
Faculty of Informatics
Masaryk University

Cryptographic random and

pseudorandom data generators

Dissertation thesis

Jan Krhovják

Brno, 2009

I would like to dedicate this thesis to my loving parents. . .

Acknowledgements

First, I would like to thank my supervisor Vashek Matyas for giving

me the chance to be a part of his research security group and for his

care and support. He always motivated me even when things did not

go very well.

I also would like to express my gratitude to Luděk Smoĺık for his fruit-

ful discussion about the physical sources of randomness. Discussions

and ideas given by Dan Cvrček also greatly contributed to this thesis.

I am thankful to all my colleagues from the laboratory and especially

to Petr Švenda and Marek Kumpošt. We spent a really great time

working together and discussing our projects, but also a lot of fun and

great experience.

I am also grateful to Andreas Pfitzmann for giving me the opportu-

nity to spent a very productive time with him and his research group

in Dresden. This was a really nice experience that also greatly con-

tributed to this thesis.

I also like to thank all anonymous reviewers for their constructive

comments and suggestions which also helped to improve our research.

Finally, I would like to express my gratitude to my family. They were

a constant source of support, understanding, care and encouragement

during my whole academic life.

I am generally grateful for all the support I have received whilst re-

searching and writing up this dissertation.

I acknowledge the support of the research project of Czech Science

Foundation No. 102/06/0711.

Jan Krhovják, Brno, January 2009

Abstract

This dissertation thesis deals with cryptographic random and pseu-

dorandom data generators in mobile computing environments (such

as mobile phones, personal digital assistants, cryptographic smart-

cards). These mobile devices are typically bounded by the amount

of energy, performance, memory or even silicon area. This lack of re-

sources leads to very limited computing environments with: a) limited

number of sources of randomness for reliable true random data gen-

erator; b) limited number of pseudorandom data generators (or other

methods of digital post-processing) suitable for secure and efficient

implementation (in this mobile environment).

In the first chapter we explain the basics of random and pseudoran-

dom data generation for cryptography purposes and also all necessary

terminology. The second chapter is organized as a survey of basic re-

quirements on random and pseudorandom data, fundamental results

in the field and description of several experiments with cryptographic

smartcards. In the last part of this chapter we also discuss a novel

idea of distributed random data generation. The third chapter is dedi-

cated to identification and analysis of available sources of randomness

in mobile computing environments. The fourth chapter focuses on

the secure and efficient digital post-processing of truly random data

with the use of randomness extractors or pseudorandom data genera-

tors. The fifth chapter presents technical details regarding the integra-

tion of our design prototype into selected mobile devices (smartphone

Nokia N73 with Symbian OS).

The main contribution of this dissertation is the identification and

analysis of available sources of randomness in mobile devices, secure

integration of selected digital post-processing methods (resulting in a

design prototype) and the analysis of approaches to distributed ran-

dom data generation.

Table of Contents

1 Introduction 1
1.1 Basic terminology . 2
1.2 Structure of the thesis . 3
1.3 Literature review . 4

2 Random data in cryptography 6
2.1 Requirements on random data . 6

2.1.1 Qualitative requirements 7
2.1.2 Quantitative requirements 8
2.1.3 Demands of common cryptographic schemes 9

2.2 Generation of random data . 15
2.2.1 True randomness . 16
2.2.2 Pseudorandomness . 19
2.2.3 Randomness extractors . 24

2.3 Statistical testing . 25
2.3.1 Performed experiments . 27

2.4 Distributed generation . 28
2.4.1 Motivation . 28
2.4.2 Attacker model for standalone mobile devices 30
2.4.3 Communication model . 32
2.4.4 Gathering of random data in hostile environments 35
2.4.5 Summary . 38

3 The sources of randomness in mobile devices 40
3.1 Specifics of the mobile devices . 41
3.2 Analysis of selected sources of randomness 42

3.2.1 Theoretical entropy estimation 43
3.2.2 Microphone . 45
3.2.3 Digital camera . 48
3.2.4 Statistical testing with the NIST battery 57

3.3 Recapitulation . 60

4 Digital post-processing 61

i

TABLE OF CONTENTS

4.1 Randomness extractors . 61
4.1.1 Processing randomness . 62
4.1.2 Randomness extractor . 65
4.1.3 Analysis of acquired random data 66
4.1.4 Summary . 68

4.2 Secure pseudorandom generators 69
4.2.1 ANSI X9.31 pseudorandom data generator 70
4.2.2 Fortuna pseudorandom data generator 71

4.3 Recapitulation . 72

5 Design prototype 73
5.1 Suitable target platform . 73
5.2 ANSI X9.31 pseudorandom data generator 74
5.3 Fortuna pseudorandom data generator 76

5.3.1 Fortuna server . 77
5.3.2 Fortuna client . 80

5.4 Recapitulation . 81

6 Conclusions 82
6.1 Future work . 84

Bibliography 85

ii

Chapter 1

Introduction

In today’s world of modern computers and ubiquitous networks most security

solutions rely on the use of cryptography. Generation high-quality randomness is

a vital (and maybe most difficult) cornerstone of many cryptographic operations

and the importance of a careful design of cryptographic (pseudo)random data

generators cannot be underestimated.

Following the second Kerckhoffs’ principle – the security of a cryptosystem shall

not be based on keeping the algorithm secret but solely on keeping the key se-

cret – the quality and unpredictability of secret data (e.g., cryptographic keys,

padding values or per-message secrets) is critical to securing communication by

modern cryptographic techniques. Generation of such data for cryptographic pur-

poses typically requires an unpredictable physical source of random data, secure

mechanisms for its digital post-processing and/or secure and robust methods for

gathering random data from one or several distributed systems.

Most common generation techniques involve truly random and pseudorandom

data generators. The former are typically based on nondeterministic physical

phenomena (e.g., radioactive decay or thermal noise), while the latter are typically

deterministic algorithms where all randomness of the output is dependent on

the randomness of the one or several inputs (often called seed). The process

of generation truly random data in the deterministic environment of computer

systems or even single chip devices is extremely hard and slow, i.e., only a small

amount of good quality random data can be generated in a reasonable time.

Therefore we often restrict ourselves to the use of deterministically generated

pseudorandom data instead of truly random data.

1

1.1 Basic terminology

Generation of pseudorandom data is in most computational environments faster

and truly random data is in this process used only as an initial input. Since the

whole generating process is deterministic, the randomness of the output is fully

dependent on the randomness of the input. There exist many classes of pseudo-

random data generators (designed, e.g., for simulation purposes or randomized

algorithms), but the goal of a pseudorandom data generator in cryptography is

to produce pseudorandom data that is unpredictable and computationally indis-

tinguishable from truly random data.

Verification of the statistical quality of (pseudo)random data by detecting devia-

tions from true randomness (known a priori) is based on statistical testing. These

tests may be useful as the first step in determining whether or not a generator is

suitable for a particular cryptographic application. However, no set of statistical

tests can surely point out a generator as appropriate for usage in a particular

application, i.e., statistical testing cannot serve as a substitute for cryptanalysis.

In addition, the results of statistical testing must be interpreted with some care

and caution to avoid incorrect conclusions about a specific generator.

1.1 Basic terminology

The term random or randomness covers also unpredictability (as is required

in cryptography). The measure for randomness is called uncertainty or en-

tropy [Sha48] and is typically defined [ECS05, MvOV01] as H(X) = −Σpilog2pi,

where i varies from 1 to the number of possible values of random variable X and

pi is the probability of the value numbered i.

A random bit generator (RBG) is defined [MvOV01] as a device or algorithm

which outputs a sequence of statistically independent and unbiased binary digits.

The output of the RBG is called a random bit sequence. A pseudorandom bit

generator (PRBG) is defined [MvOV01] as a deterministic algorithm which, given

a truly random binary sequence of length k, outputs a binary sequence of length

l � k that “appears” to be random. The input to the PRBG is called the seed,

while the output of the PRBG is called a pseudorandom bit sequence.

There is no significant difference between truly random data such as truly random

bits, truly random bit sequences, truly random numbers, or truly random num-

ber sequences. Similarly there is no significant difference between pseudorandom

data such as pseudorandom bits, pseudorandom bit sequences, pseudorandom

2

1.2 Structure of the thesis

numbers, or pseudorandom number sequences. A (pseudo)random bit sequence

can be constructed by concatenation of (pseudo)random bits. A (pseudo)random

number in interval 〈0, n〉 can be converted from (pseudo)random bit sequence

of length blog2nc + 1 (if n is exceeded, new sequence should always be used).

A (pseudo)random number sequence can be constructed by concatenation of

(pseudo)random numbers. Consequently, there is no significant difference be-

tween appropriate generators of these types of (pseudo)random data.

The terms random challenge and nonce (contraction of “number used once”) have

in the context of cryptographic protocols the same meaning as random data.

1.2 Structure of the thesis

This dissertation thesis1 deals mainly with issues related to the generation of truly

random and pseudorandom data (i.e., bits, numbers and sequences) in mobile

computing environments (such as mobile phones, personal digital assistants or

cryptographic smartcards). These mobile devices are typically bounded by the

amount of energy, performance, memory or even silicon area and this lack of

resources leads to very limited computing environments. On the contrary, the

mobile devices are now commonly used for a lot of security-critical applications

like mobile banking, secure data and voice communication, etc. Good sources

of randomness and suitable methods of their digital post-processing are thus the

most critical requirements for a reliable random data generation.

Chapter 2 presents the expected application requirements in terms of amount

and speed of random data generation in such environments followed by a detailed

description of fundamental results in the research area of random number gen-

erators. Special attention belongs to experiments with hardware generators of

selected cryptographic smartcards and hardware security modules. An analysis

of approaches to distributed random or pseudorandom data generation in hostile

environment is also discussed in this chapter.

Chapter 3 is focused on identification and analysis of available sources of ran-

domness in selected mobile devices (Nokia N73 with the Symbian OS and E-Ten

X500 and M700 with MS Windows Mobile OS). Several experiments are per-

formed with available mobile devices in different external conditions (such as

temperature, ambient light, acoustic noise). The analysis of experiments results

1The research was supported by the grant of the Czech Science Foundation No. 102/06/0711.

3

1.3 Literature review

followed by statistical testing of randomness show that at least the microphone

and camera noise contain a sufficient amount of entropy and thus can be reliably

used as a good sources of truly random data.

Chapter 4 deals with methods of digital post-processing of truly random data with

the use of randomness extractors or pseudorandom data generators. Both could

be used to post-process the data captured directly from a physical randomness

source and to ensure the uniformity of output and overcom certain correlations

or statistical dependencies caused by hardware sources of truly random data.

Chapter 5 is then dedicated to a detailed technical description and integration

of design prototype into selected mobile device. Symbian-based smartphone

Nokia N73 is used as our target platform for integration of ANSI X9.31 an

Fortuna pseudorandom data generators. The performance analysis and power

consumption of these generators are also discussed.

Note that the reader of this theses should be familiar with the basics of cryptog-

raphy and discrete mathematics that can be found, e.g., in [MvOV01].

1.3 Literature review

The work presented in this dissertation is based predominantly on the following

publications:

• [Krh06a]: Analysis, demands, and properties of pseudorandom number gen-

erators. Main content: Demands of common cryptographic schemes on

random data and description of properties of several pseudorandom data

generators.

• [KŠMS07]: The sources of randomness in smartphones with Symbian OS.

Main content: The identification and analysis of sources of randomness in

smartphones with Symbian OS.

• [KŠM07]: The sources of randomness in mobile devices. Main content: The

identification and analysis of sources of randomness in mobile devices.

• [KSM08]: Generating random numbers in hostile environments. Main con-

tent: The proposal of a distributed generation of random data.

4

1.3 Literature review

• [BKMŠ09]: Towards true random number generation in mobile environ-

ments. Main content: Security issues related to a digital post-processing

by randomness extractors.

• [KMŽ09]: Generating random and pseudorandom sequences in mobile de-

vices. Main content: A study of qualitative and quantitative requirements

on random and pseudorandom data followed by a description of secure in-

tegration (and implementation) issues of selected pseudorandom data gen-

erators.

• [Krh06b]: Cryptographic random and pseudorandom number generators.

Main content: A detailed description of fundamental results in the field

of random data generators.

• [CKM+04, CHK+05, BCK+06, KKK+07, KKL+08]: Smartcards, final re-

port for the Czech National Security Authority (2004–0008). Main content:

Smartcard security research.

5

Chapter 2

Random data in cryptography

This chapter provides a basic analysis and description of requirements on random

data that is inspired by [Krh06a, KMŽ09]. This is followed by a summary of the

current state of the research area that is based on [CKM+04, Krh06b]. After

a detailed description of fundamental results in the field we focus mainly on

the mobile computing environments (involving mobile phones, personal digital

assistants, cryptographic smartcards, etc.).

Description of several experiments with cryptographic smartcards and statistical

testing of sequences generated by such smartcards are adopted from [CHK+05,

BCK+06, KKK+07]. The last part of this chapter is focused on basic security

aspects of distributed random data generation in potentially hostile environments

and is based on [KSM08].

2.1 Requirements on random data

Let us begin with a basic description of requirements on random data for crypto-

graphic purposes – for details see [Krh06a, KMŽ09]. We can distinguish between

qualitative and quantitative requirements for random data. The former cover

good statistical properties of generated random data and unpredictability of such

data, while the latter deal with measuring of randomness and also cover demands

of used cryptographic techniques and the performance issues of cryptographic

generators.

6

2.1 Requirements on random data

2.1.1 Qualitative requirements

Rigorous qualitative analysis of randomness and unpredictability is probably the

most challenging problem for many researchers in this field. Random data gen-

erated directly from a randomness source (the most common techniques are de-

scribed in section 2.2.1) often contains some statistical defects or correlations

causing parts of the random data to be easily predictable. These statistical de-

fects are typically inducted by hardware random data generators during the sam-

pling of the analogue randomness source or by influencing the sampled physical

randomness source (e.g., by an active adversary).

The first step towards unpredictability lies in ensuring (at least to a certain level)

good statistical properties of generated random data. This can be partially solved

by using digital post-processing and/or statistical testing. Digital post-processing

is a procedure capable to reduce statistical relations and dependencies (including

bias and correlation of adjacent bits). Statistical testing allows to (manually)

detect some design flaws of a generator or to (automatically) avoid breaking or

influencing the generator during its lifecycle.

Typical techniques of digital post-processing involve use of deterministic pseu-

dorandom data generators (the most important of them are described in sec-

tion 2.2.2) or randomness extractors (discussed in section 2.2.3). The former

serve only for spreading simple statistical defects into a longer sequence of bits.

The latter allow to condense available input randomness to the most compact

form that has uniformly distributed bits without statistical defects.

Pseudorandom data generators as well as randomness extractors can be based on

cryptographic primitives1 (e.g., hash functions) or simple mathematical functions

(consider, e.g., von Neumann corrector [Neu51]). However, none of determinis-

tic digital post-processing methods can be used for improving initial random-

ness from the physical source. The advantage of randomness extractors lies in

good theoretical and mathematical background – more sophisticated randomness

extractors can even provide some provable guarantees of the quality (resulting

distribution) and quantity (in terms of extracted so-called min-entropy) of its

output.

There are several commonly used statistical test suites or batteries (for exam-

ple CRYPT-X, DIEHARD, and NIST) for manual verification of the statistical

1Randomness extractors need not use any cryptography at all, although there may be effi-
ciency gains in using cryptographic components for this task [BH05].

7

2.1 Requirements on random data

quality of random data by detecting deviations from true randomness (for details

see section 2.3). Reduced batteries of automatic tests are often implemented in

hardware security modules, smartcards or other security-critical devices – they

can be used occasionally after every restart of the device or continuously during

generation. However, no finite set of statistical tests can be viewed as complete

(there are infinite statistical defects). The results of statistical testing must be

always interpreted with some care and caution to avoid wrong conclusions about

a specific randomness source or generator.

2.1.2 Quantitative requirements

A precise comparison of several sources of randomness requires also some mea-

sure of randomness. Basic measure is in information theory often called uncer-

tainty or entropy and referred as Shannon entropy or alternatively information

entropy [Sha48]. The well-known Shannon formula computes the entropy accord-

ing to all observed probabilities of values in the probability distribution. This

results only in average case entropy that is inappropriate for cryptography pur-

poses. To (partially) cope with this situation the worst case min-entropy measure

is often used. Min-entropy formula computes the entropy according to the most

probable value in probability distribution – this is a common approach especially

in the theory of randomness extractors. These two entropy measures are special

cases of generalized Rényi entropy [Rén60].

Unfortunately, both entropy formulas have one serious drawback: they work only

for exactly defined and fixed randomness distribution. In our case we cannot

make any assumptions about distributions dynamically formed by used sources

of randomness (e.g., they can be under ongoing attack) and this can always lead

to biased results in terms of entropy. This is a fundamental problem that can

be also seen in the theory of randomness extractors. To partially cope with this

problem, we perform all our experiments and entropy estimations (described in

chapter 3) in worsened conditions – i.e., under ongoing attack(s) on the physical

randomness source.

The introduction of a measure of randomness allows for assessing and comparing

sources of randomness according to the amount of produced entropy. It can be

expressed as amount of entropy per sample (of the same size) or as amount of

entropy in a given time period. The performance of available randomness source

can be a crucial factor for securing the outgoing communication.

8

2.1 Requirements on random data

The demands of common cryptographic schemes on random or pseudorandom

data generation (detailed description can be found in the section 2.1.3) are be-

tween hundreds and thousands bits of entropy. The larger amounts of random

data are typically required for asymmetric cryptography (e.g., private/public keys

or domain parameters), while the smaller amounts are typically required for sym-

metric cryptography (e.g., secret keys or initialization vectors). Of course, some

schemes or applications require only a one-time generation of static random data

(e.g., cryptographic keys), while others require more frequent generation of dy-

namic random data (e.g., initialization vectors). It is also not surprising that

these requirements are higher if random data is intended for long-term usage and

smaller if random data is intended for short-term usage.

The requirements on random data have always an upper bound given by the speed

of the transmission technology in question (Bluetooth, WiFi, EDGE, WiMAX,

etc.). They are also dependent on the application type that can be categorized

as interactive (e.g., transfer of voice or video), semi-interactive (e.g., web-based

services), and non-interactive (e.g., one-time file transfer or sending an e-mail

message). The data can be encrypted and transferred immediately after cre-

ating/filling an outgoing packet (to prevent unwanted delays), or after reach-

ing other pre-specified thresholds. A new initialization vector (and often also

padding) is required for each encryption. Splitting data to several independent

pieces thus implies higher requirements on initialization vectors (and padding).

The consequence is higher requirements on the volume of random or pseudoran-

dom data.

2.1.3 Demands of common cryptographic schemes

In this section we focus on the few (from many) existing cryptographic schemes

and we provide a basic comparison of their demands on (pseudo)random data.

Overall demands are given by the length of the supported key (including frequency

of re-keying) and by the amount of additional (pseudo)random data necessary to

perform each encryption/sign operation.

We begin with the cryptographic keys and initialization vectors, because they are

the most critical for security of many cryptographic primitives. Then we approach

to various padding schemes, cryptographic protocols, and other mechanisms that

also require (pseudo)random data.

9

2.1 Requirements on random data

2.1.3.1 Cryptographic keys and initialization vectors

Symmetric cryptosystems have typically strictly defined structure and supported

length of keys and initialization vectors that cannot be changed without redesign

the usage model (e.g., from DES to 3DES) or the cipher itself (e.g., from CAST-

128 to CAST-256). The length of secret keys begins for a vast majority of com-

monly used block ciphers, which are currently considered as secure (e.g., 3DES,

AES, IDEA, and RC6), at 112 bits and typically does not go beyond 448 bits.

Ciphers that support only keys less than 80 bits long (e.g., DES) are considered

obsolete and insecure. On the contrary, keys between 256 and 448 bits in size

(supported, e.g., by Blowfish and MARS) are used in practice very rarely and

longer keys (supported, e.g., by RC5 and RC6) even not at all.

With respect to the used mode of operation of block cipher, the additional

(pseudo)random data – the initialization vector (IV) – can be also required. The

cipher then produces different output (ciphertext) for the same input (plaintext)

and secret key without a complex process of re-keying. It can be viewed as ran-

domization of the encryption process that is performed (in the CBC mode) by

XORing plaintext IV to the first input block or (in the CFB and the OFB mode)

by XORing encrypted IV to the first input block. The length of IV for block

ciphers is thus always the same as length of the block itself (i.e., typically 64,

128, or 256 bits).

Requirements described above are very similar for commonly used stream ciphers

(e.g., A5, E0, HC, and Py). Supported key-lengths typically do not go beyond

256 bits and almost all stream ciphers also require initialization vectors – here

mostly comparable to the length of the used key. Sometimes a design of stream

ciphers (e.g., RC4) does not provide dedicated input for IV and incorporates IV

as a part of a key (e.g., 24bit IV in WEP or 48bit IV in WPA; “WEP key” or

“WPA key” is thus concatenated key and IV, no longer than 256 bits).

In both block and stream ciphers, initialization vectors need not be always se-

cret, but they must be always different (i.e., freshly generated) – at least for the

encryption process with the same secret key. The need of (pseudo)random data

is thus strongly dependent on the frequency of the performed encryptions (and

this is dependent on the application itself).

Cryptographic keys (or more precisely key pairs – private key and public key) used

in a vast majority of asymmetric cryptosystems are typically several times larger

than the keys used in symmetric cryptosystems. The reason is that asymmetric

10

2.1 Requirements on random data

cryptosystems depend on the intractability of certain mathematical problems –

defined mostly over finite fields and using modular arithmetic – and their solution

is not as time consuming as an exhaustive search of the key space. Lengths of

keys (that are currently considered as secure) begin in commonly used asymmet-

ric cryptosystems at 1024 bits and typically do not go beyond 8192 bits. The only

exceptions are cryptosystems working over elliptic curve group in which modular

arithmetic is replaced by operations defined over elliptic curves. This mathemat-

ical model has a higher complexity than modular arithmetic and key-lengths can

be thus shorter – typically between 160 bits and 512 bits.

Asymmetric cryptosystems are (in comparison with symmetric) easily parame-

terizable and a variable key-length is typically restricted only by the particular

implementation. On the contrary, not all generated random data can directly

serve as a key. Due to the underlying mathematical problems, the key must typ-

ically have specific algebraic properties – e.g., its number representation must be

a prime number. Moreover, each public key must be related to the certain secret

key. After generating (pseudo)random data (that represents some number) it is

typically necessary to perform an additional amount of computation to check the

properties of such generated number, or possibly, to find the nearest number with

required properties.

Three most common asymmetric cryptosystems are RSA, DSA, and ECDSA. The

RSA public key consists of modulus n and exponent e, while the RSA private

key consists of (the same) modulus n and exponent d. Modulus n is a product of

two (pseudo)randomly generated primes p and q, exponent e is an integer such

that 1 < e < φ(n), and exponent d is an integer that depends on both n and e

– concretely de ≡ 1 (mod φ(n)). The size of RSA key pair is typically bit-length

of its modulus n = pq and should be equal or larger than 1024 bits – this implies

that a bit-length of values p, q should be at least 512 bits. Moreover, exponent e

can be also generated (pseudo)randomly and overall demands on (pseudo)random

data are thus bounded by n (if e is chosen) and 2n (if n-bit e is generated).

