer systems

PRNG is deterministic finite state machine =>
at any point of time it is in a certain internal state

I PRNG state is secret (PRNG output must be unpredictable)
I PRNG (whole) state is repeatedly updated (PRNG must produce

different outputs)

Secret state compromise may occur – recovering is difficult
I Mixing data with small amounts of entropy to the secret state
I Problem is limited amount of entropy between two requests for

pseudorandom data (solution is pooling)
F Frequent requests & brute force => new secret state
F Solution is pooling of incoming entropy to sufficient amount,

and then to mix it to the secret state

Basic types of PRNGs utilize
I Linear feedback shift register (LFSR), hard problems of number and

complexity theory, typical cryptographic functions/primitives

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 8 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Linear feedback shift register (LFSR)

Finite number of possible states => repeating cycles

Outputs of LFSRs are linear => easy cryptanalysis

Improvement necessary for cryptographic purposes
I Non-linear combination of several LFSRs imply the need of well

designed nonlinear function f
F Geffe generator: function f (x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3

F Summation generator: integer addition (over Z2)

I Using one (or several) LFSR to clock another
(or combination of more) LFSR

F Alternating step generator:
LFSR 1 used to clock LFSR 2 and LFSR 3

F Shrinking generator:
LFSR 1 used to control output of LFSR 2

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 9 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Linear feedback shift register (LFSR)

Finite number of possible states => repeating cycles

Outputs of LFSRs are linear => easy cryptanalysis

Improvement necessary for cryptographic purposes
I Non-linear combination of several LFSRs imply the need of well

designed nonlinear function f
F Geffe generator: function f (x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3

F Summation generator: integer addition (over Z2)

I Using one (or several) LFSR to clock another
(or combination of more) LFSR

F Alternating step generator:
LFSR 1 used to clock LFSR 2 and LFSR 3

F Shrinking generator:
LFSR 1 used to control output of LFSR 2

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 9 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Hard problems of number and complexity theory

RSA PRNG is based on public-key cryptosystem RSA
I p, q primes; n = pq; Φ(n) = (p − 1)(q − 1); gcd(e,Φ(n)) = 1
I Seed x0 is selected from [2, n − 2]
I For i from 1 to m do the following:

F xi = xe
i−1 mod n;

F zi = lsb(xi ); i.e., zi is least significant bit of xi

I The output sequence of length m is z1, z2, . . . zm

I Security based on the intractability of RSA problem

Blum Blum Shub PRNG on modular squaring
I Difference is that is used xi = x2

i−1 mod n
I Security based on the intractability of quadratic residuosity problem

Generators based on discrete logarithm problem or Diffie-Hellman
problem (with stronger DDH assumption)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 10 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Hard problems of number and complexity theory

RSA PRNG is based on public-key cryptosystem RSA
I p, q primes; n = pq; Φ(n) = (p − 1)(q − 1); gcd(e,Φ(n)) = 1
I Seed x0 is selected from [2, n − 2]
I For i from 1 to m do the following:

F xi = xe
i−1 mod n;

F zi = lsb(xi ); i.e., zi is least significant bit of xi

I The output sequence of length m is z1, z2, . . . zm

I Security based on the intractability of RSA problem

Blum Blum Shub PRNG on modular squaring
I Difference is that is used xi = x2

i−1 mod n
I Security based on the intractability of quadratic residuosity problem

Generators based on discrete logarithm problem or Diffie-Hellman
problem (with stronger DDH assumption)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 10 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

Hard problems of number and complexity theory

RSA PRNG is based on public-key cryptosystem RSA
I p, q primes; n = pq; Φ(n) = (p − 1)(q − 1); gcd(e,Φ(n)) = 1
I Seed x0 is selected from [2, n − 2]
I For i from 1 to m do the following:

F xi = xe
i−1 mod n;

F zi = lsb(xi ); i.e., zi is least significant bit of xi

I The output sequence of length m is z1, z2, . . . zm

I Security based on the intractability of RSA problem

Blum Blum Shub PRNG on modular squaring
I Difference is that is used xi = x2

i−1 mod n
I Security based on the intractability of quadratic residuosity problem