DSA makes use of several public parameters: a prime modulus p (21023 < p <

21024), a prime divisor of p−1 denoted q (2159 < q < 2160), and a generator of the

subgroup of order q mod p denoted g (1 < g < p). The DSA private key x is a

(pseudo)randomly generated integer with 0 < x < q and public key is an integer

y = gx mod p. The size of DSA key is a bit-length of its prime modulus p. An

additional secret (pseudo)random integer k (0 < k < q) – the per-message secret

– must be computed prior to the generation of each signature. Larger values

for p (1024, 2048, and 3072 bits) and q (160, 224, and 256 bits) are proposed

11

2.1 Requirements on random data

in [NIS06]. This leads to 6400 bits2 for public parameters, 256 bits for private

key, and 256 bits for each per-message secret. Currently, a longer key than for

RSA is often recommended.

Similarly, ECDSA [JMV01] uses also public parameters – so-called domain param-

eters – that consists of a suitably chosen elliptic curve E defined over a particular

field Fq of order q (either an odd prime or a power of 2), characteristic p, and base

point G ∈ E(Fq). These parameters can be specific to a single user or shared by

a group of users. To avoid some common attacks it is necessary that the number

of points on E must be divisible by a sufficiently large prime n (typically n > 2160

and n > 4
√

q). The ECDSA private key d is a (pseudo)randomly generated in-

teger from 1 to n − 1, and public key Q is a multiply of private key and base

point, i.e., Q = dG. The per-message secret – integer k, where 0 < k < n –

must be also computed prior to the generation of each signature. Demands on

(pseudo)random data (without domain parameters) are thus at least 160 bits for

private key and 160 bits for each per-message secret.

The fundamental question dealing with the impact of length of cryptographic keys

to their security is often discussed. [Gir08] provides key length recommendations

of the European Network of Excellence for Cryptology (ECRYPT), the National

Institute of Standards and Technology (NIST), the Central Information Systems

Security Division (DCSSI) and the National Security Agency (NSA). The most

actual results from NIST are described in the table 2.1.

Lifetimes Bits of security AES key DSA/RSA key ECDSA key

Through 2010 80 – 1024 160

Through 2020 112 – 2048 224

128 128 3072 256

Beyond 2030 192 192 7680 384

256 256 15360 512

Table 2.1: Supported key lengths of commonly used cryptosystems.

Random or pseudorandom data can be used also to pad messages before their

encryption/sign (i.e., padding) or to combine with a password (i.e., salting) to

prevent dictionary attacks. In the next part we summarize demands of selected

schemes closely.

2This is theoretical upper bound – the values p and g are not statistically independent.

12

2.1 Requirements on random data

2.1.3.2 Padding schemes and salting

Many cryptographic primitives use padding to extend messages to the required

length of a block or integer multiple of a block. It can be used in symmetric

cryptography by various block ciphers or cryptographic hash functions and in

asymmetric cryptography by various encryption or digital signature schemes. The

only exceptions are symmetric stream ciphers that do not require padding at all,

because they do not need to divide the message into fixed-length blocks3.

Block ciphers (in the CBC mode) and cryptographic hash functions typically use

some form of structured deterministic padding appended (in)to the last block

of the message. The former can fill out last block, for example, by n bytes of

the value n (according to RFC 1423 [Bal93]); and the latter, for example, by

bit 1 followed by zero bits and by total length of the message – as in MD5

(for details see RFC 1321 [Riv92]). However, correct interpretation and removal

of the pad requires padding even if the original message filled up the last block

completely. In this case, a new block for padding must be always added; otherwise

the end of the input plaintext might be misinterpreted as padding. A poorly

designed padding scheme can also (surprisingly) result to various side-channel

attacks [Vau02, KR02].

The situation is more complicated in the case of asymmetric cryptosystems. Good

padding scheme must ensure that a message block does not fall into the range of

insecure plaintexts (for RSA, e.g., 0, 1, n− 1 and others in dependence on public

key) that can be easily decrypted (or even never encrypted). Moreover, a random-

ized padding should be used together with all deterministic cryptosystems (e.g.,

RSA) to effectively prevent dictionary attacks and ideally also chosen-ciphertext

attacks. In consequence of these requirements, padding schemes are closely re-

lated to a particular cryptosystem.

The most common padding schemes are optimal asymmetric encryption padding

(OAEP) [BR94], probabilistic signature scheme (PSS) [BR94], full-domain hash

(FDH) [Cor00], provably secure elliptic curve encryption scheme (PSEC) [OP00],

and their various improvements and modifications [Sho01]. OAEP and PSS are

randomized padding schemes whereas FDH is a deterministic one.

For a better illustration of demands on (pseudo)random data we focus only on

randomized padding schemes adapted for the RSA algorithm. Two such encryp-

3However, sometimes a padding of short messages is necessary to obscure the length of
communication (or even traffic analysis).

13

2.1 Requirements on random data

tion schemes (RSAES-OAEP and RSAES-PKCS1-v1 5) and signature schemes

(RSASSA-PSS and RSASSA-PKCS1-v1 5) are specified in PKCS#1 [RSA02].

RSAES-OAEP is parameterized by the choice of a mask generation function

(MGF) and hash function – both fixed for a given RSA key. The length of

this key (or more precisely modulus) is k bytes. The MGF input is a random

seed and a length of the required output. The length of the hash function out-

put is hLen bytes. Each message block – of length mLen bytes – is prior to

the encryption formatted to a data block (DB). This data block DB is filled by

k − mLen − 2hLen − 2 zero bytes and masked by XORing together with data

generated by MGF. The input to MGF is a random seed S of length hLen bytes.

Masked DB is then used as a seed to MGF and newly generated data is used for

masking the previous seed S. Both, masked seed S and masked DB are then used

to form encoded message suitable for RSA encryption.

RSAES-PKCS1-v1 5 forms this encoded message directly. Its structure is very

similar to DB, but instead of zero bytes uses between 8 and k −mLen− 3 bytes

of (pseudo)random data. RSASSA-PSS uses a randomized EMSA-PSS encoding

and requires typically hLen bytes of a (pseudo)random salt. However, random-

ness is not critical to its security and usage of fixed values or sequence numbers

results in a scheme similar to FDH. RSASSA-PKCS1-v1 5 uses deterministic

EMSA-PKCS1-v1 5 encoding without requirements on (pseudo)random data.

Salt is a (pseudo)random data used commonly in the password-based cryptogra-

phy. Instead of using a password directly as a low-entropy secret key, a combina-

tion of (typically non-secret) salt and secret password can be used to prevent brute

force attacks (including a dictionary attack). This combination is performed by

a key derivation function whose output is often stored as the encrypted version

of the password.

PKCS#5 [RSA99] defines two such key derivation functions – PBKDF1 and

PBDF2. The former is based on iterative hashing of password concatenated

with salt and requires 64 bits of salt. The latter is based on recursively called

pseudorandom function and requires only 8 bits of salt. UNIX function “crypt”

also uses up to 128 bits of salt (according to particular implementation).

Other password-based techniques typically require incorporation to the crypto-

graphic protocol design and can be thus very heterogeneous. They will be briefly

discussed below.

14

2.2 Generation of random data

2.1.3.3 Cryptographic protocols

Authentication protocols typically use nonces as random challenges to prevent

replay and reflection attacks. Key establishment protocols need random or pseu-

dorandom data to generate shared session keys. Authenticated key establishment

protocols mostly combine these techniques (and, of course, also their require-

ments).

Common authentication protocols (e.g., those based on ISO/IEC 9798 – described

in [MvOV01]) require at most four nonces (two generated by each side) per one

protocol run. These random challenges are typically 64 (or better 128) bits long.

Some of these protocols use timestamps or sequence numbers instead of nonces.

Key establishment protocols can be furthermore divided to key distribution and

key agreement protocols. In the first case, only one party of the protocol is

involved in the key generation and requirements on (pseudo)random data are thus

dependent on the type of the generated key. In the second case, both (or more)

parties are involved in the key generation process (issues regarding such multi-

party generation of random data are discussed in section 2.4). The overwhelming

majority of key agreement protocols are based on Diffie-Hellman exponential key

exchange [DH76] where the required modulus must have size at least 1024 bits

and the key(s) at least 160 bits [Gir08].

The problem of such protocols is that they are often vulnerable to the man-in-

the-middle attack, which can be prevented only by authenticated versions of a

protocol. However, cryptographic protocols involving authentication typically re-

quire pre-distribution of secret initial keying material. This drawback is removed

in password-based protocols, where the password can be used (in certain circum-

stances) instead of secret key without risk of off-line dictionary attacks. The most

famous of them are EKE [BM92], SPEKE [Jab96], and SRP [Wu97].

2.2 Generation of random data

After the analysis and description of requirements on random data we focus on

the methods and principles of their generation. It includes a basic summary of

techniques of generating truly random data and methods of their digital post-

processing by pseudorandom data generators or randomness extractors. This

section is based on [CKM+04, Krh06b].

15

2.2 Generation of random data

2.2.1 True randomness

A high-quality source of randomness must be used to design a high-quality true

random data generator for cryptographic purposes. In a typical environment of

general purpose computer systems, some good sources of randomness may exist –

almost any user input – the exact timing of keystrokes and the exact movements

of mouse are well known. Some other possible sources are for example micro-

phone (if unplugged then A/D convertor yields electronic noise [Ell95]), video

camera (focused ideally on some kind of chaotic source as lava lamp [Lav00]), or

fluctuations in hard disk access time [DIF94].

Other sources of randomness are process statistics, network statistics, I/O com-

pletion statistics, etc. However, they could be in a certain circumstances subjects

of influence (i.e., could be predictable) and are thus less appropriate for crypto-

graphic purposes. Almost worthless sources of randomness are then for example

system date and time or process runtime. A cautionary example is the true ran-

dom data generator in the Netscape implementation of secure sockets layer (SSL)

protocol that used as randomness sources only the time of day, the process ID,

and the parent process ID. Thus, an adversary who can estimate these three val-

ues can simply apply the well-known MD5 hash algorithm to compute the seed

for pseudorandom data generator [GW96].

Since the amount of entropy extracted from these (or similar) randomness sources

is variable (each single source is different), we should be very careful in estimating

how much entropy a particular piece of data contains. More detailed description

of the internal (computer) hardware randomness sources and requirements can

be found in [Ell95, ECS05].

It is generally recommended to use an additional hardware to yield random se-

quences with sufficient entropy. In modern computers it can be realized by built-in

true random data generator, such as the Intel solution [JK99], or specially de-

signed add-on card with true random data generator, such as Quantis quantum

random data generator [Qua04].

Beyond the difficulty of collecting truly random data from various randomness

sources, several problems related to their practical use were identified [FS03].

Firstly, it is the problem of insufficient amount of truly random data (some ap-

plications cannot wait), which can be effectively solved by using pseudorandom

data (see section 2.2.2). Secondly, it is the problem of breaking or influencing the

true random data generator, which can be partially solved by using digital post-

16

2.2 Generation of random data

processing (see section 2.2.2 and 2.2.3) and statistical testing (see section 2.3).

Thirdly, it is the problem of judging and estimating the entropy from a particular

physical event (no satisfactory solution exists).

As we describe below, all problems relevant to random sources and randomness

are more serious in considerably different mobile computing environments – this

area is currently most technically challenging. As far as we know, in the mo-

bile computing environments some kind of hardware true random data generator

located inside the integrated chip is typically used for generation of truly ran-

dom data. However, the access to this generator is typically restricted only to

applications that run on the subscriber identity module (SIM) card and user ap-

plications that run on the mobile phone often use weak sources of randomness,

e.g., previously mentioned date and time [SMH05, KMH07].

2.2.1.1 True random data generators in mobile environments

Unfortunately, very few papers related to true random data generators designed

for single chip devices (as smartcards) or other cryptographic hardware have been

published – design of these generators is mostly kept secret due to the classified

nature of most research in this field. Generally, four basic (noise-based) tech-

niques of generating truly random data in a single integrated chip can be distin-

guished [BBL04]: direct amplification of a noise source [BB99, HCD97], jittered

oscillator sampling [BGL+03, PC96, JK99], discrete-time chaotic maps [FCRV03,

SK01], or metastable circuits [EHK+03, KC02, WF01].

Even if the hardware true random data generator is well-designed, the produced

bit streams usually show a certain level of correlation due to physical limitations

(bandwidth limitation, fabrication tolerances, and temperature drifts), implemen-

tation issues, deterministic disturbances and external attacks aimed at manipu-

lation (see [BBL04]). A typical solution of these problems is to combine more

different generation methods (by applying the XOR operation) or to process the

sequences with a carefully designed decorrelating algorithm [PC00]. However, the

drawback of such post-processing lies in decreasing the generator speed.

For example, the true random data generator implemented in Infineon crypto-

graphic smartcards (sets 66 and 88) is quite likely based on two analogue oscilla-

tors. This type of true random data generator exploits the frequency instability

of free running oscillators – a well-known phenomenon used to generate truly

random data since 1955. The implementation published in [FMC84] is based on

17

2.2 Generation of random data

two oscillators (the first is generating low frequency and the second is generating

higher frequency) whose outputs are digitally mixed in such way that the low

frequency signal is used to clock the high frequency signal. To improve the statis-

tical characteristic of output (and thus decreasing the speed) a parity filter and

a scramble circuit can be used.

The main implementation problem of hardware true random data generators for

single chip devices is that the usually common sources of randomness are only

hardly accessible inside the digital integrated circuit. Common solutions of this

problem often include use of analogue randomness sources inside the digital cir-

cuit, even at the cost of high energy and silicon area consumption. Moreover,

these analogue circuits should be influenced by periodical signals in close prox-

imity to the generator. The low-cost and fully digital alternative to the true

random data generator based on metastability of bistable flip-flop is presented

in [EHK+03]. A new type of inverter-based ring oscillator with the ability to be

set in metastable mode is described in [VHKK08]

Gemplus developers designed the special integrated chip Randaes that contains

(among others) three experimental hardware true random data generators based

on direct amplification of a noise source and jittered oscillator sampling. All

of these generators are using the same adaptive digital decorrelator that im-

proves statistical properties of generated sequences and guarantees their correct-

ness without subsequent statistical analysis. The detailed description can be

found in [BTSL01].

Fully digital high-speed true random data generator based (again) on jittered

oscillator sampling and suitable for integration to the cryptographic smartcards

is proposed in [BGL+03]. An enhancement of the oscillator-based architecture,

where a compensation loop is added to maximize the statistical quality of the

output, can be found in [BBL04]. And finally, the design of stateless and testable

true random data generators is proposed in [BL05] – the stateless property allows

to shift the verification of a minimum entropy limit after the post-processing.

The classified design and implementation details of true random data genera-

tors for cryptographic hardware (as for example smartcards or hardware security

modules) could clearly result in simple design flaws. Black-box testing of an un-

known generator is a difficult task that can involve also external influencing of

such generator (e.g., by temperature or particle radiation). We deal with the

security and influencing of true random data generators in such devices exten-

sively in [CKM+04, CHK+05, BCK+06, KKK+07]. The generated sequences are

18

2.2 Generation of random data

a subject of statistical testing (for details see section 2.3) that provides the only

possibility how to asses the quality of an unknown generator.

The situation is more complicated for other mobile computing environments (es-

pecially mobile phones or personal digital assistants) that were not designed to

perform cryptographic operations and thus they have no dedicated true random

data generator. Identification of suitable sources of randomness in such mobile

computing environments, evaluation of their acquisition speed, statistical testing

of their quality, and basic estimation of the amount of available entropy in a given

time period is the primary content of chapter 3.

2.2.2 Pseudorandomness

The problem of insufficient amount of truly random data can be effectively solved

by using pseudorandom data (computationally indistinguishable from truly ran-

dom data [Gol90]). As mentioned before, the truly random data is used only

as a seed for deterministic pseudorandom data generator and after seeding, an

arbitrary amount of pseudorandom data is always available. Moreover, pseu-

dorandom data generators are typically better theoretically examined (similarly

as other algorithms) and pseudorandom data have better statistical properties

than truly random data (which may contain in certain cases bias and correla-

tion [Dav00]). From the qualitative point of view, pseudorandom data generators

allow us to spread such simple statistical defects into a longer sequence of bits.

The pseudorandom data generator is in fact a deterministic finite state machine,

which implies that it is at any point of time in a certain internal state. This

generator state is secret (because the generator output must be unpredictable)

and during the generating of pseudorandom data is repeatedly updated (because

generator must produce different outputs). Of course, a careful designer of pseu-

dorandom data generators should expect that a secret state compromise may

occur (e.g., due to the error in implementation or low quality seed as in [GW96]).

Recovering a pseudorandom data generator with a compromised state is a difficult

task which is typically based on mixing small amounts of entropy to the secret

state. However, if the amount of entropy between two requests for pseudorandom

data is limited (e.g., to 30 bits), the attacker can simply make frequent requests

for pseudorandom data and try all 230 possibilities for the inputs to obtain secret

state. The best solution how to prevent this problem is to pool (i.e., collect)

incoming entropy to sufficient amount, and then to mix it to the secret state. We

19

2.2 Generation of random data

call the generators that allow to increase the inner state entropy by periodical

reseeding and/or continual accumulation (pooling) of truly random data as hybrid

pseudorandom data generators. More detailed discussion that covers design and

analysis of pseudorandom data generators can be found in [KSF99, FS03], and

many practical problems have been addressed also in [Gut98, Gut04].

Currently the most sophisticated pseudorandom data generators are Yarrow-160

[KSF99] and its successors Tiny [VM01] and Fortuna [FS03] – all designed with

respect to known cryptanalytical attacks [KSWH98]. The usability of these (and

also many other existing generators) in various mobile computing environments is

questionable and strongly dependent on particular types of mobile devices. Aside

from the elementary difficulty to gather truly random data in mobile computing

environments, these mobile devices are typically very slow and performing crypto-

graphic functions (which are used in almost every pseudorandom data generator)

is very time and/or energy consuming (even if these functions are hardware ac-

celerated, e.g., in cryptographic smartcards). Note that the card (accelerator)

owner is not necessarily the device owner/user.

2.2.2.1 Cryptographic pseudorandom data generators

Basic categorization and description of pseudorandom data generators can be

found in [MvOV01]. The most commonly used pseudorandom data generators

(primarily for simulation purposes and for implementation of randomized algo-

rithms) include the linear congruential generator (LCG). However, the output of

LCG is predictable and thus for cryptographic purposes is this generator com-

pletely inappropriate [Boy89, Kra90].

The next and probably simplest construction of pseudorandom data generator

is based on linear feedback shift register (LFSR). This class of generators can

be very effectively implemented in hardware, is capable to generate very long

pseudorandom sequences with a high-quality statistical distribution, and has very

well examined properties. Since the generator itself is not too secure, it is typically

used as a basic block of more complicated generators. Advanced designs of such

generators can be based on a non-linear combination of several LFSRs, or on

using one (or several) LFSR to clock another (or combination of more) LFSR.

Detailed description of LFSRs can be found in [Neu04, Zen04].

A completely different class of generators is created by cryptographically secure

pseudorandom data generators that are based on hard problems of number and

20

2.2 Generation of random data

complexity theory. Modular arithmetic (that is typically used) makes these gen-

erators very slow, but this can be partially addressed by a sufficient hardware

acceleration.

Three generators from this category are described in [MvOV01]: RSA, Micali-

Schnorr, and Blum Blum Shub (BBS) pseudorandom data generators. The first

two are based on the well-known factorization problem (similarly as the RSA cryp-

tosystem) and the last generator is based on the quadratic residuosity problem. A

faster version of BBS generator utilizes Montgomery multiplication (hardware ac-

celerated in many cryptographic smartcards) to improve efficiency (see [PKS00]).

The generator based on the discrete logarithm problem with short/small expo-

nents belongs to the fastest generators in this class. This generator repeatedly

performs the exponentiation of the basis to a short exponent – after each iteration

several bits are produced as a output and the remaining bits are used as expo-

nent in the next iteration. Detailed description can be found in [Gen00]. A bit

slower generator proposed in [DRV02], that is based on the factorization problem,

works similarly. A general technique that can be used to speed up pseudorandom

generators based on iterating one-way permutations is also presented.

Most commonly used pseudorandom data generators are based on typical crypto-

graphic primitives. Well-known (and for long time the only standardized) genera-

tors are ANSI X9.17/X9.31 [ANS85] and FIPS 186 [NIS94b]. ANSI X9.17/X9.31

generator is based on using two- or three-key 3DES, and the generators described

in FIPS 186 are based on single DES and/or SHA-1. In addition to that, four

new pseudorandom data generators were recently standardized in [BK07] but

the security of the generator based on elliptic curves (Dual EC DRBG) is now

disputed [SF07].

Almost all pseudorandom data generators described above have the property that

they will never recover from a state compromise (or they recover only after a very

long time). This problem is solved in well-designed Yarrow-160 pseudorandom

data generator [KSF99] that is also immune to all known attacks (especially to

those described in [KSWH98]). The original design is based on three key 3DES

and on SHA-1, but in principle AES can be used together with SHA-2. The

successors of Yarrow-160 are Tiny [VM01] and Fortuna [FS03], both encrypting

a counter using AES to produce successive blocks of output.

Quite novel design of the Cilia generator [Ng05] uses cryptographic hash functions

to update its secret state and double encryption to generate pseudorandom data.

The speed of the Cilia is very similar to the speed of double encryption, and

21

2.2 Generation of random data

like Yarrow-160 and its successors also Cilia is designed with respect to known

cryptanalytic attacks on pseudorandom data generators.

Many commonly used cryptographic libraries (as for example RSAREF, Cryp-

toLib, or OpenSSL) and applications (e.g., GnuPg, Putty, TrueCrypt) uses its

own design and implementation of generators that are often inspired by [Gut98,

Gut04]. We analyzed source code of several such generators and our results

are described in [KKL+08]. We found that a lot of them is non-standardized and

without any appropriate documentation and rigorous security analysis (especially

mechanism of pooling and extracting randomness from the pool). There are also

often a big differences between MS Windows and Linux versions of the same gen-

erator – randomness sources, lock of pool in memory, access to the filesystem,

etc. The implementation of a seed file is not transparent or is even missing in

some cases. The multithreading support of some pseudorandom data generator

implementations is another issue.

2.2.2.2 Cryptanalytical attacks on pseudorandom data generators

Only very few papers that deal solely with cryptanalysis of pseudorandom data

generators were published. An analysis of pseudorandom data generators from

the attacker perspective is described in [KSWH98]. Requirements for pseudo-

random data generators are presented along with a basic functional model of

such generators, and the list of possible attacks against them. Special attention

is given to examining the attacker methods used to cause a given generator to

fail, or methods abusing some generator outputs (such as initialization vectors) to

guess other generator outputs (such as session keys). The attacks are divided into

three categories: cryptanalytic attacks, input-based attacks, and state compro-

mise extension attacks. Pseudorandom data generators ANSI X9.17, FIPS 186,

RSAREF 2.0, and CryptoLib are analyzed with respect to these attacks. Coun-

termeasures against the discovered attacks are also provided in [KSWH98].

Careful security analysis of ANSI X9.17 and FIPS 186 pseudorandom data gen-

erators is described in [DHY02], together with examining the ways in which these

generators can be made more efficient and more secure. Special attention is given

to the inputs/outputs, secret state, and used cryptographic functions. Reverse-

engineering and analysis of MS Windows 2000 pseudorandom data generator can

be found in [DGP07] whereas a description and analysis of open-source Linux

pseudorandom data generator is discussed in [ZG06].

22

2.2 Generation of random data

A survey and analysis of existing attacks on LFSR-based pseudorandom data

generators can be found in [Zen04]. However, the goal this survey paper is design

and deployment of pseudorandom data generators and used cryptanalysis has not

a destructive, but a constructive character – only by improving the understanding

of possible problems, it is possible to propose new design criteria for cryptographic

systems. Reviewed cryptanalytical attacks are divided to generic and specific

attacks. The former are applicable even if the attacker does not know the design

and the structure of the generator. In the latter case, the attacker must know the

internal structure of the generator. Deployment of pseudorandom data generator

in stream ciphers is also discussed.

2.2.2.3 Pseudorandom data generators in mobile environments

Hardware or software implementation and integration of the pseudorandom data

generator into programmable cryptographic smartcards or other mobile devices is

often straightforward. The most important properties of pseudorandom data gen-

erators for mobile devices are besides security (in the meaning of unpredictability)

also speed, low energy requirements (in the case of both software and hardware

implementation), and low memory requirements (in the case of software imple-

mentation).

Authors of [ARV95] present a pseudorandom data generator based on single DES.

More efficient implementation of this generator (described in [ARV99]) requires

only 3 KB of memory (instead 16–32 KB as required originally) and is thus

more suitable for cryptographic smartcards or other memory bounded single chip

devices.

We dealt with secure integration of ANSI X9.17/X9.31 and FIPS 186 pseudoran-

dom data generators into cryptographic smartcards (more precisely JavaCards)

in [CHK+05]. The performance of software implementations of such generators is

in this computation environment significantly lower than performance of built-in

true random data generators. In 2005, our fastest JavaCard GemXpresso Lite-

Generic was able generate 7973 KB of truly random data in one hour, 333 KB of

pseudorandom data generated by ANSI X9.17/X9.31 generator in one hour, and

only 49 KB of pseudorandom data generated by FIPS 186 generator in one hour.

The situation is much better in other mobile computing environments (especially

mobile phones or personal digital assistants) that have significantly higher per-

formance. In contrary to the smartcards, such mobile devices typically do not

23

2.2 Generation of random data

provide secure computing environment and this implies new security issues to be

addressed. Security analysis and modification of ANSI X9.17/X9.31 and Fortuna

pseudorandom data generators are discussed in chapter 4.2 and secure integration

into mobile devices is the primary content of chapter 5 of this thesis.

2.2.3 Randomness extractors

Randomness extractors (sometimes called entropy extractors) are an interesting

alternative to pseudorandom data generators. Extractors are capable to produce

(almost) uniformly distributed output from arbitrary distributions with suffi-

cient randomness (min-entropy). The main difference between these two types

of constructions lies in the fact that pseudorandom data generators rely on un-

proven assumptions whereas randomness extractors typically provide some prov-

able guarantees of its output (for more details see [Sha02]).

We can distinguish deterministic or non-deterministic randomness extractors4.

The former work only on limited classes of randomness sources (with fixed cu-

mulative probability of each such set of inputs) while the latter do not have

this restriction. Non-deterministic extractors also need an additional truly ran-

dom input. The main limitation of both classes of randomness extractors is

that probability distributions of post-processed randomness sources must be pre-

cisely defined. Otherwise, it is not possible to construct appropriate and well

working randomness extractor (explicit extractors constructions, based on re-

sults of [Tre99], are discussed in [Sha02]). In addition to that, the usage of an

randomness extractor makes the generation of truly random data even slower –

i.e., the length of output sequence is equal or (typically) less than the length of

input (biased) random data.

Deterministic randomness extractors are sometimes used before pseudorandom

data generators – especially in single chip devices like smartcards. In this case

the extractor is often implemented as a part of the hardware truly random data

generator and applied to the data sampled directly from the randomness source.

This is reasonable for a device of the same family/type with the same sources of

randomness. Such simple deterministic extractors are capable to reduce statisti-

cal dependencies that are typically inducted by hardware generators during the

sampling of the analogue randomness source [Dav00, JK99].

4Formally, mathematical functions that transform biased input to output with (almost)
uniform probability distribution with sufficient min-entropy.

24

2.3 Statistical testing

A good example of deterministic randomness extractor is von Neumann corrector

(described, e.g., in [Neu51] or [JK99]) that simply converts pairs of bits into

output bits by converting the bit pair 01 into an output 1, converting 10 into an

output 0, and outputting nothing for 00 or 11. The consequence of von Neumann

corrector application is a variable bitrate of the generator.

The non-deterministic randomness extractor is function that in contrary to the

deterministic extractor makes use of an additional auxiliary uniformly distributed

random input. This means that such data must be pre-generated, and it can be,

e.g., stored in the memory and refreshed via network after a fixed number of

extractor iterations (meanwhile the output of the extractor is used). This is

an obvious drawback, but such an extractor can be used to post-process a wide

range of input probability distributions, namely any probability distribution with

sufficiently high (pre-chosen) min-entropy [Sha02].

Issues related to integration of non-deterministic randomness extractor into mo-

bile devices including several practical experiments and statistical tests are dis-

cussed in section 4.1.2.

2.3 Statistical testing

Statistical tests are used to verify that produced (pseudo)random data have good

statistical properties. This can be done manually (for example by someone in-

terested) when a new (but sometimes insufficiently documented) generator is

published, and also automatically to avoid breaking or influencing the gener-

ator during its life cycle. Statistical test suites (sometimes called test batter-

ies) such as NIST [NIS00] or DIEHARD [Mar95] are typically used for manual

testing. Elementary tests integrated into a hardware device are used for auto-

matic testing that can be performed occasionally (after every restart of the de-

vice [NIS94a, NIS01]) or continuously (during the process of generating random

data [Sch01]).

Standard FIPS 140-1/2 [NIS94a, NIS01] recommends the execution of statistical

tests after every restart of a device or card, and (pseudo)random data can be

used only if all implemented tests are successfully passed. In contrary to hard-

ware security modules only few cryptographic smartcards perform these tests.

However, the vendors of such devices typically implement digital post-processing

of all data acquired from the randomness source before sending them outside the

25

2.3 Statistical testing

device. All online tests (and even offline tests performed, e.g., by official testing

laboratories) are performed with post-processed data and this “cheating” often

devaluates the test results. Due to this fact a new FIPS 140-3 [NIS07] standard

(still under development) requires continuous testing of both generator and used

entropy source involving min-entropy assessment on each output of the entropy

source.

According to [Sot00], there exist five basic sources dealing with statistical testing

of randomness – the well-known books [MvOV01, Knu97] and the test batteries

DIEHARD [Mar95], Crypt-XS [Cry06] and NIST [NIS00]. Various statistical tests

and sometimes also the basic test methodology are described (or implemented).

However, some tests are obsolete (e.g., those described in [Knu97]), because even

obviously weak generators pass all these tests (as claimed in [HSS04]).

On the contrary, the DIEHARD test suite was for a very long time considered

as the most complete, but in [MT02] a new suite of three tests was designed,

which is claimed to be better than DIEHARD. If some generator passes these

three tests (implemented in [Cen02]) then it also (with a very high probability)

passes all DIEHARD tests. Few mistakes in the test settings were found also in

the NIST statistical test suite – these are described together with the proposed

corrections in [SJUH04]. In [HSS04] new SAC (strict avalanche criterion) test

is also described, which is effectively capable to detect statistical anomalies of

output sequences.

Recent development in the field of statistical testing resulted in two novel sta-

tistical test batteries. The first is RaBiGeTe [Pir05] that contains 22 statistical

tests including several older tests from DIEHARD, NIST, and FIPS 140-2. The

second is TESTU01 that comprises almost all existing statistical tests – the test

suite is described together with a survey and a classification of statistical tests

for RNGs in [LS07].

An ongoing project pLab [Hel06] is focusing on uniform pseudorandom data gen-

erators for stochastic simulation including their statistical testing of randomness.

However, pseudorandom data generators for cryptographic purposes are not stud-

ied (yet) – the only exception is an analysis indicating that AES (e.g., in OFB or

counter mode) is suitable for pseudorandom data generation [HW03].

Several important practical problems related to the process of statistical testing

were identified [NIS00]. Firstly, no clear evidence about the independence of

particular tests was given, thus nobody knows how much of existing tests should

be used. Secondly, no analysis regarding the necessary length of tested sequence

26

2.3 Statistical testing

(and number of their subsequences) exists. Thirdly, no analysis regarding the

number of repetition of the test procedure (if a clear conclusion cannot be done)

exists.

2.3.1 Performed experiments

We have dealt with random and pseudorandom data generators of selected crypto-

graphic smartcards and hardware security modules (HSMs) during our smartcard

security research for the Czech National Security Authority. Due to specific con-

ditions of these research grants we are allowed to describe performed experiments

only at the conceptual level and the details (including experiment settings and

results) cannot be included in this thesis.

The state of the current research in the field of hardware true random data gen-

erators for single chip devices can be found in [CKM+04]. We performed several

practical experiments focused on black-box testing of true random data genera-

tors in Infineon chips and Eracom HSMs. Statistical tests of sequences generated

by devices in standard operating environment (normal temperature, etc.) are

described in [CHK+05, BCK+06]. Several 50 MB sequences and in the case of

HSMs also 500 MB sequences of truly random data were always generated and

statistically tested at the confidence level 0.01 (longer sequences also at confidence

level 0.001). Our testing utilized both NIST and DIEHARD test batteries and

some tests from TESTU01 and RaBiGeTe test batteries. Note that we adopted

and integrated into DIEHARD test battery the mechanism of empirical results

interpretation from the NIST test battery (i.e., the examination of the proportion

of sequences that pass a statistical test and testing the uniformity of resulting

p-values).

In [KKK+07] we describe our experiments focused on influencing of chips in-

tegrated in cryptographic smartcards. Several attack scenarios with the goal

to disable/influence a true random data generator or to change the content of

SRAM or EEPROM memory were proposed and also realized. The methods of

influencing the chip involve the change of temperature (freezing by a liquid nitro-

gen – figure 2.1) and particle radiation (emitting alpha and beta particles from

open/unsealed radiation source – figure 2.2). The sequences of truly random

data generated during influencing of chip were a subject of our statistical testing.

Moreover, we verified the integrity of data in allocated memory arrays to detect

possible fault injection.

27

2.4 Distributed generation

Figure 2.1: Freezing a smartcard chip by
liquid nitrogen.

Figure 2.2: Unsealed sources emitting al-
pha and beta particles.

During the experiments with liquid nitrogen we also practically verified that

some chips have a protection against such influencing – a sensor that is able

to temporally stop the chip functionality when the temperature reaches a specific

threshold.

As we mentioned above, the secure integration of ANSI X9.17/X9.31 and FIPS 186

pseudorandom data generators into JavaCards is described in [CHK+05]. Several

sequences generated by those pseudorandom data generators were also a subject

of our statistical testing.

2.4 Distributed generation

This section is based on [KSM08] and discusses basic security aspects of dis-

tributed random data generation in potentially hostile environments. The goal

is to outline and discuss a distributed approach, which comes to question in the

case of attacker being able to target one or several mobile devices. We define

communication paths and attacker models instead of providing technical details

of local generation that are discussed in section 2.2. This part also includes a

discussion of several issues of such distributed approach.

2.4.1 Motivation

Since mobile devices typically use a wireless channel for communication, the se-

curity of transmitted data plays a very important role for many applications –

28

2.4 Distributed generation

consider, e.g., mobile banking. High-quality and unpredictable cryptographic

keys, padding values, or per-message secrets are critical to securing communica-

tion by modern cryptographic techniques. Their generation thus requires a good

generator of truly random and pseudorandom data.

The security of local generation of truly random (and also pseudorandom) data

relies primarily on the quality of used sources of randomness. The mobile phones

typically provide some good sources of randomness – e.g., noise present in audio

and video input – that we analyze in [KŠM07] and describe also in chapter 3.

However, the possibility to influence and predict such sources of randomness

implies a possibility to predict generated data. Modern hybrid pseudorandom data

generators periodically use truly random data also during the whole generation

process – this improves the generator security by increasing resistance against

state compromise attacks at the expense of higher demands on truly random

data.

Since mobile devices or their sources of randomness can be under attack – con-

sider, e.g., malware or influencing video input by changing ambient light intensity

– we can involve several cooperating mobile devices in the generation process.

These devices can perform generation at the beginning of (or during ongoing)

communication with other devices. This distributed approach can support better

random or pseudorandom data generation in case of attackers being able to target

only some (but not all) of the mobile devices.

Local generation, from the attacker point of view, is obviously strongly dependent

on the attacker possibilities to control a mobile device and to influence or predict

used sources of randomness. The situation is quite different when we consider

distributed random data generation. In this case, the attacker possibilities depend

also on the communication model and methods for secure gathering and post-

processing remotely generated data.

The following parts are organized as follows: In the next section, we define at-

tacker models for local random data generation. Section 2.4.3 focuses on def-

inition of basic communication paths and describes several problems that we

encountered. Section 2.4.4 sketches possible mechanisms for gathering random

data in hostile environments and discusses problems that should be considered.

29

2.4 Distributed generation

2.4.2 Attacker model for standalone mobile devices

Recall that random data for cryptography purposes must have good statistical

properties and must be unpredictable. These two conditions are jointly satisfied

only if the truly random data is generated with utilization of a good physical

source of randomness and post-processed by a cryptographic pseudorandom data

generator.

Such sources can be under attack (i.e., influenced by an attacker) and this can

result in non-uniform random data or in completely predictable (or even worse

constant) data that is not random. Utilizing several sources of randomness and

combining their outputs is a common practice to avoid a prediction of a genera-

tor output in the case when the attacker influences some (but not all) sources of

randomness. Better statistical quality and faster generation is accomplished by

utilizing digital post-processing, e.g., by cryptographic pseudorandom data gen-

erator. Hybrid generators then also allow to increase the inner state entropy by

periodical reseeding and continual accumulation (pooling) of truly random data.

We often assume that the attacker has no access to the generating device – in this

case the post-processing can hide many statistical defects or even influence the

source of randomness that results in generation of constant data without entropy.

The situation is more difficult if an attacker somehow obtains an inner state of

pseudorandom data generator – e.g., due a design flaw, implementation error,

or by readout of the memory content. In this case, the attacker can also easily

predict all pseudorandom data before next reseeding. Potential simultaneous

influence of the randomness source then allows to predict pseudorandom outputs

even after reseeding.

Currently, mobile phones that want to access European global system for mo-

bile communications (GSM) network are typically equipped by the subscriber

identity module (SIM). It is a smartcard that provides secure storage, secure

computational environment, and it also contains physical truly random generator

– typically based on sampling of several free running oscillators. However, SIM

cards are under control of the mobile network operator and there are very limited

possibilities of their usage by common users – often restricted only to the secure

storage of contacts or short text messages.

The future technical progress may result in mobile phones with a second smart-

card that will be under full user control. In this case, all cryptographical opera-

tions, including generation of random data, could be performed inside the card

30

2.4 Distributed generation

similarly as in classical SIM Toolkit applications, and the external sources of

randomness can only serve as an additional (but non-reliable) input.

The main problem of mobile devices is that their computational environment

is not secure. Such devices can contain malware (malicious software as viruses,

Trojan horses, etc.) and all generated random data could be easily replaced

by non-random data before they reach the appropriate application (located in

mobile device or inside SIM card). One possibility to prevent unwanted malicious

software or even firmware installation lies in the introduction of a trusted platform

module (TPM).

All this implies that the real attacker model for standalone mobile devices is

strongly dependent on the attacker possibilities to control the device or used

sources of randomness. We define four classes of attacker for standalone mobile

devices:

Type I (weak outsider) – the attacker had temporary read access to the mo-

bile device and knows the internal state of device – including pool – before

beginning of the generation. He has no possibility to access the mobile de-

vice again, but he has access to the information about the environment of

the victim (he can stay in the proximity of victim, he can record audio/video

of the victim to the camera, etc.) and he has also a limited capability to in-

fluence this environment (e.g., disturbing the signal, overexposure the lens

of the digital camera, etc.).

Type II (strong outsider) – the attacker has in addition to the weak outsider

almost all information about victim’s environment and he is capable of

fully influencing this environment. The term “almost” reflects uncertainty

arising from interactions between user, device, and environment (several

physical effects, errors in measurement, etc.).

Type III (weak insider) – extends the capabilities of previous strong outsider

by adding a full control over the mobile network operator SIM card with

the possibility of remote reading from or writing to the SIM card.

Type IV (strong insider) – in addition to previous scenario, the attacker has

a temporal write access to the mobile device. Therefore, he can also com-

promise the firmware/software of the mobile phone (e.g., by rewriting flash,

installing malware) and hence he has a full control over the phone (includ-

ing interprocess communication) with a possibility of remote access to the

mobile device again.

31

2.4 Distributed generation

Clearly, a digital post-processing by cryptographic pseudorandom data generator

causes that an attacker always needs to know the device internal state. However,

as we discussed in the introduction, a careful user should always expect that

sources of randomness in a standalone generating devices can be under attack.

A successful attack (performed by weak or strong outsider) and the knowledge of

internal state always results in a predictable data output.

It is extremely difficult to guarantee that the external source of randomness is

not under an ongoing attack. Several online statistical tests can be performed,

but they can probabilistically detect only a basic (and limited) set of statistical

defects. An additional and more convenient way how to secure a pseudorandom

output is to prevent attacker from copying the internal state by utilizing secure

storage inside the SIM card. This works only until the mobile network operator

starts to act as/with an attacker, being capable to read/write content of SIM

card that is in the operator’s ownership.

Preventing an attacker with full access to the device is the most difficult task

that can be meaningfully accomplished only by introducing a trusted platform

module (TPM). Since we want to keep our discussions realistic, we expect a type

four attacker being able to target several (but not all) remote devices. However,

we assume the local devices (including SIM card) always behave correctly. This

guarantees (in terms of probability) that a trustworthy local device obtains at

least some random data from remote parties and thus is resistant against the first

three types of attackers. The clarification of this strict assumption is described

below.

2.4.3 Communication model

Since we are interested in random data generation in mobile environments, we

will distinguish between a consuming mobile device that requests random data

and a generating mobile device that (e.g., upon a request) generates random data.

Sometimes we consider a generation computer located in the Internet or GSM

network that (e.g., upon a request) also generates random data.

In the basic scenario we expect that the owner of a trustworthy consuming de-

vice always selects trusted remote users to generate random data. A particular

generating device replies with a message that includes requested random data

and declaration about the amount of entropy in this data. Based on the user

reputation the consuming device makes a decision about the amount of claimed

32

2.4 Distributed generation

entropy of the obtained random data. This reputation can be predefined by the

consuming device owner and we call it static reputation.

Unfortunately, there is no way how to assess the statistical quality of the obtained

sample of random data and how to validate the amount of entropy in such data.

Even a device of a user with a good reputation could become the victim of the

malicious code (viruses, Trojan horse, etc.) that can produce only pseudorandom

data with no entropy. This prevents also using all dynamic reputation systems

that automatically recalculate reputation. The only meaningful solution of this

problem is using random data from several devices where at least one device

is expected to be honest and the communication between these devices is well

secured.

In this section we focus on the communication issues and we restrict ourselves to

the situation when both communicating devices behave correctly.

2.4.3.1 Communication paths

For a precise definition of attacker models in the distributed environment, it is

essential to know the communication model that includes network topology, used

security mechanisms and their fundamental vulnerabilities. All these communi-

cation properties are briefly discussed in appendix A of [KSM08] and a detailed

description of these issues can be found, e.g., in [EVB01] or [Xia07].

We define several path types that are used in definitions of attacker models. The

device at the beginning of path is always a consuming mobile device; the device

at the end of the path is the generating mobile device or computer. The path

can also lead through the Internet and the first computer that provides Internet

connection to that devices on end-points of the path is denoted as a gateway.

Type 1 – the simplest local path can be established between two mobile devices

or a between mobile device and a computer. These paths can be point-

to-point (via, e.g., IR or USB interface) or point-to-multipoint (via, e.g.,

Bluetooth or WiFi). Paths between two mobile devices can lead over one

or several intermediate devices. For example, in the case of Bluetooth the

path can lead over one superior/master device. Another example is a large

WiFi network where two mobile devices can be connected to different access

points. Therefore, communication path between these mobile devices can

lead through several access points.

33

2.4 Distributed generation

Type 2 – the GSM communication path established between two mobile de-

vices can lead over several GSM networks. These paths can be created

by standard GSM technologies (e.g., SMS or MMS). Moreover, the mobile

network operator has a capability to improve his network by additional

special GSM services that can extend network functionality (e.g., servers

that provide random data on demand). In this case the communication is

established between mobile device and such GSM service server.

Type 3 – the mobile device can communicate with other mobile devices or com-

puters through the Internet. The access to the Internet can be established

through a gateway, which could be a personal computer or a wireless access

point. The path between the consuming mobile device and the gateway

(and between the gateway and the generating mobile device) is covered by

the simplest paths of type 1. Internet or similar packet oriented network

(based on TCP/IP, X.25, etc.) is either used between gateways or between

a gateway and the generation computer.

Type 4 – hybrid paths through the Internet where one or two gateways on the

path are in fact GPRS support nodes of different GSM networks. The

path between the consuming mobile device and the gateway (and between

the gateway and the generating mobile device) is covered by the paths of

type 1 and type 2. For example, the consumer mobile device can request

random data from the generating computer or the generating mobile device

connected to the Internet through the gateway – another computer or access

point. Moreover, the gateway for the generating mobile device can also be

a GPRS support node.

Note that leased lines can be used to interconnect different GSM networks. The

description of mechanisms that secure data flow in such lines is not publicly

available. The lack of this information implies that the leased lines should not

be trusted even when the mobile network operator (or its employees) behaves

honestly.

2.4.3.2 Attacker model for distributed systems

Since the attacker is able to eavesdrop some communication links, they have to be

secured in terms of authenticity, confidentiality and integrity. In order to design

secure systems, which support distributed random data generation, we should

take into consideration the communication paths and the corresponding attacker

34

2.4 Distributed generation

models. We defined four different attacker types according to the communication

paths described above – for details see appendix B of [KSM08]. However, as we

are not able to detect potential modification or observation of the transferred

data, we must assume that each particular communication link in the path must

be secured. This can be done either by the owner of the infrastructure (e.g.,

GSM network operator) or by the end-point mobile device (by means of end-to-

end security). This implies that our attacker models degrade and all types of

attackers can be prevented by securing the whole communication path.

In the next section, we consider cryptographic protocols that allow two or more

distributed parties to establish a shared secret key and contribute to the process

of its generation. The authenticated protocols are designed to work in hostile

environments and to provide end-to-end security, and can be used to prevent

attacker types I–III.

2.4.4 Gathering of random data in hostile environments

As was mentioned above, the local random data generation can be performed in

a hostile environment and the mobile devices and their sources of randomness

can be under ongoing attacks. Therefore, we suggest to involve more parties

(mobile devices) in the process of random data generation. Such mobile devices

can be considered as independent (remote) sources of randomness5. In general,

the more generating mobile devices are used, the less probability to attack all of

them is – due to usage of different devices, environment, and to certain point also

a communication paths.