Generators based on discrete logarithm problem or Diffie-Hellman
problem (with stronger DDH assumption)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 10 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

PRNG based on cryptographic functions 3DES/AES

ANSI X9.17/X9.31 is based on 64-bit 3DES-3 or 128-bit AES
I The key K is reserved only for the generator
I Seed is a 64/128-bit value V
I DT is a 64/128-bit representation of the date and time
I In each iteration is performed:

F Ii = EK (DT )
F Ri = EK (Ii ⊕ Vi )
F Vi+1 = EK (Ri ⊕ Ii )

I The output is pseudorandom string Ri

One from many existing modifications
I Ii = EK (Ii−1 ⊕ DT )
I This corresponds to encrypting DT in CBC mode

(instead of in ECB)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 11 / 12



Pseudorandom number generators (PRNGs) The analysis of properties used in PRNGs

PRNG based on cryptographic functions 3DES/AES

ANSI X9.17/X9.31 is based on 64-bit 3DES-3 or 128-bit AES
I The key K is reserved only for the generator
I Seed is a 64/128-bit value V
I DT is a 64/128-bit representation of the date and time
I In each iteration is performed:

F Ii = EK (DT )
F Ri = EK (Ii ⊕ Vi )
F Vi+1 = EK (Ri ⊕ Ii )

I The output is pseudorandom string Ri

One from many existing modifications
I Ii = EK (Ii−1 ⊕ DT )
I This corresponds to encrypting DT in CBC mode

(instead of in ECB)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 11 / 12



Pseudorandom number generators (PRNGs) Conclusion & future research

Conclusion

We described demands of common cryptographic schemes
(between hundreds and thousands of bits)

I Smaller amounts: symmetric cryptography
I Larger amounts: asymmetric cryptography

Analysis of properties of common pseudorandom number generators,
some of them are:

I Extremely fast (e.g., LFSR based PRNG)
I Extremely slow (e.g., cryptographically secure PRNG)
I Intended for particular purpose (e.g., ANSI X9.17/X9.31, FIPS-186)
I Designed for general purpose (e.g., Yarrow-160, Fortuna)

Future research
I PRNGs in mobile computing environments

(limited resources as CPU speed, memory, or energy)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 12 / 12



Pseudorandom number generators (PRNGs) Conclusion & future research

Conclusion

We described demands of common cryptographic schemes
(between hundreds and thousands of bits)

I Smaller amounts: symmetric cryptography
I Larger amounts: asymmetric cryptography

Analysis of properties of common pseudorandom number generators,
some of them are:

I Extremely fast (e.g., LFSR based PRNG)
I Extremely slow (e.g., cryptographically secure PRNG)
I Intended for particular purpose (e.g., ANSI X9.17/X9.31, FIPS-186)
I Designed for general purpose (e.g., Yarrow-160, Fortuna)

Future research
I PRNGs in mobile computing environments

(limited resources as CPU speed, memory, or energy)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 12 / 12



Pseudorandom number generators (PRNGs) Conclusion & future research

Conclusion

We described demands of common cryptographic schemes
(between hundreds and thousands of bits)

I Smaller amounts: symmetric cryptography
I Larger amounts: asymmetric cryptography

Analysis of properties of common pseudorandom number generators,
some of them are:

I Extremely fast (e.g., LFSR based PRNG)
I Extremely slow (e.g., cryptographically secure PRNG)
I Intended for particular purpose (e.g., ANSI X9.17/X9.31, FIPS-186)
I Designed for general purpose (e.g., Yarrow-160, Fortuna)

Future research
I PRNGs in mobile computing environments

(limited resources as CPU speed, memory, or energy)

Jan Krhovják (FI MU) Santa’s Crypto Get-Together ’06 (Prague) 7. 12. 2006 12 / 12


	Pseudorandom number generators (PRNGs)
	Basic Information
	Review of demands of common cryptographic schemes
	The analysis of properties used in PRNGs
	Conclusion & future research