The consuming device can obtain random data from generating devices either

per explicit request or as a secondary product of ongoing communication (e.g.,

audio/video conference). In the former case the user sends the request for random

data to one or several generating mobile devices. In the latter case the random

data is transferred during communication. This functionality can be supported

either by a mobile network operator service or by a third party application, which

in turn uses existing network services (e.g., SMS, MMS).

In the distributed environment we can also distinguish between two methods of

obtaining the random data per explicit request – direct or indirect. In both

methods the consuming mobile device requests another device to provide random

data. Direct method means that the response is sent directly back to the con-

5The remote mobile device can provide both raw and post-processed random data.

35

2.4 Distributed generation

suming device. Indirect method, on the other hand, means that the response is

sent through other mobile devices (can be predefined by user), which add their

own random data. The last device sends the accumulated random data back to

the consuming device. It is an open question whether such method brings some

significant advantages (e.g., for ad-hoc networks) and so would be more effective

than the direct one.

Technology improvement (e.g, 3G/4G networks) introduces the possibility of au-

dio/video conferences. To assure confidentiality in such conferences, the partici-

pants typically have to agree upon a shared secret key, which is used to encrypt

the ongoing communication. This scenario requires all participants to contribute

the random data to the shared key. This fact benefits particularly the consuming

devices which are locally influenced by the attacker (type I or II). The shared key

could be treated as a random data generated in the distribution manner.

The disadvantage of this method is that all participants share the same random

data that are predictable (with no entropy) for an adversary inside the group.

Therefore, we propose to keep a distinct pool of random data for each commu-

nication group. The random data stored in a pool associated with a particular

group can be used to secure communication only within this group.

2.4.4.1 Distributed contribution protocols

In this section, we discuss (multi-party) cryptographic protocols that can be used

for distributed random data generation. These protocols enable each user to

accumulate random data from multiple participants – therefore, we call them

distributed contribution protocols.

We consider the group key agreement (GKA) protocols as possible candidates

that can be utilized for distributed generation of random data. A brief descrip-

tion of several basic GKA protocols can be found in [BM03]. These protocols

are typically based on the Diffie-Hellman key establishment and work in several

rounds. Each participant of protocol generates new (or modifies obtained) Diffie-

Hellman value(s) and sends it/them back to the initiator (or to the next member)

of the group. The detailed messaging is dependent on the particular logical topol-

ogy of a protocol, however the modification of exchanged values always involves

randomly generated data.

These protocols provide either no authentication or many-to-many/many-to-one

authentication (typically based on secret key/password of the remote party). The

36

2.4 Distributed generation

many-to-one authentication scheme assumes that all participants authenticate

themselves only to one participant (e.g., initiator of the communication) and they

have no direct assurance who are the group members. The non-authenticated

protocol could be easily transformed to the authenticated one – for example, by

the means of digital signatures.

More sophisticated protocol versions are designed to fit a concrete physical topol-

ogy (e.g., GSM network), but the advantage here is only in more effective mes-

saging or in offloading of complex computations from resources-restricted mo-

bile devices [BCEP04]. Another class – fault-tolerant GKAs – allows to detect

parties that do not follow the protocol [Tse05]. However, since the underlying

Diffie-Hellman problem is considered as hard, all exchanged values can be always

observed by an attacker.

Note that classical authentication protocols often rely on shared secrets that

are typically stored inside the device and this fact implies only the device au-

thentication. More sophisticated password-based authentication protocols (e.g.,

password-based GKA) provide better user authentication, but often also require

more random data. Several innovative methods perform user post-authentication

by audio-visual means, which requires even less random data than classical au-

thentication. This kind of authentication relies on the ability to recognize the user

face/voice and other behavioral characteristics [LP08]. Another scenario utilizes

visual checking of exchanged Diffie-Hellman values that can be transformed to

usual language words for easier verification [ČH04].

2.4.4.2 Analogy with the chicken-and-egg problem

The distributed approach to random data generation has one significant draw-

back. As we mentioned above, the transfer of random data must be secured.

However, common mechanisms for ensuring authenticity, confidentiality and in-

tegrity (but also, e.g., anonymity or information hiding) are based on classical

cryptography, which in turn is dependent on random data as secret keys, padding

values, etc. This implies a classical chicken-and-egg problem and breaking this

circle seems to be impossible – from both information-theoretic and complexity-

theoretic points of view.

The main reason is that encryption of high-entropy data behaves similarly as

a pseudorandom data generator. The maximal entropy that can be obtained

from encrypted data is limited by the entropy of the secret encryption key. We

37

2.4 Distributed generation

cannot count on more entropy than the entropy of the encryption key, because

the adversary has a possibility to attack the secret key. The solution could be

reestablishing a shared key for each request for random data, however, this process

requires that all involved parties have a reliable source of random data.

Despite this drawback, we propose to use both raw and post-processed random

data obtained from remote parties as an independent additional input for next

digital post-processing – e.g, by a hybrid pseudorandom data generator or a non-

deterministic randomness extractor. Such secure nondeterministic transformation

is the only way how to solve the problem that the whole group shares the same

random data, usage of which then has to be restricted to this group. We are

aware that both techniques require some amount of truly random data and the

entropy outside the group will be restricted to the entropy of that truly random

data. The main benefit here is that we obtain more secure and reliable method of

generation (regardless of entropy) in the presence of an attacker of types I or II.

As we have mentioned, the direct usage of random data obtained from remote

parties can be done only for securing communication within a particular group.

Due to the entropy issues, we recommend its usage only for short-term encryption

keys or other secrets that are intended for applications where the data to be

protected are sensitive only for a limited time period – e.g., daily stock price

forecasting or common day-to-day audio/video conferences. Other direct usage

without digital post-processing is not recommended. Note that this holds also

for local generation in the presence of an attacker of types I or II, especially

in the case when we want to use local random data for first key agreement or

establishment.

The only way to completely avoid usage of digital post-processing is utilizing the

SIM card at least to establish a secure communication channel. In this case is

also recommended to use the secure storage of the SIM card to protect seed files

and all randomness pools.

2.4.5 Summary

Since a mobile device (or its sources of randomness) could be influenced by an

attacker, there will be scenarios where one should consider extending a local ran-

dom data generation to the distributed one, with several mobile devices involved.

We suggested this approach in [KSM08] and discussed some of its issues.

38

2.4 Distributed generation

We examined various communication paths that can be used to interconnect mo-

bile devices (e.g., Bluetooth, GSM, Internet, etc.) and looked closely at different

attacker types according to the communication paths involved. Further, we dis-

cussed multi-party cryptographic protocols that could be used for distributed

random data generation. We considered one class in more detail – the group key

agreement protocols, where the shared secret key could be treated as random

data generated in a distributed manner.

Our aim was to point out distributed random data generation as a possible way

to obtain high quality random data. Obviously, even the distributed approach

has its advantages and disadvantages. We presented some possible solutions and

we hope to encourage a further discussion of this approach.

39

Chapter 3

The sources of randomness in

mobile devices

This chapter deals with issues related to the generation of truly random data in

mobile computing environments. The main goal is to examine randomness sources

available in current mobile phones or other mobile devices. We identify potential

sources of randomness and perform an analysis focused on the camera and the

microphone noise as promising sources of randomness. Moreover, we analyze

the quality of these sources of randomness by statistical testing and perform

estimation of entropy (in a given time period) in the generated data.

Our work covers the possibilities of random data generation from both external

and internal environmental characteristics. The examined external sources are

audio and video streams that can be captured by a mobile device. With respect

to the internal sources, we investigated the information accessible to each user

through the application programming interfaces (API) of mobile devices like the

actual battery charge level and other accessible system statistics.

Identified sources of randomness are tested on the Nokia N73 with the Sym-

bian OS and E-Ten X500 and M700 with Windows Mobile OS. Significant part

of this chapter is based on [KŠM07, KMŽ09], but some issues were discussed at

the conceptual level also in [KŠMS07].

40

3.1 Specifics of the mobile devices

3.1 Specifics of the mobile devices

Mobile devices are considerably different from general purpose computers and this

also influences the process of generating random and pseudorandom data. The

possibility to change the environment where a mobile device operates is definitely

a great advantage given by the mobility nature of the device. The existence of

several embedded input devices, such as microphone, radio receiver, video camera,

or touchable display is another advantage1.

On the other hand, mobility and small physical size of devices bring a higher

possibility of theft or (temporary) loss with a potential compromise of the gen-

erator state. The important assumption of secure generator design is thus the

impossibility of deducing the previous and future inner state of the generator

and fast recovery of its entropy level (after a time-limited compromise). Other

disadvantages can be low performance (CPU frequency of best smartphones is

roughly 300 MHz) and restricted random access memory size (in the order of

tens of MBs).

Well-designed and robust generator must always have a sufficient amount of en-

tropy – shortly after turning the device on, after letting the device out of sight, and

after an intensive generation of random data. This non-trivial task may require

employment of energetically costly sources of randomness (e.g., video camera)

and/or the user contribution. Utilization of these sources may also be required

to assure higher security – e.g., for mobile banking purposes. It can be expected

that the user will be more tolerant to the delay in such special cases (caused by

his involvement in the generating process) than in the case of normal voice en-

cryption (where is necessary the short response time). Application requirements

on random or pseudorandom data were discussed in section 2.1.2.

There are several good potential sources of randomness in the mobile devices.

All of them can be used for generation of truly random data and categorized as

follows:

1. The external environment – sources located in the proximity of a user.

They can be used to generate truly random data – their characteristics

(samples) can be obtained by the different mobile phone input devices.

1We are aware that in general purpose computers use of audio/video data for generating
random data is not a novel idea (see, e.g., [ECS94]), but mobile devices with embedded cameras
and microphones have a clear advantage with respect to fitness and practical applications of
such techniques.

41

3.2 Analysis of selected sources of randomness

Typical examples of these characteristics can be the location (Location API

JSR-179), digital image, audio/video record (Mobile media API JSR-135),

or strength of the incoming signal in the range of base transceiver stations.

2. The internal environment – sources inside the mobile device that are inac-

cessible to a remote attacker. An example is the execution of computational

operations, memory access time, or true random data generator on the SIM

card (in European countries often cryptographic chip card, such as Gem-

plus, Philips, Schlumberger). Clearly, the processes performed inside the

phone will be always (to a certain level) dependent on the external environ-

ment. We will expect that this dependency (that can lead to influencing of

this kind of sources) is very complex and cannot be observed by the attacker

or even misused. Typical example is the noise originated in the microphone,

CCD chip or A/D converter. However, it is extremely important to make

precise categorization of particular sources. For example, the microphone

in hands-free sets should not be considered as an internal source. A poorly

performed Bluetooth pairing process can lead to the eavesdropping of digi-

talized voice communication including the noise of such microphone.

3. Interaction with the surrounding environment – sources that are highly

influenced by the feedback from the external environment. Typical example

is sound reverberation, the periodical changes in battery level (depends

also on temperature or strength of signal), or fluctuations in the incoming

signals.

Important characteristics of all sources are: availability in different environments,

unpredictability and uninfluenceability for the attacker. The characteristic from

the internal environment (e.g., some kind of noise) cannot be definitely influenced

by an attacker as much as in other cases (e.g., external signals or images).

The opportunities of an attacker to influence the generator are discussed in sec-

tion 2.4.2 and more detailed discussion of possible sources of randomness can be

found in [KŠMS07].

3.2 Analysis of selected sources of randomness

This section deals with practical experiments performed on two smartphones

Nokia N73 (figure 3.1) with the Symbian OS and two similar PDA phones E-Ten

42

3.2 Analysis of selected sources of randomness

X500 (figure 3.2) and E-Ten M700 (figure 3.3) with the Windows Mobile OS. The

goal of our experiments was to assess the quality of selected sources of randomness

in these mobile devices and to estimate the amount of randomness (entropy) in

these sources. We used two identical Nokia N73 devices since we wanted to verify

the correctness of our results or to detect unexpected behavior of the smartphone

– in a case when one device suffers, e.g., by some manufacturing defect.

Figure 3.1: The mobile
smartphone Nokia N73.

Figure 3.2: The mobile
device E-Ten X500.

Figure 3.3: The mobile
device E-Ten M700.

Due to the API restrictions in the Symbian OS (our primary platform), we were

forced to drop sources of randomness like the battery level, signal strength or

GPS position as measurements over these sources do not provide output (at the

API level) with a sufficient precision (e.g., battery and signal values are available

in the form of an integer between 0 and 10) or frequency (e.g., external GPS

provides only one measurement per second with fluctuations typically only in the

two least significant bits).

On the contrary, microphone and digital camera perform a high-rate sampling of

physical sources, yielding high volumes of data. Since we can never guarantee the

quality of a physical source, our analysis concentrated on the microphone and the

camera noise that arises, e.g., in the CCD/CMOS chip or A/D converter, and is

always present in the output data.

3.2.1 Theoretical entropy estimation

Recall that the basic measure for randomness is in information theory often called

uncertainty or entropy and is typically defined [Sha48] as:

H1(X) = −
∑
x∈X

PX(x) log PX(x),

where the sample x is drawn from random distribution X with probability PX(x).

The logarithm base typically correspondents to the unit of measured information

43

3.2 Analysis of selected sources of randomness

– in information theory base 2 is often used and that implies that the unit will be

bits. This entropy measure is often referred as Shannon entropy or alternatively

information entropy.

Unfortunately, Shannon entropy may be inappropriate for our purposes, since it

is in fact only average case entropy. We cannot make any assumptions about

distributions formed by our sources of randomness. The problem is that an

attacker can (at least theoretically) force the source of randomness to produce the

most probable values that contain minimum entropy. To cope with this situation

the min-entropy measuring the worst case entropy is often used (especially in the

theory of randomness extractors).

It is defined as:

H∞(X) = minx∈X(− log PX(x)) = − log(maxx∈XPX(x)),

where the sample x is drawn from random distribution X with probability PX(x).

It can be easily seen that min-entropy is always less or equal than Shannon en-

tropy (the tight example is for uniform distribution). These two entropy measures

are special cases of generalised so-called Rényi entropy [Rén60].

However, even this measure may provide biased results. As we stated above,

we cannot make any assumptions about distributions formed by our sources of

randomness. This fact implies that even the attacker of types I or II could be

also capable to completely change the probability distribution.

The ideal solution to this problem is to remove all statistical defects and de-

pendencies (that implies also uniformity of resulting statistical distribution) and

then perform entropy estimation or randomness (entropy) extraction. As far as

we know, this task is impossible for two main reasons. Firstly, infinite statisti-

cal defects exist and removing one or several obvious defects could induce new

(hidden) defects. Secondly, current randomness extractors have always strong

assumptions regarding statistical distribution of the input data.

The best approach we can do in practice would be to use attacker-aware method-

ology. It means that we perform all our experiments with mobile devices during

worsened conditions – e.g., in several different external conditions (temperature,

ambient light, acoustic noise etc.) – that should simulate an ongoing attack. All

results and entropy estimations then correspond to the worst values (i.e., lower

measured entropy values).

44

3.2 Analysis of selected sources of randomness

3.2.2 Microphone

We wanted to evaluate all microphones in the worst possible conditions, therefore

the first idea in our experiment settings involved recording of: some music sample,

audio feedback, noise in an extremely quiet room. After several basic experiments

with the built-in notebook microphone we saw that an audio feedback (i.e., sound

loop between an audio input and an audio output) brings even more entropy

than arbitrary music sample recording. Since the recorded noise is also present

in music or other audio samples, the worst conditions for the microphone arise

from recording of noise in an extremely quiet environment (which was in our case

a closed quiet room in the night).

An embedded or hands-free microphone is used as a voice input device in mo-

bile devices. Almost all commonly used microphones are typically based on an

oscillating membrane and some mechanisms that transform the oscillation to the

voltage representing particular signal elements. Supported sampling frequency,

modulation method, and number of bits used for representing the value of one

sample are the most important parameters of such devices. The Nokia N73 smart-

phone and both E-Ten devices use 16-bit pulse coded modulation (a signed PCM)

at the frequency 8000 Hz for sampling a sound wave – the data throughput is

thus 16 000 B/s.

We analyzed several microphones that have obviously different characteristic,

e.g., due to different solidity of membrane or other manufacturing differences.

Our goal was to estimate the amount of entropy in the sound signal captured

by the microphone – we focused mainly on measuring min-entropy of the noise

originated in the microphone.

3.2.2.1 Smartphone Nokia N73

In the case of Nokia N73 we restricted ourselves only to the small number of

204 800 samples that corresponds to 25.6 seconds of sound due to memory re-

strictions of the inspected device. 204 800 captured noise samples were used to

form a histogram of values.

We used the fast Fourier transform (FFT) algorithm to compute a discrete Fourier

transform (DFT) for analyzing the basic frequency components present in the

noise (ideal noise is expected to have all frequencies uniformly present). We

performed this analysis of the embedded Nokia N73 microphone on the sound

45

3.2 Analysis of selected sources of randomness

sample of both recorded music (figure 3.4) and noise (figure 3.5). Moreover, we

analyzed also the hands-free microphone on the sound sample of noise (figure 3.6).

We are interested only in the spectrum of frequencies between 0 and 4000 Hz due

to the Nyquist theorem (as we are sampling at 8000 Hz). The results show that

there are significant differences in the observed frequency spectrums.

Figure 3.4: Music sample (Nokia N73
embedded microphone).

Figure 3.5: Noise sample (Nokia N73
embedded microphone).

Figure 3.6: Noise sample (Nokia N73
hands-free microphone).

Finally, we analyzed histograms of all these recordings. They have approximately

normal distribution and the actual minimum/maximum values are –32764/32767,

–14220/8856, and –347/574, respectively. However, especially in the case of noise,

these numbers are strongly influenced by the sharp peak at the beginning of each

recording trace – caused by the device turn on. More accurate limit values –12/13

and –9/8 are obtained when this peak is removed. Hence, we can make a very

preliminary estimation that at most log218 = 4.2 bits of entropy can be presented

46

3.2 Analysis of selected sources of randomness

in each sampled value. Of course, this is only the upper bound of the maximum

possible entropy.

Focusing only on the more sensitive hands-free microphone, the estimations are

2.9 bits of entropy according to the Shannon formula and 0.5 bits of entropy

according to the min-entropy formula. These estimations (and especially prob-

abilities used in those formulas) were also calculated from histograms with the

assumption of full independency within the samples.

3.2.2.2 PDA phones E-Ten X500 and M700

Microphones embedded in the E-Ten devices are more sensitive and thus also

capable to record significantly more noise than the microphones used in the

Nokia N73. Basic frequency components are present in the music (figure 3.7)

and noise (figures 3.8 and 3.9). Several harmonic frequencies (narrow peaks in

a spectrogram) were revealed in the spectrum of noise captured by E-Ten de-

vices and the best result (i.e., smoothest frequency spectrum) belongs definitely

to the Nokia N73 hands-free microphone with only few harmonic frequencies (for

comparison see figure 3.6).

Figure 3.7: Music sample (E-Ten M700
embedded microphone).

Figure 3.8: Noise sample (E-Ten M700
embedded microphone).

The histograms of all these recordings have also approximately normal distribu-

tion and the actual minimum/maximum values are –32258/32767, –1958/1633,

and –806/716, respectively. There are no peaks at the beginning of each recording

trace. Hence, we can make a very preliminary estimation that at most 11 bits

of entropy (given by encoding) can be extracted from each sampled value. Of

course, this is (again) only the upper bound of the maximum possible entropy.

47

3.2 Analysis of selected sources of randomness

Figure 3.9: Noise sample (E-Ten X500
embedded microphone).

The precise estimations are 10.124 and 9.365 bits of an entropy according to

Shannon formula and 0.016 and 0.023 bits of entropy according to min-entropy

formula for M700 and X500, respectively.

3.2.2.3 Correlation tests

We performed also several correlation tests (described in the camera section be-

low) that found a correlation in the recorded samples of noise. This correlation

decreased as we took only every second/third value from our samples. Sequence

created from every fourth value was without any statistically significant correla-

tions. We therefore recommended to lower the estimated entropy at least 5 times

with respect to the amount calculated for each sample value.

3.2.3 Digital camera

Digital optical input devices (such as photocameras, microscopes, or scanners)

can be based on several different silicon optical sensors (such as CCD, CMOS,

EMCCD, and ICCD) [Ken06]. Digital cameras for mobile devices typically use

CCD (e.g., Sony-Ericsson S700i) or CMOS (e.g., Nokia N* series) sensors. These

sensors use an array of semiconductor photo-sensors to transfer an accumulated

electric charge to a voltage. Low-quality optical sensors that are often used

in mobile devices have generally higher noise presence than sensors in high-end

cameras. All these optical sensors could be also influenced by thermal noise and

they have specific problems with vignetting, blooming, sensitivity to some colors,

48

3.2 Analysis of selected sources of randomness

etc. Some of these problems are solved by the manufactures by purely software

means that are often kept secret.

Several components of the noise arising from optical sensors can be distinguished

(shot noise, read-out noise, etc.) but we are interested in the overall noise. It is a

well-known fact that the predominant component of this noise is the thermal noise

and its actual level may depend on physical conditions – namely the temperature

(for details see [Ken06]). Therefore, we performed all practical experiments with

the camera set at two temperature levels: 5 ◦C and 45 ◦C. We detected an inside

decrease of the noise towards lower temperature, but the noise is still significantly

present to provide enough entropy.

A significant part of current mobile devices (cell phones, smart phones and PDAs)

is equipped with a built-in camera that can be used for random data gathering.

For camera we suggest that a output data should be extracted from an optical

sensor noise during “view finding” rather than from a high-resolution picture

of the surrounding environment. The data output from view finding is more

suitable source of randomness than a high-resolution snapshot output for two

main reasons:

1. View finding is not post-processed by software noise reduction and com-

pression algorithms.

2. Data acquisition is much faster – commonly between 10–15 frames per sec-

ond – and has more suitable size for the additional manipulation. A single

frame (180× 240 pixels for Nokia N73) can be stored and processed in the

RAM memory (∼130 KB), which is unlikely for a high-resolution picture.

We are aware that the viewfinder image is downsampled from a full resolution of

the optical sensor, but our primary intent was to overcome other software post-

processing techniques (noise reduction, compression, etc.). However, performed

experiments (described below) confirmed the presence of low level post-processing

(details are not provided by the manufactures, similarly as for the downsampling

algorithm) as, for example, correction of the light intensity towards the border

of lens or automatic ISO level correction. All these proprietary techniques make

the entropy estimation much harder.

Following the attacker-aware methodology, the worst conditions for these sensors

involve recording of a static image (white or black background). The output from

the digital camera is often available even when the camera cover is closed or the

49

3.2 Analysis of selected sources of randomness

lens is covered with an object. This is both convenient and useful – it serves as

an important defense against an active attacker that illuminates the sensors and

forces them to produce biased or constant values.

Direct illumination of the Nokia N73 CCD sensor by a halogen lamp is depicted

in figure 3.10. In this case the central area of a sensor is forced to produce

maximum constant values (225) and all all possible entropy obtainable from (not

only white) noise is effectively removed. A similar effect can be also caused by a

strong direct sunlight.

Figure 3.10: A visualized overexposure caused by a halogen lamp. X- and Y-axes in-
dicate resolution (240 × 180), and Z-axis indicates the pixel value (0–255) of red color
component.

To successfully mount such attack, the attacker must be able to overexpose almost

the whole area of the camera chip. Degradation during random data generation

is prevented if the lens are equipped with a closable cover or are shielded by a

finger. This assumption is reasonable when the device is controlled by the user

and an attacker can only manipulate the surrounding environment.

At the application level the random data gathering mechanism should be able to

test the output stream for overexposed values or other simple defects and lower

the estimated amount of gathered entropy in real-time.

50

3.2 Analysis of selected sources of randomness

3.2.3.1 Smartphone Nokia N73

In this section, we would like to estimate the amount of entropy extractable from

a digital camera output of smartphone Nokia N73. We proceed in accordance

with our attacker-aware methodology as follows:

1. We developed a custom application for storing large amount of frames pro-

duced by a mobile device camera into a removable memory card. Systematic

defects of the input due to post-processing were examined using visualiza-

tion and statistical tools.

2. Noise dependency on the surrounding temperature was experimentally mea-

sured and evaluated.

3. The correlation between neighbor pixels, pixels in the same row and column

was computed, as well as autocorrelation and fast Fourier transformation

of values from a single pixel in time (subsequent frames).

4. The distribution of values for separate color components was computed for

the temperature with the least noise (5 ℃) and entropy was estimated based

on Shannon entropy and min-entropy formulas.

5. A simple deterministic technique for entropy extraction (with least possible

post-processing) was implemented and we tested the resulting binary stream

by NIST test battery to evaluate its statistical properties.

The systematic defects introduced into camera frames due to post-processing

and optical sensor technology (like row-dependent readouts) are clearly visible in

figure 3.11.

There are hot pixels (permanently glowing pixels) around borders, significant

rips in the rows, centered circle rips and significantly different intensity towards

center of the frame. Especially, the blue color component shows visible row-

dependent rips (caused by the readout technology) and the red color component

has significantly increased value towards chip borders. This effect is caused by

camera post-processing (out of our control) to balance light drop due to different

lens mass towards borders. Such an effect may lead to a suspicion that some

pixels are systematically correlated.

However, when values for each single pixel are normalized by subtracting mean

of the pixel in a longer time period, most systematic effects vanish. The color

51

3.2 Analysis of selected sources of randomness

Figure 3.11: The average value of the blue color component over the whole camera’s
frame with closed lense cover. X- and Y-axes indicate resolution (180× 240), and Z-axis
indicates average pixel value.

histograms of normalized samples taken over 2000 subsequent frames are depicted

in figure 3.12 (histograms are centered to 0). All colors exhibits Gauss-like dis-

tribution, blue color providing more entropy (in Shannon sense) than other color

components. The presented frames were taken in a temperature around 5 ℃.

A well documented property of the optical sensors is a noise dependency on the

temperature – the noise component should be reduced by lower temperatures

(e.g., cooling of chip by liquid nitrogen). We tested the noise presence (with

closed lens plastic cover) in temperatures of 5 ℃ and 45 ℃ (more precise mea-

surement of optical sensor is not possible without depackaging). The differences

between temperatures were detectable, but negligible2 and we can expect slightly

decreased (but still comparable) amount of entropy for the lower temperatures.

We used noise obtained from measurements in 5 ℃ for entropy estimation. In

the common camera devices the raw data from the optical sensor are not directly

accessible to the user – they first go through a few correction steps, which are

usually incorporated into the firmware of the optical sensor. Such corrections take

care of some of the different systematic effects, which are partially inherent to

the optical sensor working principle and partially occur in fabrication tolerances

of the manufacturing process.

2Difference in values probability only in order of 1/1000.

52

3.2 Analysis of selected sources of randomness

Figure 3.12: The intensity histogram for each color component after a normalization
process (removing of the pixel post-processing effects).

For an overall entropy estimation, we have to know the number of independent

(uncorrelated) pixels in one frame. Moreover, we also need to know whether

values of a single pixel are independent between two or more subsequent frames

or which frames have to be discarded to obtain uncorrelated values (e.g., pixel

value from every 3rd frame). Finally, we must estimate the expected entropy

provided by a such single independent pixel.

A cross-correlation function (Matlab corrcoef) was used to verify whether neigh-

boring pixels and pixels in the same row and column are independent. No sta-

tistically significant correlation was found on significance level set to 0.013. We

generated streams of a binary data from red, green and blue color components

and tested those streams with the NIST battery for a further verification of results

obtained from cross-correlation. See section 3.2.4 for details.

The camera view finding mode on Nokia N73 provides us with 12 frames per

second and thus 12 different values per single pixel (10–15 frames for other cam-

eras). The key question for entropy estimation is the independency of consequent

values of that pixel. The auto-correlation tests were performed with the vector

containing the values taken in time from a single pixel. Statistically significant

3This result means that the number of tested vectors with a correlation coefficient lower
than 0.01 (strong correlation) is not significantly higher than the number of correlated ones
between truly random vectors. It means that only around 10 vectors from 1000 are expected
to be correlated for this significance level.

53

3.2 Analysis of selected sources of randomness

deviations from the characteristics of white noise (where significant correlation

value is present only for lag = 0 and can be omitted otherwise) were not detected.

This implies that the consequent frames should be independent.

All view finding pixels (180×240) were separately tested within a sequence of 2100

frames. The fast Fourier transformation (FFT) was applied to the same vector

(values of a single pixel in time) to detect dominant frequencies. FFT provided

an almost uniform output (no dominant frequency) for all tested pixels and thus

confirmed independence of values between frames from an auto-correlation test.

Note that as view finding provides 12 frames per second, only frequencies between

0 to 6 Hz can be tested by FFT due to the Nyquest theorem.

The final step is to compute the amount of entropy carried by the noise in a

single (independent) pixel. As can be seen in figure 3.12, histograms of all color

components follow the common Gauss distribution without significant deviations.

Overall entropy of camera view finding source can be computed using a simple

formula [bits/s]:

E = IndP ixelsPerFrame ∗ IndFramesPerSecond ∗ EntropyPerP ixel.

An entropy estimation according to Shannon and min-entropy formulas for a

single independent pixel (EntropyPerPixel) are in table 3.1. Note, that extrapo-

lation to whole input (180× 240 pixels/frame, 12 frames/second) is valid only if

the pixels and frames are independent (see 3.2.3.1 for discussion and performed

tests).

Color pixel Shannon entropy [bit] Min-entropy [bit]

Red 3.920 3.198

Green 4.037 3.328

Blue 4.761 3.928

Table 3.1: An entropy estimation for single color pixels (Nokia N73, 5 ℃).

3.2.3.2 PDA phones E-Ten X500 and M700

E-Ten PDA phones X500/M700 are based on the MS Windows Mobile 5 OS

(WM5) that can be easily upgraded also to the MS Windows Mobile 6 OS (WM6).

These operating systems support a special native Camera API for a direct camera

control. Unfortunately, this low-level API is in turn not supported by the tested

54

3.2 Analysis of selected sources of randomness

E-Ten devices (regardless of the OS, tested for both WM5 and WM6) and so we

used a special video driver capable of capturing and sending the actual screen

image over the USB port to a PC.

This approach has its advantage – the data can be retrieved and stored faster

than within the Nokia N73 phone and the total amount of the captured data is

not limited by the phone flash memory. However, there are also a drawbacks –

transferred pictures have only a limited number of possible color values (red and

blue color components are limited to 5 bits per pixel; green color component is

limited to 6 bits per pixel – while the original resolution was 8 bits per pixel) and

can only be retrieved at the rate of one picture per second.

In this section we summarize the results from the same set of our experiments with

PDA phones Glofish E-Ten X500 and Glofish E-Ten M700. The first significant

difference to N73 is that the camera of E-Ten devices is automatically turned off

when the lens is covered. This would imply that a direct capture of noise on a

perfectly black background is not easily available.

The noise produced by a camera chip is again dependent on the temperature,

similarly as for the N73 device. At 45 ℃ the noise from the chip is so significant

that prevents a software switch off (discused above) even when the camera lens is

completely covered. Unfortunately, the threshold temperature for this behavior

is around 35 ℃ and thus not reachable during the usual operating temperatures.

However, it allows us to obtain the noise from a black-only input, similarly to the

scenario with the closed cover in the case of N73.

Figure 3.13: E-Ten X500 – probabilities of colors differences from long term pixel mean.

55

3.2 Analysis of selected sources of randomness

E-Ten X500 and E-Ten M700 also have different camera chips with visually differ-

ent noise patterns. This was confirmed by the statistical analysis of the intensity

histograms for each color component after removing the pixel post-processing

effects – see figures 3.13 and 3.14 with histograms of distances from the mean

value. The significant peak at zero point on X-axis (mean value) for all colors

means that actual color value of the pixel often tends to be equal to the mean

value. This can be caused by a limited precision of the captured images.

Figure 3.14: E-Ten M700 – probabilities of colors differences from long term pixel mean.

Distributions of the noise (presented above) are taken from the images captured

in an 8 ℃ environment as this is the scenario with lowest noise presence within

common usage operational conditions.

Both cameras of our E-Ten devices very likely utilize an automatic ISO sensitivity

correction – with the same temperature, more noise can be obtained if the light

conditions are worsened (decrease of ambient light or an object put close to the

lens). As the ISO sensitivity is automatically increased by the camera controller,

the noise generated by the chip is amplified and more noise is present in captured

images. This hypothesis based on visual observations was also experimentally

tested. The camera chip was heated up to 50 ℃ at which the camera is not turned

off by the post-processing and series of the images were taken. The temperature

was then lowered to 40 ℃ with the lens still covered and next series of images

were taken.

At the hardware level the noise level decreases (as expected) with a decreasing

temperature. But the resulting noise present in the captured images exhibits

an opposite trend – there is more noise for the lower temperature level. This

56

3.2 Analysis of selected sources of randomness

seemingly contradictory result is caused by the automatic ISO correction. As the

real noise level produced by the chip decreases with the decreasing temperature,

camera controller (out of our control) detects a smaller range of color values at

the actual ISO level and automatically increases the level. Increased ISO level

results in an amplification of the noise generated by the chip and thus more noise

is propagated into the captured picture.

Estimates of entropy present in samples from cameras of E-Ten X500 and M700

are summarized in tables 3.2 and 3.3.

Color pixel Shannon entropy [bit] Min-entropy [bit]

Red 3.085 1.279

Green 3.122 2.189

Blue 2.480 0.755

Table 3.2: An entropy estimation for single color pixels (E-Ten X500, 8 ℃).

Color pixel Shannon entropy [bit] Min-entropy [bit]

Red 4.463 2.988

Green 4.258 2.928

Blue 5.376 3.653

Table 3.3: An entropy estimation for single color pixels (E-Ten M700, 8 ℃).

3.2.4 Statistical testing with the NIST battery

As described in the section 3.2.3, we also wanted to verify the statistical properties

of binary stream extractable from the view finding input. We extensively tested

many sequences extracted from the input by various different deterministic tech-

niques (incorporating only particular colors, pixels, and/or utilizing deterministic

simple digital post-processing).

Our goal was to find the easiest way to extract binary sequences that will pass

common statistical tests. This should help us to assess how much entropy can be

present in input data that we will use for seeding a pseudorandom data generator

or randomness extractor (for details see chapter 4). Notice that our techniques

are far away from theory of universal non-deterministic randomness extractors

(as mentioned in section 2.2.3) that are constructed by a considerably different

way (a stimulating discussion can be found in [BST03]).

57

3.2 Analysis of selected sources of randomness

Recall that the input sequence is in the NIST test suite first divided to some

number of subsequences and several statistical tests are applied to these subse-

quences – each yielding so-called p-value. There are two ways of interpreting the

results of tests. The first method evaluates the proportion of successfully passed

subsequences (successful pass means that the p-value is less than selected signif-

icance level) and the second evaluates uniformity of p-values (using chi-square

goodness-of-fit test).

Extraction methods that we used for our statistical testing are described below.

Raw values only – we begin with testing the raw input for concrete nine pixels

and their basic colors (in both cases separately) and all used NIST tests

always failed. The reason is that there is an obvious non-uniformity of

values in particular colors and thus also in the whole pixel (that consists

of three basic colors saved one after another). The statistical distribution

of its values is depicted on the figure 3.12.

Least significant color bit – we then extract only the least significant bit from

each pixel and color (one bit per frame is extracted from the single pixel).

All binary strings (for each pixel and its color) constructed this way also

failed the tests. All tested sequences constructed from least significant bits

(LSB) failed both the proportion of successfully passed subsequences and

the uniformity of p-values. However, for each pixel/color there was a part

(40–60%) of subsequences that passed the runs, frequency and cumulative-

sums test. This proportion was still too small to pass the whole test, but

these tested sequences have slightly better statistical properties.

Color value combination using XOR – we XORed all three colors together

but NIST tests also failed for all nine pixels. We also tried to construct the

sequence from bits obtained by XORing all eight bits of each value of color.

The results were similar as in the case of using LSB. We conclude that these

elementary techniques cannot suppress all statistical defects introduced in

sequences constructed from one pixel and its colors and utilizing of more

pixels is thus required.

Flip-flop bit extraction – simple but more robust technique that extracts one

bit per one pixel color component. Extracted bit is 0 or 1 when actual color

value is odd or even. Concrete mapping between the color and bit value is

reversed after each processed pixel.

58

3.2 Analysis of selected sources of randomness

Let us describe the flip-flop extraction technique in more details. Note that the

purpose of the flip-flop extraction is not a new extraction technique for real usage,

but to design simplest possible technique used only for our statistical testing. This

technique then extracts some randomness (entropy) from the input, but does not

propagate it through the sequence (confusion in the cryptographic sense) like,

e.g., SHA-1 does. Flip-flop is used only during entropy estimation, not in an

implementation of a real generator (where, e.g., SHA-1 may be used). For a

given frame, all pixels are processed row by row:

1. For every even pixel do: if pixel value mod 2 = 0, then set output bit b to

0 otherwise to 1.

2. For every odd pixel do: if pixel value mod 2 = 0, then set output bit b to 1

otherwise to 0.

3. Bit b is appended at the end of the bit stream.

Set of the possible values from the range 0−255 is divided into two groups by this

extraction technique. The first group contains only even values and the second

group contains only odd values. Both groups should have almost equal sum of

probabilities. Values from the first group will result in bit value 0, second group

in value 1. Unfortunately, separation into two groups with the same probability

is not possible. As groups will not have exactly the same probability, fixed bit

assignment rule may result in a significant difference between number of ones and

zeroes. We chose to invert this bit value for half of the pixels thus balancing more

probable value 0 for one pixel by a higher probability of 1 for the next one and

vice versa.

The independent binary streams were constructed for each color component using

described extraction technique with all pixels within the frame (2100 frames were

used, gathered in a burst of 7 consequent frames followed by approximately a

5 second delay needed to save data to removable card). All sequences (divided

to 100 subsequences) were tested with the NIST battery at the significance level

0.01. One sequence failed for the red color, all passed for the green color and

two sequences failed for the blue color (one template in non-overlapping template

tests). We are aware of the possible impact of relatively short length of sequences,

but we were restricted by the camera memory, acquisition speed (especially time

needed to store the captured frame on a removable card) and 1 bit per pixel

extraction technique.

59

3.3 Recapitulation

3.3 Recapitulation

We have seen that mobile devices provide us with several sources of randomness

that can be utilized for generating truly random data. Namely the microphone

and camera that are available in (almost) each mobile phone have a promising

potential and should allow for generating data with a sufficiently large amount

of entropy. Such data that can be used for cryptographic purposes.

We used the min-entropy (worst case) formula for quantitative analysis and for

estimation of entropy in the generated data. Our min-entropy estimations, with

the assumption of independency within the samples, are: 0.5 bits of entropy per

sample for Nokia N73 hands-free microphone; 0.016 bits of entropy per sample

for E-Ten M700 embedded microphone; 0.023 bits of entropy per sample for

the E-Ten X500 embedded microphone. We performed several correlation tests

that revealed a correlation in all recorded audio samples of noise, therefore we

recommend to lower the estimated entropy at least 5 times with respect to the

amount calculated for each sample value.

We always captured at least 2000 noise samples (at temperature between 5–8 ◦C)

from digital camera that were used to create a histogram of values for a particular

color pixel. The following analysis confirmed that all three tested devices have

clearly different camera chips with different noise patterns. Our min-entropy

estimates, with the assumption of independency within the pixels and frames,

are: 3.2/3.3/3.9 bits of entropy per R/G/B color pixel for Nokia N73; 3.0/2.9/3.7

bits of entropy per R/G/B color pixel for E-Ten M700; 1.3/2.2/0.8 bits of entropy

per R/G/B color pixel for E-Ten X500.

We used the NIST battery for statistical testing of the quality of noise samples,

auto- and cross-correlation functions in Matlab, and fast Fourier transformation.

Our experiments revealed no statistically significant dependencies (significance

level was set to 0.01) between neighboring pixels, rows, or even successive pixels

in image frames. We also verified the statistical properties of binary streams

deterministically extracted (own flip-flop technique) from viewfinder output.

In spite of this fact, we were able to visually detect several systematic defects

inherent to the optical sensor working principle. For example, blue color com-

ponent on Nokia N73 shows visible row-dependent rips (caused by the readout

technology) and red color component has significantly increased value towards

chip borders. These defects indicate that there could be some statistical depen-

dencies, but their quantitative analysis (in terms of min-entropy) is difficult.

60

Chapter 4

Digital post-processing

In the previous chapter we identified that both the microphone and camera noise

are the most promising candidates for good sources of randomness. This noise is

inherently presented in raw data produced by camera chip or microphone. Un-

fortunately, we cannot use such raw data directly as a random data, because they

has typically unsuitable probability distribution. We need some kind of digital

post-processing ensuring the uniformity of output and overcoming certain corre-

lations or statistical dependencies caused by hardware sources of truly random

data.

Therefore, we employ a pseudorandom data generator or randomness extractor

for secure random data generation in mobile environments. Both could be used

to postprocess the data captured directly from a physical randomness source, but

pseudorandom data generators are universal (they have no assumptions regarding

probability distributions of its input).

This chapter is mainly based on [BKMŠ09] and [KMŽ09] and is focused on the

security aspects of integrating randomness extractors or selected pseudorandom

data generators into mobile devices.

4.1 Randomness extractors

In order to use our sources of randomness for cryptographical purposes, we need to

obtain a sequence of random bits distributed according to a uniform distribution.

The problem we need to solve is that our device does not output (in general) a

61

4.1 Randomness extractors

biased distribution, but this distribution in not known in advance since it might

be influenced by an adversary. Therefore, to postprocess our data we have to use

some randomness extractor. The main criteria for random data generation in our

setting are provable security against active adversaries and sufficient bit rate of

the randomness source.

Our analysis concentrated on the camera and the microphone input noise. Digi-

talized microphone input is slightly (auto)correlated, and captured camera frames

contain, due to post-processing and optical sensor technology (such as row-

dependent readouts), several systematic defects (for details see chapter 3). These

defects result in a decrease of the entropy of probability distribution supplied by

these sources.

The camera provides higher data rate than the microphone and this also implies a

higher entropy (and min-entropy) yield in the same time period. Unless explicitly

mentioned, all experiment results refer to camera data obtained at 8 ℃, i.e., data

with the smallest amount of noise, as expected.

4.1.1 Processing randomness

The most straightforward way to construct the post-processing software would be

to estimate the probability distribution of camera output first (180 ∗ 240 ∗ 8 ∗ 3 =

1 036 800 ≈ 220 sample points), or at least the min-entropy of the distribution,

and then to design a suitable randomness extractor. The obvious obstacle to

this method is the size of the sample space that essentially prevents reasonable

statistical testing (the number of samples would be practically unreachable).

We will limit the amount of data used from each frame to 4 bits only to allow

for statistical testing. In order to use more bits from the frame (e.g., to increase

expected min-entropy) we would not take 4 raw bits directly obtained from the

camera, but rather as a function of a number of input bits.

To extract random bits from a CCD/CMOS chip we adopted the following general

approach (see figure 4.1):

1. Acquire a picture (frame) from a CCD/CMOS chip of the camera (when

the lens is closed).

2. Apply a function f (see below) that distills few random bits from the input

frame.

62

4.1 Randomness extractors

3. Repeat steps 1. and 2. until a sufficiently long output sequence is accumu-

lated. Then input this sequence to the randomness extractor (see below)

to obtain the final random sequence.

Figure 4.1: Scheme of the image data post-processing.

The role of the function f is to pre-process the random data in a way that (regard-

less of the limited actions of the adversary) the probability distribution of output

sequences of the function f has with high probability min-entropy sufficient for

successful randomness extraction (for chosen extractor). The main problem when

designing the function f is the limited knowledge of the CCD/CMOS chip spec-

ification and the post-processing done by the camera. Moreover, these details

change with both models and producers of the mobile devices. We use the func-

tion f to separate the extractor from these technical assumptions.

Following the aforementioned motivation we designed the function f to be an

XOR (parity) of least significant bits (LSBs) of selected (colors of) pixels of the

CCD/CMOS chip. The choice of LSBs has the obvious motivation that this bit

is hard to predict and to flip this bit a very accurate (physical) attack is needed1.

1As a further improvement we discuss also XORing all bits of particular pixel instead of
LSBs only.

63

4.1 Randomness extractors

We make one important assumption in our analysis – that bits obtained from

different frames are independent. To assure this, we cyclically change pixels used

as inputs for the function f . Also, we limit the sampling frequency to 12 frames

per second.

Let us concentrate on the noise arising from the CCD/CMOS chip in the smart-

phone Nokia N73. The generator we considered takes 12 pictures per second

from the view finding (resolution 180× 240 function of the cell phone), while the

lens of the camera is shut and therefore the influence of the output by external

lights is minimized. Randomness contained in pictures comes mainly from the

heat inducing electrical charge in cells of the CCD/CMOS chip. The size of pos-

sible pictures is too large to allow for a thorough statistical testing and therefore

we use a function f that extracts 4 bits from each picture. We proceed with

sampling a sufficient number of 4-bit sequences to estimate the probability distri-

bution our source delivers with a reasonable confidence. We run the same tests

in various external conditions that may influence the source (cold, heat – 8 ℃,

20 ℃ and 45 ℃) and obtain limitations on probability distributions an adversary

can achieve. More details of the performed tests are presented in section 4.1.3.

More precisely, we used 180 × 240 pixels from each frame. Function f logically

divides pixels in one frame to 300 squares of 12× 12 pixels and uses exactly one

pixel from each square. These pixels are selected deterministically in such a way

that the neighbors are always from different row and column. They are selected

from the diagonal of the square – concretely, the position of the pixel on the

diagonal (between 1–12) is computed as a sum (modulo 12) of indexes of X- and

Y-axis of the left top corner in the particular square. Changing the position of

selected bits in each frame (cyclically) improves independence of outputs acquired

from consecutive frames.

Finally, we extract only four bits from these 15 × 20 squares/pixels. Firstly, we

apply the XOR function to all pixels (and colors) in a column. Then we transform

the resulting 20 bytes (1 byte per column) into 4 bytes by XORing together

several different non-neighbor columns together: (1, 5, 9, 13, 17), (3, 7, 11, 15, 19),

(2, 6, 10, 14, 18), and (4, 8, 12, 16, 20). At the end we can apply XOR also to all

bits in a byte, or alternatively extract only the LSB from each byte. The output is

in both cases exactly four bits per frame. For statistical properties of the output

see section 4.1.3.

64

4.1 Randomness extractors

4.1.2 Randomness extractor

In this section we provide a brief description of our randomness extractor based

on Carter-Wegman universal classes of hash functions. The principal author of

this description (that was published in [BKMŠ09]) is Jan Bouda. The randomness

extractor is a function e : {0, 1}n × {0, 1}d → {0, 1}m that takes n bit random

(biased) input, d bit auxiliary uniformly distributed random input and outputs

m bit sequence that should be distributed according to the (almost) uniform

probability distribution. The processed data obtained from the camera are used as

the first parameter, while the second parameter requires true random (uniformly

distributed) data. This means that such data must be pre-generated, and it can

be, e.g., stored in the memory and refreshed via network after a fixed number

of extractor iterations (meanwhile the output of the extractor is used). This is

an obvious drawback, but such an extractor can be used to post-process a wide

range of input probability distributions, namely any probability distribution with

sufficiently high (pre-chosen) amount of randomness.

The other possibility is to use a deterministic extractor e : {0, 1}n → {0, 1}m

requiring no uniformly distributed input. Unfortunately, possibilities of such a

source are strongly restricted – it partitions all inputs into fixed subsets, each of

which is mapped to one fixed output bit sequence. Therefore, this extractor gives

unbiased output only as long as the probability of each such subset is unchanged.

It may be difficult to explicitly construct one suitable deterministic extractor,

however, non-deterministic extractor with random, but public and fixed auxil-

iary input can do very well [BST03] in some situations. For more details on

randomness extractors see the survey paper [Sha02].

To fight a general and powerful adversary we decided to use a (non-deterministic)

randomness extractor, i.e., extractor requiring true randomness as an auxiliary

input. This allows us to concentrate only on the analysis of the min-entropy of

our randomness source (denoted k). Due to a high min-entropy of our source

(see section 4.1.3) we can choose freely from a wide variety of extractors. First

parameter of extractor we should consider is the length d of the auxiliary random

input. In our case this should be considered only in the context of the randomness

efficiency and we should compare the length of the output sequence with the

amount of randomness in the input, i.e., the length of the output should be

approaching d + k.

Possibly limiting factor of the initial sequence can be memory of the mobile device,

but essentially all devices with a camera already have memory of size (at least)

65

4.1 Randomness extractors

few megabytes (few hundreds for contemporary mobile phones) and therefore we

are not limited by a reasonably large auxiliary input that has to be stored (we

consider approximately 1000 bits for our purposes).

Since the absolute value of the true random input is not limiting and we have

a high min-entropy, we can concentrate on the computational efficiency of our

extractor. Computing power of mobile devices is still limited and intensive cal-

culations increase battery exhaustion and thus the computational efficiency is of

critical importance. The amount of true randomness is limited, and therefore

we would like to reuse it or use the output of our extractor instead. A straight-

forward choice from this point of view are extractors based on Carter-Wegman

universal classes of hash functions.

Any XOR universal class of functions is universal2 as well [Sho96]. Therefore, we

may use any of the classes of hash functions designed for message authentication

and heavily optimized towards computational efficiency. In our tests we used the

universal2 class of functions based on shift registers proposed in [IZ89]. Imple-

mentation of this class is efficient and straightforward – all necessary calculations

are scalar product (i.e., bitwise XOR and mod 2 addition) and bit string rotation.

Formal definitions and suitable parameters setting for our extractor can be found

in [BKMŠ09]. As a final output of the extractor we would like to obtain a random

sequence that is at least 2−64 close2 to the uniform distribution. Note, that if we

use a part of our output as the d auxiliary bits or we reuse original randomness,

the quality of the output distribution decreases.

In our settings we are able to extract from each 838 bits of input 629 bits of output

(compare to the theoretic optimal value 797 bits) giving bit rate approximatively

36 bits per second. We stress that the bit rate is limited only to allow statistical

testing and can grow easily to approximatively to 18 000 bits per second (100

pixels used to generate 4 output bits).

4.1.3 Analysis of acquired random data

To verify the extractor input and its min-entropy we ran a number of statistical

tests on outputs of the function f . To obtain an acceptable quality of the tests on

an achievable number of samples (we used 1.5 million sample frames) we output

only 4 bits from each frame (16 different values).

2As a measure we use the trace distance (also called variational or Kolmogorov distance)
between the probability distributions.

66

4.1 Randomness extractors

First battery of tests concentrates mainly on the statistical stability of the output

distribution – i.e., that the output data have all time (even in different external

conditions) almost the same distribution (not necessarily uniform). We applied

Pearson’s (χ2) goodness of fit test on several sequences and subsequences. As

the expected distribution we take the relative frequency of 4-bit values from

the whole sequence generated from all 1.5 million sample frames. In this case

(data captured at 8 ℃) are relative frequencies given by values: 0.0630, 0.0608,

0.0674, 0.0629, 0.0607, 0.0697, 0.0639, 0.0607, 0.0642, 0.0606, 0.0573, 0.0580,

0.0642, 0.0627, 0.0612, 0.0625. As the observed distribution we use the relative

frequency of the 4-bit values from various subsequences – in our case, e.g., given

by values: 0.0642, 0.0642, 0.0706, 0.0645, 0.0545, 0.0691, 0.0621, 0.0594, 0.0624,

0.0624, 0.0561, 0.0542, 0.0624, 0.0585, 0.0606, 0.0645. The resulting p-value (in

this particular case 0.22) at the significance level α = 0.01 clearly confirms our

hypotheses that the sequences are at 99% from the same probability distribution.

Relative frequencies that we obtained (outcomes only for normal temperature)

indicate that the min-entropy of tested distribution is approximatively 3.984,

which is almost the maximum of 4. As a further evidence of high entropy of

our source we test the hypothesis that an output sequence was generated by a

source with min-entropy smaller than log14 = 3, 83. We calculated the minimum

of the Pearson’s χ2 test of our estimated distribution over all distributions with

min-entropy at most log2 14. We calculated

min
H∞(q)≤log 14

χ2(p, q)

with p being our estimated distribution. The outcome is χ2 = 338.9947, p-value

is 2.0167× 10−63, what strongly rejects such a hypothesis.

As a part of our testing we considered other functions f as well. While it is

easy to see that XORing an extra random bit to a given random bit can only

decrease possible bias (or preserve it when the bit is deterministic), it would be

nice to use as few input bits as possible. The reason for such optimization is not

only the computational efficiency, but also allocation of resources. As already

mentioned, in our testing we used only a 4-bit output, but it might be useful

to use just few input bits to design extractors with a higher bit rate, where the

independence of input data is assured at hardware level. Our analysis showed

that green color behaves in general more deterministically than red and blue color.

Also, XORing few pixels together already helps significantly to obtain a higher

3We designed the extractor the way it works for any distribution with min-entropy at least
log2 14 bits.

67

4.1 Randomness extractors

entropy probability distribution. When comparing the function f as described in

section 4.1.1, it has only a negligible (improving) impact if we XOR all bits from

the pixel color channel instead of using only LSBs. Therefore, a suitable function

f should XOR together bits from several pixels distributed over the frame and

use data from all color channels. On the other hand, it is sufficient to use LSBs

only.

Furthermore, we performed several statistical tests of the output produced by our

implementation of the randomness extractor (described in section 4.1.2). In this

case we applied the well-known NIST statistical test suite to a 40 MB output. All

sequences passed 15 out of 16 statistical tests (frequency test, runs test, etc.). We

tested division to 100 subsequences at the confidence level α = 0.01. Passing the

test means that a large fraction of subsequences passed particular sub-tests and

also that the resulting p-values have uniform distribution. The Chi-square (χ2)

goodness of fit test is used to test the uniformity as well, but the confidence level

is more strict in this case (α = 0.001). The only one exception was “the serial

test” that failed due to the small fraction of passing subsequences – their fraction

0.9500 was lower than (for 100 subsequences) the expected 0.960150.

4.1.4 Summary

We described a true random data generator delivering a bit sequence distributed

according to a probability distribution very close to the uniform probability dis-

tribution. The initial randomness is acquired partly as an initial true random bit

sequence and partly as a processed output of a built-in camera. In our analysis

we used only a negligible portion of randomness contained in each frame acquired

from the camera. This was only to allow reasonable statistical testing of data,

while in practice much larger amount of data can be obtained from each frame.

This would increase the bit rate significantly.

In the next section we discuss a universal alternative to randomness extractors

– pseudorandom data generators – that require no assumptions regarding proba-

bility distributions of its input from randomness sources. The only drawback of

such generators is that they rely on unproven assumptions whereas randomness

extractors typically provide some provable guarantees of their output.

68

4.2 Secure pseudorandom generators

4.2 Secure pseudorandom generators

The security of pseudorandom data generation relies on the design of a particular

cryptographic pseudorandom data generator and its resistance to cryptanalysis.

Three classes of such generators can be distinguished – generators based on linear

feedback shift registers, classical cryptographic functions, and hard problems of

number and complexity theory. If these generators behave correctly (e.g., in a

secure computing environment), we can conclude that the order of these three

classes often reflects both speed and security of particular generators. The gen-

erators in the first group are the fastest but less secure, while generators in the

third group provide excellent security but they are often the slowest. In practice,

generators based on classical cryptographic functions are typically used.

Unfortunately, the vast majority of multi-user and mobile computing environ-

ments cannot be considered as a secure computing environment (due to malicious

admins/users, malware, possibility of device temporary loss, etc.). Therefore a

careful generator design must take into account both forward and backward secu-

rity after a compromise of the generator internal secret state. Forward/backward

security means that an attacker with the knowledge of the internal state of a

generator is not able to learn anything about previous/future states and outputs

of the generator. Forward security can be guaranteed by the use of one-way func-

tions and backward security requires periodical refreshing of the internal state

with additional truly random data.

Modern hybrid pseudorandom data generators periodically use truly random data

during the whole generation process – this improves the generator security by

increasing resistance against state compromise attacks at the expense of higher

demands on truly random data. The consequence of periodical refreshing of the

internal state is utilizing all available random samples – with the possibility of

their gathering and accumulation (so-called pooling) even in the time when no

generation of pseudorandom data is required. Such hybrid generators behave

deterministically only between two successive reseedings.

We selected ANSI X9.31 and Fortuna pseudorandom data generators for our

reference implementation (for details see chapter 5) and their basic architecture

and security properties are briefly described below.

69

4.2 Secure pseudorandom generators

4.2.1 ANSI X9.31 pseudorandom data generator

The ANSI X9.31 (former X9.8) pseudorandom data generator uses only one cryp-

tographic primitive, a block cipher. The NIST specification [Kel05] presents two

implementations using the algorithm 3DES or AES. The main difference between

these two block ciphers is the supported length of a block (3DES uses 64-bit

blocks, AES operates on 128-bit blocks).

Let K be a 128-bit AES secret key, which is reserved only for the generation of

pseudorandom data. EK denotes the AES encryption (ECB) under the key K, V

is a 128-bit seed value, and DT is a 128-bit date/time vector. I is an intermediate

value, and the symbol ⊕ is the exclusive-or (XOR) operator.

Then a pseudorandom output R is in each iteration generated as follows:

I = EK(DT), (4.1)

R = EK(I ⊕ V). (4.2)

And then the seed V is updated in each iteration:

V = EK(R⊕ I). (4.3)

It is obvious that the generator has no embedded pooling mechanism and the

entropy gathering4 is performed on the fly. This implies relatively easy integration

into almost all user applications. The critical part of generator’s inner state is

the secret key K that is expected to be stored securely – otherwise the forward

security can be no longer guaranteed. Since the mobile devices provide no secure

computing environment (as, for example, smartcards), we strongly recommended

the regeneration of key K – at least at the beginning of the application process.

Another part of inner state, the value R, is original design produced directly

as an output5. However, revealing any part of the inner state is not a good

security feature of any general purpose pseudorandom generator. The DT vector

is based solely on low-entropy date/time and this implies slow recovery after a

state compromise and therefore weak backward security. We thus suggest to

employ additional randomness captured from microphone or digital camera.

4Note that we defined the entropy as a measure – the gathering, accumulating, adding or
similar operations are obviously always performed with data that are expected to have sufficient
amount of entropy.

5The generator was originally designed for generation of single DES keys, therefore the
output was expected to be secret.

70

4.2 Secure pseudorandom generators

It was not our intention to discuss and describe all security aspects of this gen-

erator, thus we restricted ourselves only to this summary of very basic facts and

our suggestions. Detailed security analysis with several proposed improvements

(e.g., integration of the entropy pool) to this generator can be found in [Gut98]

and [KSWH98].

4.2.2 Fortuna pseudorandom data generator

The Fortuna [FS03] is a famous successor to the Yarrow pseudorandom data

generator [KSF99]. Fortuna has an improved and automated mechanism of pool-

ing and extremely simplified (almost removed) process of entropy estimation. It

currently represents one of the most sophisticated pseudorandom generator – de-

signed more for integration into operating system or cryptographic libraries than

for integration into end-user applications.

Fortuna pseudorandom data generator consists of three components. The first

part is the generator itself, it takes a fixed-size seed and outputs an arbitrary

amount6 of pseudorandom data. The generator is the most primitive component

of the Fortuna – a block cipher in the counter mode with some refinements. It is

recommended to use AES with a 256-bit key and a 128-bit counter. The key and

the counter form a secret internal state of the generator.

After every request another 256 bits of pseudorandom data is generated for a

new encryption key. Periodical rekeying ensures not only backward security, but

also forward security of the generator as it is infeasible to get previous output

data after the key change even when the attacker knows the secret internal state

of the generator. There is no reset of the counter (i.e., rekeying is in this case

equal to reseeding) and this property prevents short cycles that could occur due

to repeated key values.

The second component is called accumulator and its main purpose is to collect

and pool entropy from various sources of randomness. There are 32 pools, which

are filled with data from one or several randomness sources in a cyclical fashion.

This design ensures that random events from a single source are distributed evenly

over the pools and an attacker controlling only some randomness sources cannot

control all these pools.

6In practice it is often restricted to 1 MB per single request.

71

4.3 Recapitulation

The accumulator is also responsible for periodical reseeding of the generator –

this mechanism is very special. Reseeds are numbered (1, 2, 3, etc.) and the

pool Pi is used if and only if 2i is a divisor of the reseed counter. Thus P0 is

used every reseed, P1 every second reseed, P2 every fourth reseed, etc. The only

entropy estimate that must be done determines the minimal pool size necessary

for reseeding – but it can be quite optimistic, e.g., 64 bytes for required 128 bits

of entropy.

Last but not least, the seed file is another component of the Fortuna pseudoran-

dom data generator. It preserves the generator internal state and ensures that

even after rebooting the generator can produce good pseudorandom data. Seed

file serves as the storage of high-entropy data, which is used after a restart of the

generator to initialize the generator properly. Quite a simple concept in theory,

but its practical implementation is very difficult and depends extremely on the

environment and platform, because it must follow several strict requirements.

The seed file must be available to the pseudorandom data generator only, oth-

erwise an attacker can reproduce the generator output at least until the first

reseeding. Its content needs to be refreshed before the user can request first ran-

dom data, otherwise the attacker can request data and reboot before the seed

file update. Other issues include the first reboot, where there is no seed file yet,

and backups of file system, because restoring the file system clearly results in the

restoring and usage of an old seed file.

The detailed description and security analysis of Fortuna can be found in [FS03].

4.3 Recapitulation

We investigated relevant security aspects of integration of randomness extractors

or selected pseudorandom data generators into mobile devices. Both methods

are significantly different and both methods have their own pros and cons that

should be carefully considered before their practical application.

The theory of randomness extractors brings an interesting ideas and solution how

to post-process truly random data. However, a lot of current randomness extrac-

tors relies on a very strong assumptions and their practical usage is therefore

very questionable. Regardless of our findings, we prefer pseudorandom data gen-

erators that we also use in our design prototype. Detailed description including

implementation details of this prototype can be found in chapter 5.

72

Chapter 5

Design prototype

This chapter is based mainly on [KMŽ09] and deals with the integration of our

design prototype into selected mobile device. We use the Symbian-based smart-

phone Nokia N73 as our target platform and we summarize details of integration

of ANSI X9.31 and Fortuna pseudorandom data generators into the Symbian

OS 9.x. We also discuss the performance analysis of such generators and the

power consumption of our Fortuna implementation. The reference implementa-

tion of the design prototype into smartphone Nokia N73 was performed within a

master thesis work of Jǐŕı Žižkovský.

5.1 Suitable target platform

The basic (and the most important) requirement for generation of truly random

data on mobile devices is the availability of one (or several) good source(s) of

randomness. The experiments that we described in chapters 3 and 4 show that

the modern mobile devices (with embedded microphone and digital camera) fulfil

this requirement.

Apart from good sources of randomness we also need a suitable method of digital

post-processing by randomness extractor or pseudorandom data generator. Post-

processing by randomness extractor is reasonable for devices of the same family

and type (i.e., with the same sources of randomness). Since we do not want to

restrict ourselves to one particular family of devices, our implementation uses

only a pseudorandom data generators (which are more universal).

73

5.2 ANSI X9.31 pseudorandom data generator

As we want to post-process all data from the randomness sources, we need a suffi-

cient performance for aforementioned digital post-processing that must be compu-

tationally feasible on such devices. To estimate an acceptable amount of raw data

from randomness sources, we performed practical performance test (described

also in [KŠMS07]) on mobile phones Nokia N73 (Symbian OS v9.1), Nokia N73

(JavaME), Sony-Ericsson k750i (JavaME), Nokia 6230 (JavaME), Nokia 6021

(JavaME). SHA-1 hash function were used as an entropy extraction/mixing func-

tion and the resulting throughput of such mobile phones is 2200 KB/s, 426 KB/s,

84 KB/s, 67 KB/s and 4.65 KB/s, respectively.

Both programming environments (Symbian C++ and Java) of Nokia N73 provide

enough computation power for real-time extraction from view finder (camera in-

put 180× 240 pixels, ∼380 KB/sec) and microphone (16-bit mono PCM 8000 Hz,

∼16 KB/sec). We thus selected a Series60 smartphone Nokia N73 with a Symbian

OS 9.x as our target platform.

5.2 ANSI X9.31 pseudorandom data generator

The ANSI X9.31 pseudorandom data generator was implemented as a simple GUI

application. We used two cryptographic primitives for our implementation – the

AES encryption function and the SHA-1 hash function. SHA-1 is an internal Sym-

bian library function and the AES is implemented as a reference code provided

by the IAIK Krypto Group AES Lounge ported to the Symbian OS by Philipp

Henkel [Hen05]. The generator itself is implemented in one class CX931 AES.

The class is derived from the class CCoeControl and can be used for capturing

events from the keyboard. The class also implements two interfaces MCameraOb-

server and MMdaAudioInputStreamCallback, the former is used to capture events

from the camera, and the latter to capture events from the microphone.

The class CX931 AES also consists of various data objects. There are object at-

tributes that preserve the generator secret state: AES cipher context, the 128-bit

AES secret key, the 128-bit seed, and the 128-bit date/time vector. Further there

are object attributes necessary for the generator initialization – the most impor-

tant is a disposable 320-bit pool of entropy from the camera, the microphone,

and the keyboard. Construction and initialization of the camera and microphone

objects run asynchronously and the speed of data acquisition from these sources

of randomness is 1495 KB/s.

74

5.2 ANSI X9.31 pseudorandom data generator

The simple 320-bit pool is implemented as two SHA-1 contexts and the initial

entropy comes from 5 samples from the camera viewfinder, 20 audio samples from

the microphone and the timing of each keystroke. Since the estimated amount

of entropy from these samples radically exceeds 320-bit, we can expect that the

pool contains 320-bit of initial entropy.

There are two important public methods for users of our X9.31 pseudoran-

dom data generator implementation – namely GetRandom(TUint8 *rnd) and

GetRandomFileL(RFile &aFile, TInt aCount). The former returns 16 bytes

of pseudorandom data in its parameter rnd. The latter uses GetRandom(TUint8

*rnd) to write aCount bytes of pseudorandom data into aFile.

When the user calls one of these methods for the first time, the secret state of the

generator is initialized and preserved in above mentioned data object attributes.

The entropy pool is used only for the following (initialization) operations: first

128 bits are used as AES key material, next 128 bits fill in the seed and remaining

64 bits initialize first half of the date/time vector. As the generator is not reseeded

during its runtime, it never recovers from a compromised state.

We improved the original X9.31 generator by initializing the first half of date/time

vector by truly random data that remains fixed during whole generation process,

while the second half is updated in every iteration by 64-bit of date/time. This

is obviously a tradeoff between security and energy efficiency – better backward

security can be achieved by using purely truly random data instead of low-entropy

date/time, but the continuously running camera and microphone will drain the

battery very soon (some issues regarding energy requirements are discussed in

section 5.3.1). Another disadvantage is that the running camera is not accessible

for other applications.

This implementation can be used in applications that require some random data

at the start, but we do not recommend its continuous (long-term) usage. The

generator has in fact poor forward and backward security. In case of forward

security, it is very easy to get previously generated random bits, if an attacker

gets the secret state of the generator. He simply decrypts the seed V and encrypts

DT , then computes previous random bits by XORing these values. We also

implemented a second version of ANSI X9.8 based solely on a one-way hash

function (in our case SHA-256), which provides a better forward security for the

mobile environment, as there are no problems with key management and secure

key storage. This modification was originally suggested in [Gut98].

75

5.3 Fortuna pseudorandom data generator

Backward security depends crucially on the entropy of the date/time vector.

However, after a state compromise the length of DT is in fact reduced to 64 bits

and we must expect that the attacker can predict a significant amount of DT

vector bits. An optimistic assumption is that the attacker knows the time of the

data request with a minute precision. Theoretical precision of the time in Symbian

is in order of microseconds, but the analysis has proven that the time value is

always divisible by 125. It reduces the number of possibilities to 480 000, and so

approximately 18.87 bits of entropy. If the attacker can predict the time with

second precision, then he has only 8000 possibilities, i.e., 12.96 bits of entropy.

Cryptanalytic attacks on ANSI X9.8/X9.31 are discussed in [KSWH98].

The actual speed of our implementation is only 2.44 KB/s with the reference

non-optimized AES implementation of encryption speed (without key scheduling)

75 KB/s. The average speed of implementation based on SHA-256 is 3.9 KB/s.

The above informal security analysis and slow performance in mobile phones

clearly suggests that practical usage of the ANSI X9.31 as a general purpose

pseudorandom data generator is not advisable.

5.3 Fortuna pseudorandom data generator

While the above described ANSI X9.31 pseudorandom data generator belongs

to the simpler (and not so secure) pseudorandom data generators, Fortuna is a

very good pseudorandom data generator of sophisticated design. In this section

we describe the implementation of Fortuna generator on Nokia Series60 mobile

devices with the Symbian OS 9.x. As compatibility is not as straightforward as

claimed by the vendors, it is worth noting we used the Nokia N73 smartphone,

as there can be some differences when using other models.

Fortuna pseudorandom data generator is designed to run continually, gathering

entropy and servicing user requests for pseudorandom data. Therefore we decided

to implement the Fortuna by means of the Symbian OS Client-Server Framework.

It implies that the implementation is divided in two parts. The server component

is the application without a graphical user interface, implementing whole func-

tionality of the Fortuna. The client component is the interface to the Fortuna

pseudorandom data generator, implemented as a dynamic-link library. Users,

who want to use the Fortuna, have to link their applications against this library

and then they can use Fortuna via the exported interface.

76

5.3 Fortuna pseudorandom data generator

During the implementation of Fortuna were developed also two other applications.

The first one is an application dedicated to control the run of the server. We

recommend using it only for debugging purposes, and for practical usage the

server should be started with the device booting and stopped when the device

goes down. The second auxiliary application is an example application using the

Fortuna generator to get some pseudorandom data. It simply detects whether the

Fortuna server is running and in the positive case requests some pseudorandom

data, and saves it into a binary file.

5.3.1 Fortuna server

The Fortuna server is a crucial part of the Fortuna pseudorandom data genera-

tor, implementing all the functionality. It is a common Symbian OS application

without a GUI, running on the background as a separate process, collecting en-

tropy and servicing user requests. It also includes a handling mechanism for all

sources of entropy. The class CFortunaPRNG implements all three components of

the Fortuna, therefore it consists of: TFGenerator implementing the generator

component, TFPool implementing the accumulator component and RFile as the

seed file component.

The class TFGenerator is a straightforward implementation of the generator com-

ponent. It consists of 256 bits long AES key, 128 bits long counter and two objects

representing the cipher context and its key.

The accumulator component of the Fortuna consists of the array of 32 objects of

the TFPool class. Each object of the TFPool class represents one pool containing

entropy from random events. While the pools are parsable strings of unbounded

length, it is more practical to implement the pools just as hash contexts1, there-

fore the class consists of two data object attributes iData, representing events

data, and iEntropy, representing the estimate of entropy included in the pool.

Initialization of the pool is easy, the SHA-256 context iData is created and the

iEntropy value is set to zero.

The seed file component does not have its individual implementing class, the

mechanism is implemented directly in the CFortunaPRNG. The read-part is a

1One can observe several differences between the Fortuna design and our implementation,
but all changes are consistent. The authors of the Fortuna proposed the solution with random
events in unbounded strings and the entropy of such pool was estimated according to the length
of the pool string. Yet with respect to the running hash our pool string has a fixed length.

77

5.3 Fortuna pseudorandom data generator

constructor in the second-phase. It tries to open the seed file in the /Private

folder of the application. This folder is accessible only to this application, except

for processes with the special capability AllFiles.

When the seed file exists and contains at least 64 bytes of data, the generator

is seeded with this data and the seed file is updated with the newly generated

64 bytes of pseudorandom data. If the seed file is not long enough, the data is

not used and the generator is not initialized. If the seed file is not found, it will

create an empty one, the generator will not be seeded and user data requests will

have to wait until the pools accumulate enough entropy to initialize the generator

properly.

The CFortunaPRNG class contains two other object attributes relevant to reseed-

ing mechanism. The ReseedCnt represents 64-bit counter incremented at each

reseeding. The lastReseed value represents the time when the last reseeding was

done. This value is checked during next reseeding attempt, and there have to be

at least 100 ms between two successive reseedings.

Both the attribute src and method void AddRandomEvent (TInt srcNum, const

TDesC8 &event, TInt entropy) are relevant to the accumulator component.

The sources of randomness do not have direct access to the particular pools, but

they use AddRandomEvent method to add new random data to the accumulator.

It ensures that the pools are filled in a cyclical fashion. Every source is identified

by a unique number srcNum and according to this ID the accumulator chooses

the appropriate pool in which to add the event data. This choice is made on

the basis of the src array, in which the current pool number for each randomness

source is saved.

In principle, all sources of randomness are asynchronous services, therefore the

concept of active objects was chosen. We implemented three sources of random-

ness: the keyboard (CFKeyRandSrc), the microphone (CFAudioRandSrc) and the

camera (CFCamRandSrc). The first randomness source gathers entropy from key-

board events. The randomness source starts waiting for the key events and when

the key is pressed, the window server2 generates the key event and sends it to our

application. The key event data itself does not contain much entropy, therefore

it is not used at all. Only the time of key event arising is sent to the appropriate

pool. According to our analysis (described in section 5.2) the entropy of data

generated by this randomness source was estimated at 12.96 bits.

2A server which manages the screen, keyboard and pointer on behalf of client applications.

78

5.3 Fortuna pseudorandom data generator

We now describe two remaining sources of randomness that are much more pow-

erful. Let us start with the randomness source gathering entropy from the mi-

crophone device. It is implemented in the CFAudioRandSrc class that contains

the MMdaAudioInputStreamCallback interface. This class implements callback

functions to handle the audio data from the microphone. When the requested au-

dio data is prepared, the method void CFAudioRandSrc::MaiscBufferCopied

is called back and then the requested data from buffer is sent to the appropriate

pool.

According to our entropy estimation the 1 KB sample contains approximately

51 bits of entropy. The period and the exact amount of data taken should be

precisely tuned to fulfill the goals of the target application. In our case the audio

sample is taken every minute – but it is always a trade-off between the security

and usability.

The last implemented randomness source gathers entropy from the camera device

of the phone – it is very similar to the CFAudioRandSrc. The class implements

the MCameraObserver interface, which specifies five callback methods that must

be implemented by the classes to capture data from the camera. As one frame

from the viewfinder provides almost 100 KB, the data is spread over all pools.

Strictly speaking, 3180 bytes of data is added to each pool. According to our

estimations, this represents 11 080 bits of entropy for each pool.

Although it is possible to capture the viewfinder frames continually, it would con-

siderably limit the device user. The camera has a significant power consumption

and moreover it would be reserved for the Fortuna server only. As well as in the

case of CFAudioRandSrc, this should be considered carefully while developing a

particular application. We capture only one viewfinder frame every minute.

We performed five battery life tests3 with continuous utilization of different

sources of randomness in the Fortuna server. Keyboard events have been mon-

itored at all times, but no keys were pressed during measurements. The lowest

speed of our implementation in the continuous4 capturing mode is 13.85 KB/s.

The detailed results are summarized in table 5.1 – the first column presents the

average time of battery life and the second column then standard deviation of

our measurements.

3All measurements were performed with a Li-Pol battery type BP-6M (970 mAh) that was
roughly 1.5 years old.

4The generator speed is independent of the used sources of randomness or speed of the event
sampling.

79

5.3 Fortuna pseudorandom data generator

Sources of randomness Avg. time Std. deviation

(continuous sampling) [hh:mm] [mm:ss]

Keyboard, microphone 17:27 8:34

Keyboard, camera 3:48 2:24

Keyb., cam., micr. 3:24 3:36

Table 5.1: Fortuna energy requirements – battery life.

Our current Fortuna implementation captures both audio and video periodically

once a minute. In this case the battery is exhausted approximately after 3 days,

18 hours and 13 minutes. This is a non-trivial battery stress in comparison

to 10 days, 11 hours and 1 minute of producing pure pseudorandom data (i.e.,

without any entropy pooling).

For illustration, a continuous utilization of all sources of randomness (i.e., key-

board, camera, and microphone) compared to our current reference Fortuna im-

plementation (i.e., sampling once per minute) drains the battery 26.53 times

faster. For the keyboard with camera only it is 23.74 times more power demand-

ing, and for the keyboard with microphone only setting it consumes the battery

just 5.17 times faster. Energy requirements of our current reference Fortuna im-

plementation are 2.78 times higher then energy requirements of implementation

without any entropy pooling.

5.3.2 Fortuna client

The client part of the Fortuna represents an interface to the pseudorandom data

generator functionality. It is implemented as a library with four exported func-

tions. The method TInt Start() allows to start the Fortuna server via non-

member function TInt StartTheServer(), which creates new process and runs

the server. The method TInt Connect() creates new session with the running

server using RSessionBase::CreateSession().

Two remaining methods are operations with an established session. Both methods

use inter-process communication (RSessionBase::SendReceive()) to communi-

cate with the Fortuna server. The TInt GetRandomData(TInt aSize, TDes8

&aDes) requests the Fortuna server for aSize bytes of pseudorandom data. The

TInt StopServer() method requests to stop the server. It should be mentioned

that this last part of the interface should be removed in the final version of in-

terface to avoid the attacker stopping the server.

80

5.4 Recapitulation

5.4 Recapitulation

We described several implementation issues and technical details of our design

prototype that we integrated into the Nokia N73 with Symbian OS 9.x. We

conclude that our ANSI X9.31 implementation is suitable for the usage as a part

of any user application whereas our Fortuna implemetation can be used as a server

providing pseudorandom data on demand of one (or several) user application(s).

A tradeoff between security and energy requirements was also discussed together

with tests of Fortuna energy requirements.

81

Chapter 6

Conclusions

This dissertation thesis dealt with the generation of truly random and pseudo-

random data in mobile computing environments (e.g., mobile phones, personal

digital assistants, cryptographic smartcards, etc.). We examined basic require-

ments on random and pseudorandom data for cryptographic purposes and the

methods of its generation in general purpose computer systems. We showed a

practical approach to random data generation for the mobile environments, pro-

viding a clear path to developers of many security-critical applications for the

mobile environments.

In chapter 2 we examined a basic requirements on random and pseudorandom

data for cryptographic purposes. We investigated several possible ways of gener-

ating both random and pseudorandom data in general purpose computer systems

and mobile devices. We described our experiments with hardware generators of

selected cryptographic smartcards and hardware security modules. In the last

part of this chapter we discussed basic security aspects of distributed random

data generation in potentially hostile environments. This distributed approach

can be a good starting point for better random or pseudorandom data generation

in case of the attackers being able to target only some (but not all) of the mobile

devices.

We started chapter 3 with identification and analysis of available sources of ran-

domness and assessment of their quality and performance. All results and our

(min-)entropy estimations in this chapter correspond to the worst values (i.e.,

lower measured entropy values) that were obtained during several experiments

with mobile devices. Devices were running in worsened (but for the devices still

acceptable) conditions – e.g., in several different external conditions (temperature,

82

6. CONCLUSIONS

ambient light, acoustic noise, etc.). Our analysis showed that mobile devices have

several good sources of randomness – we confirmed that at least the microphone

and camera noise contain a sufficient amount of entropy and thus can be reliably

used as a good sources of truly random data. We also detected several systematic

defects inherent to the optical sensor working principle or defects caused by its

controller firmware.

Our work in chapter 4 then led to the investigation of the truly random data

post-processing with the use of randomness extractors or pseudorandom data

generators. We discussed the need for some kind of digital post-processing that

ensures the uniformity of output and overcomes certain correlations or statistical

dependencies caused by hardware sources of truly random data. We analyzed the

possibilities of secure, efficient and straightforward implementation of randomness

extractors based on Carter-Wegman universal classes of hash functions, ANSI

X9.31 and Fortuna pseudorandom data generators.

Chapter 5 dealt with the integration of our design prototype into selected mobile

devices. We used the smartphone Nokia N73 as our target platform for the inte-

gration of ANSI X9.31 pseudorandom data generator. Devices based on Symbian

OS 9.x were used for the integration of the Fortuna pseudorandom data gener-

ator. We also discussed a tradeoff between security and energy requirements of

our implementations.

During our work described in chapters 2, 3, 4 and 5 we also performed an exten-

sive statistical testing. We tested hundreds of truly random and pseudorandom

sequences generated by cryptographic smartcards, hardware security modules,

mobile devices or even general purpose computers (PCs). Our statistical testing

utilized predominantly the NIST and the DIEHARD test batteries but some of

the sequences generated by the cryptographic smartcards were also tested by the

TESTU01 and the RaBiGeTe test batteries.

Although our experiments revealed (in some cases) no statistically significant de-

fects or dependencies in generated sequences, we note that no certain conclusions

about a specific generator or source of randomness can be made (i.e., there could

be some statistical defects or dependencies in generated sequences and these de-

fects could be detected by another testing approaches).

83

6.1 Future work

6.1 Future work

We want to point out that on top of the truly random data sources that we

examined in this thesis, other sources like battery and signal level (and in some

specific situations also GPS position tracking) are worth investigating. This can

be done, for example, on the completely open-source Linux-based OpenMoko

cellphone or at a higher granularity by using external devices (such as a cellular

modem or GPS unit). Work based on Symbian OS phones can also be addressed

by teams that have an access to lower-level of API. We were working with API

that is available to other ordinary developers.

We also proposed a distributed approach to the generation of random data and

discussed some of its non-trivial shortcomings and obstacles. In spite of that

we think that this pioneer idea could still have a potential and is interesting for

future research. We elaborated this idea on a theoretical level in the GSM mobile

network environment, but it would also be interesting to reconsider our proposed

approach for fully distributed environments.

84

Bibliography

[ANS85] ANSI X9.17 (Revised), American National Standard for Financial

Institution Key Management (Wholesale), American Bankers Associ-

ation, May 1985.

[ARV95] W. Aiello, S. Rajagopalan, and R. Venkatesan. Design of Practi-

cal and Provably Good Random Number Generators. In 5th Annual

ACM-SIAM Symposium of Discrete Algorithms, pages 1–8, 1995.

[ARV99] W. Aiello, S. Rajagopalan, and R. Venkatesan. High-Speed Pseudo-

random Number Generation with Small Memory. In Lecture Notes in

Computer Science, volume 1636, pages 290–304. Springer, 1999.

[Bal93] D. Balenson. RFC 1423 – Privacy Enhancement for Internet Elec-

tronic Mail: Part III: Algorithms, Modes, and Identifiers, 1993. Avail-

able at: http://www.ietf.org/rfc/rfc1423.txt [online; accessed

2009].

[BB99] V. Bagini and M. Bucci. A Design of Reliable True Random Number

Generator for Cryptographic Applications. In Proceedings of the 1st

Workshop Cryptographic Hardware and Embedded Systems (CHES)

1999, volume 1717 of Lecture Notes in Computer Science, pages 204–

218. Springer, 1999.

[BBL04] H. Bock, M. Bucci, and R. Luzzi. An Offset-Compensated Oscillator-

Based Random Bit Source for Security Applications. In Cryptographic

Hardware and Embedded Systems (CHES) 2004, volume 3156 of Lec-

ture Notes in Computer Science, pages 268–281. Springer, 2004.

[BCEP04] E. Bresson, O. Chevassut, A. Essiari, and D. Pointcheval. Mutual

Authentication and Group Key Agreement for Low-Power Mobile De-

vices. In Fifth IFIP–TC6 International Conference on Mobile and

Wireless Communications Networks, pages 59–62, 2004.

85

http://www.ietf.org/rfc/rfc1423.txt

BIBLIOGRAPHY

[BCK+06] J. Barnat, D. Cvrček, J. Krhovják, V. Lorenc, V. Matyáš, Z. Ř́ıha,

J. Staudek, and P. Švenda. Smartcards, final report for the Czech

National Security Authority, December 2006.

[BGL+03] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo.

A High-Speed Oscillator-Based Truly Random Number Source for

Cryptographic Applications on a Smart Card IC. IEEE Transac-

tions Computers, 52(4):403–409, April 2003. Available at: http://

csdl.computer.org/dl/trans/tc/2003/04/t0403.pdf [online; ac-

cessed 2009].

[BH05] B. Barak and Shai Halevi. A model and architecture for pseudo-

random generation and applications to /dev/random. In Proceedings

of the ACM CCS‘05, November 2005.

[BK07] E. Barker and J. Kelsey. Recommendation for Random Number

Generation Using Deterministic Random Bit Generators (Revised).

National Institute of Standards and Technology – Special Publica-

tion 800-90. NIST Computer Security Division, March 2007. Avail-

able at: http://csrc.nist.gov/publications/nistpubs/800-90/

SP800-90revised_March2007.pdf [online; accessed 2009].

[BKMŠ09] J. Bouda, J. Krhovják, V. Matyáš, and P. Švenda. Towards True

Random Number Generation in Mobile Environments. Submitted to

the special issue of Computing. Springer, 2009.

[BL05] M. Bucci and R. Luzzi. Design of Testable Random Bit Genera-

tors. In Cryptographic Hardware and Embedded Systems (CHES)

2005, volume 3659 of Lecture Notes in Computer Science, pages 147–

256. Springer, 2005.

[BM92] S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-

based protocols secure against dictionary attacks. In Proceedings

IEEE Computer Society symposium on Research in Security and

Privacy, pages 72–84, May 1992. Available at: http://www.cs.

columbia.edu/~smb/papers/neke.pdf [online; accessed 2009].

[BM03] C. Boyd and A. Mathuria. Protocols for Authentication and Key

Establishment. Springer-Verlag, 2003. ISBN 978-3540431077.

[Boy89] J. Boyar. Inferring sequences produced by pseudo-random number

generators. Journal of the ACM (JACM), 36(1):129–141, 1989.

86

http://csdl.computer.org/dl/trans/tc/2003/04/t0403.pdf
http://csdl.computer.org/dl/trans/tc/2003/04/t0403.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://www.cs.columbia.edu/~smb/papers/neke.pdf
http://www.cs.columbia.edu/~smb/papers/neke.pdf

BIBLIOGRAPHY

[BR94] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How

to Encrypt with RSA. In Eurocrypt ’94, volume 950 of Lecture

Notes in Computer Science, pages 92–111. Springer, 1994. Avail-

able at: http://www-cse.ucsd.edu/~mihir/papers/oae.pdf [on-

line; accessed 2009].

[BST03] B. Barak, R. Shaltiel, and E. Tromer. True Random Num-

ber Generators Secure in a Changing Environment. In Crypto-

graphic Hardware and Embedded Systems (CHES), pages 166–180.

Springer-Verlag, 2003. Available at: http://theory.csail.mit.

edu/~tromer/papers/rng.pdf [online; accessed 2009].

[BTSL01] M. Bucci, E. Trichina, D. De Seta, and R. Luzzi. Supplemental Cryp-

tographic Hardware for Smart Cards. IEEE Micro, 21(6):26–35, De-

cember 2001. Available at: http://csdl.computer.org/dl/mags/

mi/2001/06/m6026.pdf [online; accessed 2009].

[Cen02] Center for Information Security and Cryptography (CISC). Library of

Tests for Random Number Generators, 2002. Available at: http://

www.csis.hku.hk/cisc/download/idetect/ [online; accessed 2009].

[ČH04] M. Čagalj and J.-P. Hubau. Key agreement over a radio link. Tech-

nical Report IC/2004/16, EPFL-IC Technical Report, 2004.

[CHK+05] D. Cvrček, V. Holer, J. Krhovják, V. Lorenc, V. Matyáš, Z. Ř́ıha,

P. Švenda, and P. Švéda. Smartcards, final report for the Czech

National Security Authority, December 2005.

[CKM+04] D. Cvrček, J. Krhovják, V. Matyáš, Z. Ř́ıha, P. Švenda, and P. Švéda.

Smartcards, final report for the Czech National Security Authority,

December 2004.

[Cor00] J.-S. Coron. On the Exact Security of Full Domain Hash. In Crypto

2000, volume 1880 of Lecture Notes in Computer Science, pages 229–

235. Springer, 2000. Available at: http://www.iacr.org/archive/

crypto2000/18800229/18800229.pdf [online; accessed 2009].

[Cry06] Information Security Research Centre at Queensland. Crypt-XS Test

Suite, University of Technology in Australia, 2006. Available at:

http://www.isi.qut.edu.au/resources/cryptx/ [online; accessed

2009].

87

http://www-cse.ucsd.edu/~mihir/papers/oae.pdf
http://theory.csail.mit.edu/~tromer/papers/rng.pdf
http://theory.csail.mit.edu/~tromer/papers/rng.pdf
http://csdl.computer.org/dl/mags/mi/2001/06/m6026.pdf
http://csdl.computer.org/dl/mags/mi/2001/06/m6026.pdf
http://www.csis.hku.hk/cisc/download/idetect/
http://www.csis.hku.hk/cisc/download/idetect/
http://www.iacr.org/archive/crypto2000/18800229/18800229.pdf
http://www.iacr.org/archive/crypto2000/18800229/18800229.pdf
http://www.isi.qut.edu.au/resources/cryptx/

BIBLIOGRAPHY

[Dav00] R. Davies. Hardware random number generators, 2000. Available at:

http://www.robertnz.net/hwrng.htm [online; accessed 2009].

[DGP07] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis of the

Windows Random Number Generator. 2007. Available at: http:

//eprint.iacr.org/2007/419.pdf [online; accessed 2009].

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, IT-22(6):644–654, November

1976.

[DHY02] A. Desai, A. Hevia, and Y. L. Yin. A Practice-Oriented Treatment of

Pseudorandom Number Generators. In EUROCRYPT 2002, volume

2332 of Lecture Notes in Computer Science, pages 368–383. Springer,

2002.

[DIF94] D. Davis, R. Ihaka, and P. Fenstermacher. Cryptographic Random-

ness from Air Turbulence in Disk Drives. In Proceedings of Advances

in Cryptology – CRYPTO’94, volume 839 of LNCS, pages 114–120,

1994.

[DRV02] N. Dedic, L. Reyzin, and S. Vadhan. An Improved Pseudorandom

Generator Based on Hardness of Factoring. In Third Conference on

Securuty in Communication Networks (SCN ’02), 2002. Available at:

http://eprint.iacr.org/2002/131.pdf [online; accessed 2009].

[ECS94] D. Eastlake, S. Crocker Cybercash, and J. Schiller. RFC1750: Ran-

domness Recommendations for Security. MIT, December 1994.

[ECS05] D. Eastlake, S. Crocker, and J. Schiller. RFC4086 – Randomness

Requirements for Security, 2005. Available at: http://www.ietf.

org/rfc/rfc4086.txt [online; accessed 2009].

[EHK+03] M. Epstein, L. Hars, R. Krasinski, M. Rosner, and H. Zheng. Design

and Implementation of a True Random Number Generator Based on

Digital Circuit Artifacts. In Proceedings of the 5th Workshop Crypto-

graphic Hardware and Embedded Systems (CHES) 2003, volume 2279

of Lecture Notes in Computer Science, pages 152–165. Springer, 2003.

[Ell95] C. Ellison. IEEE. P1363 Appendix E – Cryptographic Random

Numbers, 1995. Available at: http://theworld.com/~cme/P1363/

ranno.html [online; accessed 2009].

88

http://www.robertnz.net/hwrng.htm
http://eprint.iacr.org/2007/419.pdf
http://eprint.iacr.org/2007/419.pdf
http://eprint.iacr.org/2002/131.pdf
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://theworld.com/~cme/P1363/ranno.html
http://theworld.com/~cme/P1363/ranno.html

BIBLIOGRAPHY

[EVB01] J. Eberspaecher, H.-J. Voegel, and C. Bettstetter. GSM Switching,

Services, and Protocols. Wiley, 2001. ISBN 978-0471499039.

[FCRV03] A. Fort, F. Cortigiani, S. Rocchi, and V. Vignoli. Very High-Speed

True Random Noise Generator. In Analog Integrated Circuits and

Signal Processing, volume 34, pages 97–105, 2003.

[FMC84] R. C. Fairfield, R. L. Mortenson, and K. B. Coulthart. An LSI

Random Number Generator (RNG). In Proceedings of CRYPTO

84 on Advances in cryptology, pages 203–230, 1984. Available

at: http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/

C84/203.PDF [online; accessed 2009].

[FS03] N. Ferguson and B. Schneier. Practical Cryptography. John Wiley &

Sons, first edition, 2003. ISBN 0-471-22357-3.

[Gen00] R. Gennaro. An Improved Pseudo-Random Generator Based on

the Discrete Logarithm Problem. In Proceedings of the 20th An-

nual International Cryptology Conference on Advances in Cryptology,

pages 469–481, 2000. Available at: http://www.research.ibm.com/

security/newprng.ps [online; accessed 2009].

[Gir08] D. Giry. Keylength.com – Cryptographic Key Length Recommen-

dation, December 2008. Available at: http://www.keylength.com/

[online; accessed 2009].

[Gol90] O. Goldreich. A Note on Computational Indistinguishability. In In-

formation Processing Letters, volume 34, pages 277–281, May 1990.

[Gut98] P. Gutmann. Software generation of practically strong random

numbers. In Proceedings of the 7th USENIX Security Symposium,

pages 243–257. USENIX Association, January 1998. Available at:

http://www.usenix.org/publications/library/proceedings/

sec98/full_papers/gutmann/gutmann.pdf [online; accessed 2009].

[Gut04] P. Gutmann. Cryptographic Security Architecture Design and Veri-

fication, 2004. ISBN 978-0-387-95387-8.

[GW96] I. Goldberg and D. Wagner. Randomness and the Netscape Browser.

In Dr. Dobb’s Journal, Special issue on Encoding: Encryption, Com-

pression, and Error Correction, 1996.

89

http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C84/203.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C84/203.PDF
http://www.research.ibm.com/security/newprng.ps
http://www.research.ibm.com/security/newprng.ps
http://www.keylength.com/
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/gutmann/gutmann.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/gutmann/gutmann.pdf

BIBLIOGRAPHY

[HCD97] W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi. An Integrated

Analog/Digital Random Noise Source. IEEE Transactions on Circuits

and System I: Fundamental Theory and Applications, 44(6):204–218,

June 1997.

[Hel06] P. Hellekalek. pLab: Theory and Practice of Random Number Gen-

eration, research project led by Peter Hellekalek at the Mathemat-

ics Department of the University of Salzburg, 2006. Available at:

http://random.mat.sbg.ac.at/ [online; accessed 2009].

[Hen05] P. Henkel. Port of Rijndael Block Cipher to Symbian OSs. 2005.

Available at: http://www.newlc.com/AES-Encryption.html [on-

line; accessed 2009].

[HSS04] J. C. Hernndez, J. M. Sierra, and A. Seznec. The SAC Test: A

New Randomness Test, with Some Applications to PRNG Analysis.

In ICCSA 2004, volume 3043 of Lecture Notes in Computer Science,

pages 960–967. Springer, 2004.

[HW03] P. Hellekalek and S. Wegenkittl. Empirical evidence concerning

AES. In ACM Transactions on Modeling and Computer Sim-

ulation (TOMACS), pages 322–333. ACM Press, 2003. Avail-

able at: http://random.mat.sbg.ac.at/ftp/pub/publications/

peter/aes_sub.ps [online; accessed 2009].

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In

Proceedings of the 30th IEEE Symposium on Foundations of Com-

puter Science, pages 248–253, 1989.

[Jab96] D. Jablon. Strong password-only authenticated key exchange. ACM

SIGCOMM Computer Communication Review, 26(5):5–26, October

1996. Available at: http://www.jablon.org/jab96.pdf [online; ac-

cessed 2009].

[JK99] B. Jun and P. Kocher. The Intel Random Number Generator. Cryp-

tography Research, 1999. Available at: http://www.cryptography.

com/resources/whitepapers/IntelRNG.pdf [online; accessed 2009].

[JMV01] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve

Digital Signature Algorithm (ECDSA). Certicom Research, May

2001. Available at: http://www.comms.scitech.susx.ac.uk/fft/

crypto/ecdsa.pdf [online; accessed 2009].

90

http://random.mat.sbg.ac.at/
http://www.newlc.com/AES-Encryption.html
http://random.mat.sbg.ac.at/ftp/pub/publications/peter/aes_sub.ps
http://random.mat.sbg.ac.at/ftp/pub/publications/peter/aes_sub.ps
http://www.jablon.org/jab96.pdf
http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
http://www.comms.scitech.susx.ac.uk/fft/crypto/ecdsa.pdf
http://www.comms.scitech.susx.ac.uk/fft/crypto/ecdsa.pdf

BIBLIOGRAPHY

[KC02] D. J. Kinniment and E. G. Chester. Design of an On-Chip Random

Number Generator using Metastability. In Proceedings of the 28th Eu-

ropean Solid-State Circuit Conference (ESSCIRC) 2002, pages 595–

598, September 2002. Available at: http://www.staff.ncl.ac.uk/

david.kinniment/Research/papers/ESSCIRC2002.PDF [online; ac-

cessed 2009].

[Kel05] S. S. Keller. NIST-recommended random number generator based

on ANSI X9.31 Appendix A.2.4 using the 3-key triple DES and

AES algorithms. NIST Computer Security Division, January

2005. Available at: http://csrc.nist.gov/groups/STM/cavp/

documents/rng/931rngext.pdf [online; accessed 2009].

[Ken06] J. Kennedy. Digital camera fundamentals. Andor Tech-

nolog, 2006. Available at: http://www.andor.com/pdfs/

DigitalCameraFundamentals.pdf [online; accessed 2009].

[KKK+07] J. Krhovják, M. Kumpošt, J. Kůr, V. Lorenc, V. Matyáš, Z. Ř́ıha,

J. Staudek, and P. Švenda. Smartcards, final report for the Czech

National Security Authority, December 2007.

[KKL+08] J. Krhovják, J. Kůr, V. Lorenc, V. Matyáš, P. Pecho, Z. Ř́ıha,

J. Staudek, P. Švenda, and J. Žižkovský. Smartcards, final report

for the Czech National Security Authority, December 2008.

[KMH07] A. N. Klingsheim, V. Moen, and K. J. Hole. Challenges in Securing

Networked J2ME Applications. In Computer, volume 40, pages 24–30,

2007. ISSN 0018-9162.

[KMŽ09] J. Krhovják, V. Matyáš, and J. Žižkovský. Generating random and

pseudorandom sequences in mobile devices. Submitted to The First

International ICST Conference on Security and Privacy in Mobile

Information and Communication Systems (MobiSec ’09). Springer,

2009.

[Knu97] D. E. Knuth. The Art of Computer Programming: Seminumerical

Algorithms, Volume 2. Addison Wesley, third edition, 1997. ISBN

0-201-89684-2.

[KR02] V. Kĺıma and T. Rosa. Further Results and Considerations on Side

Channel Attacks on RSA. In CHES ’02, volume 2523 of Lecture Notes

in Computer Science, pages 244–259. Springer, 2002.

91

http://www.staff.ncl.ac.uk/david.kinniment/Research/papers/ESSCIRC2002.PDF
http://www.staff.ncl.ac.uk/david.kinniment/Research/papers/ESSCIRC2002.PDF
http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
http://www.andor.com/pdfs/Digital Camera Fundamentals.pdf
http://www.andor.com/pdfs/Digital Camera Fundamentals.pdf

BIBLIOGRAPHY

[Kra90] H. Krawczyk. How to predict congruential generators. In Advances in

Cryptology-CRYPTO’89, volume 435 of Lecture Notes in Computer

Science, pages 138–153. Springer, 1990. Available at: http://dsns.

csie.nctu.edu.tw/research/crypto/HTML/PDF/C89/138.PDF [on-

line; accessed 2009].

[Krh06a] J. Krhovják. Analysis, demands, and properties of pseudorandom

number generators. In Santa’s Crypto Get-Together ’06, pages 55–65,

December 2006. ISBN 80-903083-7-6.

[Krh06b] J. Krhovják. Cryptographic random and pseudorandom number gen-

erators. In 6th Central European Conference on Cryptography –

NýırCrypt ’06, June 2006.

[KSF99] J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160: Notes on

the Design and Analysis of the Yarrow Cryptographic Pseudoran-

dom Number Generator. In Proceedings of the 6th Annual Inter-

national Workshop on Selected Areas in Cryptography, pages 13–33.

Springer-Verlag, August 1999. Available at: http://www.schneier.

com/paper-yarrow.ps.gz [online; accessed 2009].

[KŠM07] J. Krhovják, P. Švenda, and V. Matyáš. The sources of randomness in

mobile devices. In Proceeding of the 12th Nordic Workshop on Secure

IT System, pages 73–84. Reykjavik University, October 2007.

[KSM08] J. Krhovják, A. Stetsko, and V. Matyáš. Generating random num-

bers in hostile environments. In 16th Security Protocols Workshop –

SPW ’08, April 2008. To appear in Springer-Verlag Lecture Notes in

Computer Science.

[KŠMS07] J. Krhovják, P. Švenda, V. Matyáš, and L. Smoĺık. The sources

of randomness in smartphones with Symbian OS. In Security and

Protection of Information ’07, pages 87–98. University of Defence,

May 2007.

[KSWH98] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Cryptanalytic attacks

on pseudorandom number generators. In Fifth International Work-

shop Proceedings of Fast Software Encryption ’98, pages 168–188.

Springer-Verlag, March 1998. Available at: http://www.schneier.

com/paper-prngs.pdf [online; accessed 2009].

[Lav00] The LavaRnd Random Number Generator, 2000. Available at: http:

//www.lavarnd.org/ [online; accessed 2009].

92

http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C89/138.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C89/138.PDF
http://www.schneier.com/paper-yarrow.ps.gz
http://www.schneier.com/paper-yarrow.ps.gz
http://www.schneier.com/paper-prngs.pdf
http://www.schneier.com/paper-prngs.pdf
http://www.lavarnd.org/
http://www.lavarnd.org/

BIBLIOGRAPHY

[LP08] S. Laur and S. Pasini. SAS-Based Group Authentication and Key

Agreement Protocols. In Public Key Cryptography (PKC) 2008, vol-

ume 4939 of Lecture Notes in Computer Science, pages 197–213.

Springer, 2008.

[LS07] P. L’Ecuyer and R. Simard. TestU01: A C Library for Empirical

Testing of Random Number Generators. In ACM Transactions on

Mathematical Software, volume 33, 2007.

[Mar95] G. Marsaglia. DIEHARD Statistical Tests, 1995. Available at: http:

//stat.fsu.edu/pub/diehard/ [online; accessed 2009].

[MT02] G. Marsaglia and W. W. Tang. Some difficult-to-pass tests of ran-

domness. Journal of Statistical Software, 7(3), 2002. Available at:

http://www.jstatsoft.org/v07/i03/ [online; accessed 2009].

[MvOV01] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

Applied Cryptography. CRC Press, August 2001. ISBN 0-8493-8523-7.

[Neu51] J. von Neumann. Various techniques used in connection with random

digits. In Monte Carlo methods, volume 12 of Applied Mathematics

Series, pages 36–38, 1951.

[Neu04] D. Neuenschwander. Probabilistic and Statistical Methods in Cryptol-

ogy. Springer, 2004. ISBN 3-540-22001-1.

[Ng05] H. Ng. Simple Pseudorandom Number Generator with Strength-

ened Double Encryption (Cilia), 2005. Available at: http://eprint.

iacr.org/2005/086.pdf [online; accessed 2009].

[NIS94a] National Institute of Standards and Technology. Federal Infor-

mation Processing Standards Publication 140-1, Security Re-

quirements for Cryptographic Modules, January 1994. Avail-

able at: http://csrc.nist.gov/publications/fips/fips140-1/

fips1401.pdf [online; accessed 2009].

[NIS94b] National Institute of Standards and Technology. Federal Informa-

tion Processing Standards Publication 186, DIGITAL SIGNATURE

STANDARD (DSS), May 1994. Available at: http://www.itl.

nist.gov/fipspubs/fip186.htm [online; accessed 2009].

[NIS00] National Institute of Standards and Technology. Federal Information

Processing Standards Special Publication 800-22. A Statistical Test

93

http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/
http://www.jstatsoft.org/v07/i03/
http://eprint.iacr.org/2005/086.pdf
http://eprint.iacr.org/2005/086.pdf
http://csrc.nist.gov/publications/fips/fips140-1/fips1401.pdf
http://csrc.nist.gov/publications/fips/fips140-1/fips1401.pdf
http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.itl.nist.gov/fipspubs/fip186.htm

BIBLIOGRAPHY

Suite for Random and Pseudorandom Number Generators for Cryp-

tographic Applications, October 2000. Revised May 2001.

[NIS01] National Institute of Standards and Technology. Federal Infor-

mation Processing Standards Publication 140-2, Security Re-

quirements for Cryptographic Modules, May 2001. Avail-

able at: http://csrc.nist.gov/publications/fips/fips140-2/

fips1402.pdf [online; accessed 2009].

[NIS06] Digital Signature Standard (DSS). Draft Federal Information Pro-

cessing Standards Publication 186-3, National Institute of Standards

and Technology. NIST Computer Security Division, May 2006.

[NIS07] National Institute of Standards and Technology. Federal Infor-

mation Processing Standards Publication 140-3 (Draft), Security

Requirements for Cryptographic Modules, July 2007. Avail-

able at: http://csrc.nist.gov/publications/fips/fips140-3/

fips1403Draft.pdf [online; accessed 2009].

[OP00] T. Okamoto and D. Pointcheval. PSEC-3: Provably Secure El-

liptic Curve Encryption Scheme. In IEEE P1363a, May 2000.

Available at: http://grouper.ieee.org/groups/1363/P1363a/

contributions/psec3v2.pdf [online; accessed 2009].

[PC96] C. S. Petrie and J. A. Connelly. Modeling and Simulation of

Oscillator-Based Random Number Generators. In International Sym-

posium on Circuits and Systems, volume 6, pages 324–327, May 1996.

[PC00] C. S. Petrie and J. A. Connelly. A Noise-Based IC Random Number

Generator for Applications in Cryptography. In IEEE Transactions

on Circuits and Systems, volume 47, pages 615–621, May 2000.

[Pir05] C. Piras. RaBiGeTe: Random Bit Generators Tester, 2005. Avail-

able at: http://www.webalice.it/cristiano.pi/rabigete/ [on-

line; accessed 2009].

[PKS00] M. G. Parker, A. H. Kemp, and S. J. Shepherd. Fast Blum-Blum-Shub

Sequence Generation Using Montgomery Multiplication. IEEE Pro-

ceedings of Computers and Digital Techniques, 147(4):252–254, July

2000.

94

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-3/fips1403Draft.pdf
http://csrc.nist.gov/publications/fips/fips140-3/fips1403Draft.pdf
http://grouper.ieee.org/groups/1363/P1363a/contributions/psec3v2.pdf
http://grouper.ieee.org/groups/1363/P1363a/contributions/psec3v2.pdf
http://www.webalice.it/cristiano.pi/rabigete/

BIBLIOGRAPHY

[Qua04] Id Quantique. Random Numbers Generation using Quantum Physics.

White paper, 2004. Available at: http://www.idquantique.com/

products/files/quantis-whitepaper.pdf [online; accessed 2009].

[Rén60] A. Rényi. On measures of information and entropy. In Proceedings

of the 4th Berkeley Symposium on Mathematics, Statistics and Prob-

ability, pages 547–561. University of California Press, 1960.

[Riv92] R. Rivest. RFC 1321 – The MD5 Message-Digest Algorithm, 1992.

Available at: http://www.ietf.org/rfc/rfc1321.txt [online; ac-

cessed 2009].

[RSA99] RSA Security. PKCS#5: Password-Based Cryptography Standard,

ver. 2.0, 1999. Available at: ftp://ftp.rsasecurity.com/pub/

pkcs/pkcs-5v2/pkcs5v2-0.pdf [online; accessed 2009].

[RSA02] RSA Security. PKCS#1: RSA Cryptography Standard, ver. 2.1,

2002. Available at: ftp://ftp.rsasecurity.com/pub/pkcs/

pkcs-1/pkcs-1v2-1.pdf [online; accessed 2009].

[Sch01] W. Schindler. Efficient Online Tests for True Random Number Gen-

erators. In Proceedings of the Third International Workshop on Cryp-

tographic Hardware and Embedded Systems, pages 103–117, 2001.

[SF07] D. Shumow and N. Ferguson. On the Possibility of a Back Door in the

NIST SP800-90 DualEcPrng, 2007. Available at: http://rump2007.

cr.yp.to/15-shumow.pdf [online; accessed 2009].

[Sha48] C. E. Shannon. A Mathematical Theory of Communication. In The

Bell System Technical Journal, 1948.

[Sha02] R. Shaltiel. Recent developements in explicit constructions of extrac-

tors. In Bulletin of the EATCS, pages 67–95, 2002.

[Sho96] V. Shoup. On fast and provably secure message authentication based

on universal hashing. In Proceedings of Crypto ’96, pages 313–328,

1996. Available at: http://www.shoup.net/papers/macs.pdf [on-

line; accessed 2009].

[Sho01] V. Shoup. OAEP Reconsidered. In Crypto ’01, 2001. Available at:

http://www.shoup.net/papers/oaep.pdf [online; accessed 2009].

95

http://www.idquantique.com/products/files/quantis-whitepaper.pdf
http://www.idquantique.com/products/files/quantis-whitepaper.pdf
http://www.ietf.org/rfc/rfc1321.txt
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://www.shoup.net/papers/macs.pdf
http://www.shoup.net/papers/oaep.pdf

BIBLIOGRAPHY

[SJUH04] K. Song-Ju, K. Umeno, and A. Hasegawa. Corrections of the NIST

Statistical Test Suite for Randomness, January 2004. Available at:

http://eprint.iacr.org/2004/018.pdf [online; accessed 2009].

[SK01] T. Stojanovski and L. Kocarev. Chaos-Based random number gen-

erators – Part I: Analysis. IEEE Transactions on Circuits System-1:

Fundamental Theory and Applications, 48(3):281–288, 2001.

[SMH05] K. I. F. Simonsen, V. Moen, and K. J. Hole. Attack on Suns MIDP

Reference Implementation of SSL. In 10th Nordic Workshop on Secure

IT Systems. Tartu University, 2005.

[Sot00] J. Soto. Statistical Testing of Random Number Generators. Na-

tional Institute of Standards and Technology, 2000. Available

at: http://csrc.nist.gov/groups/ST/toolkit/rng/documents/

nissc-paper.pdf [online; accessed 2009].

[Tre99] L. Trevisan. Construction of extractors using pseudorandom gener-

ators (Extended Abstract). In 31st ACM Symposium on Theory of

Computing, pages 141–148, 1999.

[Tse05] Y.-M. Tseng. An Improved Conference-Key Agreement Protocol with

Forward Secrecy. Informatica, 16(2):275–284, 2005.

[Vau02] S. Vaudenay. Security Flaws Induced by CBC Padding – Applications

to SSL, IPSEC, WTLS. . . . In Eurocrypt ’02, volume 2332 of Lecture

Notes in Computer Science, pages 534–545. Springer, 2002. Available

at: http://lasecwww.epfl.ch/pub/lasec/doc/Vau02a.ps [online;

accessed 2009].

[VHKK08] I. Vasyltsov, E. Hambardzumyan, Y. Kim, and B. Karpinskyy. Fast

Digital TRNG Based on Metastable Ring Oscillator. In Cryptographic

Hardware and Embedded Systems (CHES) 2008, pages 164–180, 2008.

[VM01] J. Viega and G. McGraw. Building Secure Software: How to Avoid

Security Problems the Right Way. Addison Wesley Professional, 2001.

ISBN 0-2017-2152-X.

[WF01] S. Walker and S. Foo. Evaluating Metastability in Electronic Circuits

for Random Number Generation. In Proceedings IEEE Computer

Society Workshop on VLSI, pages 99–101. IEEE Computer Society,

April 2001.

96

http://eprint.iacr.org/2004/018.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf
http://lasecwww.epfl.ch/pub/lasec/doc/Vau02a.ps

BIBLIOGRAPHY

[Wu97] T. Wu. The Secure Remote Password protocol. In Proceedings of the

1998 Internet Society Symposium on Network and Distributed Sys-

tems Security, pages 97–111, November 1997. Available at: ftp:

//srp.stanford.edu/pub/srp/srp.ps [online; accessed 2009].

[Xia07] Y. Xiao. Link Layer Security in Wireless LANs, Wireless PANs, and

Wireless MANs. Springer, 2007. ISBN 978-0387263274.

[Zen04] E. Zenner. On Cryptographic Properties of LFSR-based Pseu-

dorandom Generators. PhD thesis, Mannheim University, 2004.

Available at: http://th.informatik.uni-mannheim.de/people/

zenner/pub/phdzenner.pdf [online; accessed 2009].

[ZG06] T. Reinman Z. Gutterman, B. Pinkas. Analysis of the Linux Random

Number Generator. 2006. Available at: http://eprint.iacr.org/

2006/086.pdf [online; accessed 2009].

97

ftp://srp.stanford.edu/pub/srp/srp.ps
ftp://srp.stanford.edu/pub/srp/srp.ps
http://th.informatik.uni-mannheim.de/people/zenner/pub/phdzenner.pdf
http://th.informatik.uni-mannheim.de/people/zenner/pub/phdzenner.pdf
http://eprint.iacr.org/2006/086.pdf
http://eprint.iacr.org/2006/086.pdf

	1 Introduction
	1.1 Basic terminology
	1.2 Structure of the thesis
	1.3 Literature review

	2 Random data in cryptography
	2.1 Requirements on random data
	2.1.1 Qualitative requirements
	2.1.2 Quantitative requirements
	2.1.3 Demands of common cryptographic schemes

	2.2 Generation of random data
	2.2.1 True randomness
	2.2.2 Pseudorandomness
	2.2.3 Randomness extractors

	2.3 Statistical testing
	2.3.1 Performed experiments

	2.4 Distributed generation
	2.4.1 Motivation
	2.4.2 Attacker model for standalone mobile devices
	2.4.3 Communication model
	2.4.4 Gathering of random data in hostile environments
	2.4.5 Summary

	3 The sources of randomness in mobile devices
	3.1 Specifics of the mobile devices
	3.2 Analysis of selected sources of randomness
	3.2.1 Theoretical entropy estimation
	3.2.2 Microphone
	3.2.3 Digital camera
	3.2.4 Statistical testing with the NIST battery

	3.3 Recapitulation

	4 Digital post-processing
	4.1 Randomness extractors
	4.1.1 Processing randomness
	4.1.2 Randomness extractor
	4.1.3 Analysis of acquired random data
	4.1.4 Summary

	4.2 Secure pseudorandom generators
	4.2.1 ANSI X9.31 pseudorandom data generator
	4.2.2 Fortuna pseudorandom data generator

	4.3 Recapitulation

	5 Design prototype
	5.1 Suitable target platform
	5.2 ANSI X9.31 pseudorandom data generator
	5.3 Fortuna pseudorandom data generator
	5.3.1 Fortuna server
	5.3.2 Fortuna client

	5.4 Recapitulation

	6 Conclusions
	6.1 Future work

	Bibliography

